232
Views
56
CrossRef citations to date
0
Altmetric
Review

Ocular neovascularisation and excessive vascular permeability

Pages 1395-1402 | Published online: 23 Feb 2005

Bibliography

  • KLEIN R, KLEIN BE, MOSS SE, DAVIS MD, DEMETS DL: The Wisconsin Epidemiologic Study of Diabetic Retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch. Ophthalmoi (1984) 102:520–526.
  • KLEIN R, KLEIN BEK, LINTON KP: The Beaver Dam Eye Study: the relation of age-related maculopathy to smoking. Am. J. Epidemic]. (1993) 137:190–200.
  • KENT D, VINORES SA, CAMPOCHIARO PA: Macular oedema: the role of soluble mediators. Br. J. Oplithalincl (2000) 84:542–545.
  • VINORES SA, YOUSSRI Al, LUNA JD et al.: Upregulation of vascular endothelial growth factor in ischemic and non-ischemic human and experimental retinal disease. Hista Histcpathcl. (1997) 12:99–109.
  • SENGER DR, GALLI SJ, DVORAK AM, PERRUZZI CA, HARVEY VS, DVORAK HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science (1983) 219:983–985.
  • TOLENTINO MJ, MILLER JW, GRAGOUDAS ES, CHATZISTEFANOU K, FERRARA N, ADAMIS AP: Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch. Ophthalincl (1996) 114:964–970.
  • OZAKI H, HAYASHI H, VINORES SA, MOROMIZATO Y, CAMPOCHIARO PA, OSHIMA K: Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of the blood-retinal barrier in rabbits and primates. Exp. Eye Res. (1997) 64:505–517.
  • LUNA JD, CHAN CC, DEREVJANIK NL et al.: Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor alpha, and interleukin-lbeta-mediated breakdown. Neurosci. Res. (1997) 49:268–280.
  • DEREVJANIK NL, VINORES SA, XIAO WH et al.: Quantitative assessment of the integrity of the blood-retinal barrier in mice. Invest. Ophthalmol 1/is. Sci. (2002) 43:2462–2467.
  • TOLENTINO MJ, MILLER JW, GRAGOUDAS ES et al.: Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology (1996) 103:1820–1828.
  • SHWEIKI D, ITIN A, SOFFER D, KESHET E: Vascular endothelial growth factor induced by hypoxia may mediate hypcoda-initiated angiogenesis. Nature (1992) 359:843–845.
  • PLATE KH, BREIER G, WELCH HA, RISAU W: Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature (1992) 359:845–848.
  • NGUYEN QD, SHAH SM, VAN ANDEN E, SUNG JU, VITALE S, CAMPOCHIARO PA: Supplemental inspired oxygen improves diabetic macular edema; a pilot study. Invest. Ophthalmol 1/is. Sci. (2004) 45:617–624.
  • SAISHIN Y, SAISHIN Y, TAKAHASHI K, MELIA M, VINORES SA, CAMPOCHIARO PA: Inhibition of protein kinase C decreases prostaglandin-induced breakdown of the blood-retinal barrier.J Cell. Physiol (2003) 195:210–219.
  • CAMPOCHIARO PA: C99-PKC412 Study Group. Reduction of diabetic macular edema by oral administration of the kinase inhibitor PKC412. Invest. Ophthalmol 1/is. Sci. (2004) 45:922–931.
  • OKAMOTO N, TOBE T, HACKETT SF et al: Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am. Pathol (1997) 151:281–291.
  • OHNO-MATSUI K, HIROSE A, YAMAMOTO S et al: Inducible expression of vascular endothelial growth factor in photoreceptors of adult mice causes sever proliferative retinopathy and retinal detachment. Am. J. Pathol (2002) 160:711–719.
  • TAKAHASHI K, SAISHIN Y, SAISHIN Y et al.: Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. FASEB (2003) 17:896–898.
