56
Views
5
CrossRef citations to date
0
Altmetric
Review

Gene delivery approaches to heart failure treatment

, &
Pages 1413-1422 | Published online: 23 Feb 2005

Bibliography

  • WILLIAMS RS: Boosting cardiac contractility with genes. N Engl. I Med. (1995) 332:817–818.
  • HO KK, PINSKY JL, KANNEL WB et al.: The epidemiology of heart failure: the Framingham Study. I Am. Coll Cardiol (1993) 22:6A–13A.
  • MURRAY CJ, LOPEZ AD: Mortality by cause for eight regions of the world: Global Burden of Disease Study. Circulation (1997) 349:226–233.
  • ZHANG G, BUDKER VG, LUDTKE JJet al.: Naked DNA gene transfer in mammalian cells. Methods MM. Biol. (2004) 245:251–264.
  • CHEN S, SHOHET RV, BEKEREDJIAN R et al: Optimal of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. Am. Coll. Cardiol (2003) 42(2):301–308.
  • LEIDEN JM: Human gene therapy: the good, the bad, and the ugly. Circ. Res. (2000) 86:923–925.
  • MAH C, BYRNE BJ, FLOTTE TR: Viral-based delivery systems. Clin. Pharmacokinet. (2002) 41:901–911.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl. J. Med. (2003) 348:255–256.
  • LI JJ, UENO H, PAN Y et al: Percutaneoustransluminal gene transfer into canine myocardium in vivo by replication-defective adenovirus. Cardiovasc. Res. (1995) 30:97–105.
  • WHITE DC, KOCH WJ: Myocardial gene transfer. Curc Cardiol Rep. (2001) 3:37–42.
  • AMALFITANO A, PARKS RJ: Separatingfact from fiction: assessing the potential of modified adenovirus vectors for use in human gene therapy. Curc Gene Ther. (2002) 2:111–133.
  • SCHAGEN FH, OSSEVOORT M, TOES RE, HOEBEN RC: Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Grit. Rev Om& Hematol (2004) 50(1):51–70.
  • COMMUNAL C, HUQ F, LEBECHE D et al.: Decreased efficiency of adenovirus-mediated gene transfer in aging cardiomyocytes. Circulation (2003) 107:1170–1175.
  • STIL WELL JL, SAMULSKI RJ: Adeno-associated virus vectors for therapeutic gene transfer. Biotechniques (2003) 34:148–150.
  • MONAHAN PE, SAMULSKI RJ: Adeno- associated virus vectors for gene therapy: more pros than cons? MM. Med. Today (2000) 6:433–440.
  • SVENSSON EC, MARSHALL DJ, WOODARD K et al.: Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation (1999) 99:201–205.
  • DONG JY, FAN PD, FRIZZELL RA: Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther. (1996) 7:2101–2112.
  • ZHAO J, PETTIGREW GJ, THOMAS J et al.: Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes M vitro and in vivo. Basic Res. Cardiol (2002) 97:348–358.
  • BONCI D, CITTADINI A, LATRONICO MV et al.: 'Advanced' generation lentiviruses as efficient vectors for cardiomyocyte gene transduction M vitro and M vivo. Gene Ther. (2003) 10(8):630–636.
  • FLEURY S, SIMEONI E, ZUPPINGER C et al.: Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation (2003) 107(18):2375–2382.
  • POLLER W, FECHNER H, KURRECK Jet al.: Nucleic acid-based modulation of cardiac gene expression for the treatment of cardiac diseases approaches and perspectives. Z Kardiol (2004) 93:171–193.
  • KURRECK J: Antisense technologies: improvement through novel chemical modifications. Ear: Biochem. (2003) 270(8):1628–1644.
  • BRAASCH D, COREY D: Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry (2002) 41:4503–4509.
  • SIROIS M, SIMONS M, EDELMAN E: Antisense oligonucleotide inhibition of PDGFR-B receptor subunit expression directs suppression of intimal thickening. Circulation (1997) 95:669–676.
  • HE H, MEYER M, MARTIN JL et al: Effects of mutant and antisense RNA of phospholamban on SR Ca2*-ATPase activity and cardiac myocytes contractility. Circulation (1999) 100:974–980.
  • MCMANUS M, SHARP P: Gene silencing in mammals by small