  • THURSTON G, SURI C, SMITH K et al: Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science (1999) 286:2511–2515.
  • THURSTON G, RUDGE JS, IOFFE E et al.: Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. (2000) 6:460–463.
  • NAMBU H, NAMBU R, OSHIMA Y et al.: Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood-retinal barrier. Gene Thec (2004) 11:865–873.
  • OSHIMA Y, DEERING T, OSHIMA S et al.: Angiopoietin-2 enhances retinal vessel sensitivity to vascular endothelial growth factor. J. Cell. Physic] (2003) 199:412–417.
  • HACKETT SF, OZAKI H, STRAUSS RW et al.: Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization." Physiol (2000) 184:275–284.
  • OSHIMA Y et al: Angiopoietin 2 (Ang2) increases or decreases neovascularization depending upon the setting. Invest. Ophthalmol 1/is. Sci. (2003) 44:.
  • SURI C, JONES PF, PATAN S etal.: Requisite role of Angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis. Cell (1996) 87:1171–1180.
  • MAISONPIERRE PC, SURI C, JONES PF et al.: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science (1997) 277:55–60.
  • SURI C, MCCLAIN J, THURSTON G et al.: Increased vascularization in mice overexpressing angiopoietin-1. Science (1998) 282:468–471.
  • PARK JE, CHEN HH, WINER J, HOUCK KA, FERRARA N: Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding Flt-1 but not to Flk-1/KDR. J. Biol. Chem. (1994) 269:25646–25654.
  • LUTTUN A, TJWA M, MOONS L et al: Revascularization of ischemic tissues by P1GF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Fltl. Nat. Med. (2002) 8:831–839.
  • CARMELIET P, MOONS L, LUTTUN A eta].: Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. (2001) 7:575–583.
  • KOLODKIN AL, LEVENGOOD DV, ROWE EG, TAI YT, GIGER RJ, GINTY DD: Neuropilin is a semaphorin III receptor. Cell (1997) 90(4):753–762.
  • HE Z, TESSIER-LAVIGNE M: Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell (1997) 90:739–751.
  • CHEN H, CHEDOTAL A, HE Z, GOODMAN CS, TESSIER-LAVIGNE M: Neuropilin-2, a novel member of the neuroplin family, is a high affinity receptor for the semaphorins sema E and sema IV but not sema III. Neuron (1997) 19(3):547–559.
  • WINBERG ML, NOORDERMEER JN, TAMAGNONE L et al.: Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell (1998) 95:903–916.
  • TAKAHASHI T, FOURNIER A, NAKAMURA F et al.: Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell (1999) 99:59–69.
  • SOKER S, TAKASHIMA S, MIAO HQ, NEUFELD G, KLAGSBRUN M: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell (1998) 92:735–745.
  • MIGDAL M, HUPPERTZ B, TESSLER S et al.: Neuropilin-1 is a placenta growth factor-2 receptor. J. Biol. Chem. (1998) 273:22272–22278.
  • GLUZMAN-POLTORAK Z, COHEN T, HERZOG Y, NEUFELD G: Neuropilin-2 and neuropilin-1 are receptors for the 165-amino acid form of vascular endothelial growth factor (VEGF) and of placenta growth factor-2, but only neuropilin-2 functions as a receptor for the 145-amino acid form of VEGF. J. Biol. Chem. (2000) 275:18040–18045.
  • GLUZMAN-POLTORAK Z, COHEN T, SHIBUYA M, NEUFELD G: Vascular endothelial growth factor receptor-1 and neuropilin-2 form complexes. J. Biol. Chem. (2001) 276:18688–18694.
  • MAMLUK R, GECHTMAN Z, KUTCHER ME, GASIUNAS N, GALLAGHER J, KLAGSBRUN M: Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its 6162 domain. J. Biol. Chem. (2002) 277:24818–24825.
  • OH H, TAKAGI H, OTANI A et al: Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): a mechanism contributing to VEGF-induced angiogenesis. Proc. Natl. Acad. Sci. USA (2002) 99:383–388.
  • SHEN J et al.: Deficiency of neuropilin 2 suppresses VEGF-induced retinal neovascularization. (2004) (In Press).
  • YAMADA E, TOBE T, YAMADA H et al: TIMP-1 promotes VEGF-induced neovascularization in the retina. Histol Histopath. (2001) 16:87–97.
  • MORI K, ANDO A, GEHLBACH P et al: Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am. J. Pathol (2001) 159:313–320.
  • MORI K, DUH E, GEHLBACH P et al.: Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J. Cell. Physiol (2001) 188:253–263.
  • MORI K, GEHLBACH P, YAMAMOTO S et al.: AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest. Ophthalmol Vis. Sci. (2002) 43:1994–2000.
  • MORI K, GEHLBACH P, ANDO A, MCVEY D, WET L, CAMP OCHIARO PA: Regression of ocular neovascularization by increased expression of pigment epithelium-derived factor. Invest. Ophthalmol Vis. Sci. (2001) 43:2428–2434.
  • RASMUSSEN HS, CHU KW, CAMP OCHIARO P et al.: Clinical protocol. An open-label, Phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum. Gene Ther. (2001) 12:2029–2032.
  • LAI C-C, WU WC, CHEN SL et al: Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest. Ophthalmol Vis. Sci. (2001) 42:2401–2407.
  • TAKAHASHI T, NAKAMURA T, HAYASHI A et al.: Inhibition of experimental choroidal neovascularization by overexpression of tissue inhibitor of metalloproteinases-3 in retinal pigment epithelium. Am. J. Ophthalmol (2000) 130:774–781.
  • HANGAI M, MOON YS, KITAYA N et al.: Systemically expressed soluble Tie2 inhibits intraocular neovascularization. Hum. Gene Ther. (2001) 12:1311–1321.
  • HONDA M, SAKAMOTO T, ISHIBASHI T, INOMATA H, UENO H:Experimental subretinal neovascularization is inhibited by adenovirus-mediated soluble VEGEflt-1 receptor gene transfection: a role of VEGF and possible treatment for SRN in age-related macular degeneration. Gene Ther. (2000) 7:978–985.
  • LAI C-M, BRANKOV M, ZAKNICH T et al.: Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization. Hum. Gene Ther. (2001) 12:1299–1310.
  • GEHLBACH P, DEMETRIADES AM, YAMAMOTO S et al.: Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and vascular endothelial growth factor-induced breakdown of the blood-retinal barrier. Hum. Gene Ther. (2003) 14:129–141.
  • SAISHIN Y, SILVA RL, SAISHIN Y et al: Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest. Ophthalmol Vis. Sci. (2003) 44:4989–4993.
  • EYETECH STUDY GROUP: Preclinical and Phase IA clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina (2002) 22:143–152.
  • SCHWARTZ SD et al: Safety of rhuFab V2, an anti-VEGF antibody fragment, as a single intravitreal injection in subjects with neovascular age-related macular degeneration. Invest. Ophthalmol Vis. Sci. (2001) 42(Suppl.):522.
  • ROSENFELD PJ et al: RhuFav V2 (anti-VEGF antibody fragment) in neovascular AMD: safety, tolerability, and efficacy of multiple, escalatin dose intravitreal injections. Invest. Ophthalmol Vis. Sci. (2003) 44(Suppl.):970.
  • SAISHIN Y, SAISHIN Y, TAKAHASHI K et al: VEGF-TRAPRIR2 suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier.j Cell. Physiol (2003) 195:241–248.
  • REICH SJ, FOSNOT J, KUROKI A et al.: Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mo/. Vis. (2003) 9:210–216.
  • D'AMICO DJ, GOLDBERG ME HUDSON H et al.: Anecortave acetate as monotherapy for treatment of subfoveal neovascularization in age-related macular degeneration: twelve-months clinical outcomes. Anecortave Acetate Clinical Study Group. Ophthalmology (2003) 110:2372–2383.
  • CAMPOCHIARO P et al.: AdPEDF therapy for subfoveal choroidal neovascularization (CNV): preliminary Phase I results. Invest. Ophthalmol Vis. Sci. (2004) 45 (Suppl.):2361.
  • DENEKAMP J: The tumour microcirculation as a target in cancer therapy: a clearer perspective. Ear: Clin. Invest. (1999) 29:733–736.
  • RUOSLAHTI E: Drug targeting to specific vascular sites. Drug Discov. Today (2002) 7:1138–1143.
  • ZARDI L, CARNEMOLLA B, SIRI A et al.: Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J. (1987) 6:2337–2342.
  • BROOKS P, CLARK R, CHERESH D: Requirement of vascular integrin alpha-v beta-3 for angiogenesis. Science (1994) 264:569–571.
  • BROOKS PC, MONTGOMERY AM, ROSENFELD M et al.: Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell (1994) 79:1157–1164.
  • LIU H, MOY P, KIM S et al.: Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. (1997) 57:3629–3634.
  • BREKKEN RA, OVERHOLSER JP, STASTNY VA, WALTENBERGERJ, MINNA JD, THORPE PE: Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res. (2000) 60:5117–5124.
  • COOKE SP, BOXER GM, LAWRENCE L et al.: A strategy for antitumor vascular therapy by targeting the vascular endothelial growth factor receptor complex. Cancer Res. (2001) 61:3653–3659.
  • HALIN C, NIESNER U, VILLANI ME, ZARDI L, NERI D: Tumor targeting properties of antibody-vascular endothelialgrowth factor fusion proteins. Int. J. Cancer (2002) 102:109–116.
  • VEENENDAAL LM, JIN H, PANS et al: In vitro and M vivo studies of a VEGF121/ rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc. Nati Acad. Sci. USA (2002) 99:7866–7871.
  • ZHANG WW, HOOD RD, SMITH-SOMMERVILLE HE: A monoclonal antibody that blocks VEGF binding to VEGFR2 (KDR/Flk-1) inhibits vascular expression of Flk-1 and tumor growth in an orthotopic human breast cancer model. Angiogenesis (2002) 5:35–44.
  • LIU Y, CHEUNG LH, THORPE P, ROSENBLUM MG: Mechanistic studies of a novel, human fusion toxin composed of vascular endothelial growth factor (VEGF) 121 and the serine protease granzyme B: Directed events in vascular endothelial cells. Mol. Cancer The]: (2003) 2:949–959.
  • LI L, WARTCHOW CA, DANTHI SN et al: A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated MY-labeled nanoparticles. Int. J. Radiation Oncology Biol. Phys. (2004) 58:1215–1227.
  • PETTIT GR, SINGH SB, HAMEL E, LIN CM, ALBERTS DS, GARCIA-KENDALL D: Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A4. Experientia (1989) 45(2):209–211.
  • WOODS JA, HADFIELD JA, PETTIT GR, FOX BW, MCGOWN AT: The interaction with tubulin of a series of stilbenes based on combrestastatin A-4. Br: J. Cancer (1995) 71:705–711.
  • DARK GG, HILL SA, PRISE VE, TOZER GM, PETTIT GR, CHAPLIN DJ: Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. (1997) 57:1829–1834.
  • NAMBU H, NAMBU R, MELIA M, CAMPOCHIARO PA: Combretastatin A-4 phosphate suppresses development and induces regression of choroidal neovascularization. Invest. Ophthahnol. Vis. Sci. (2003) 44:3650-3655. Affiliation Peter A Campochiaro MD Maumenee 719, Departments of Ophthalmology and Neuroscience, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287–9277, USA Tel: +1 410 955 5106; Fax: +1 410 614 9315; E-mail: [email protected]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.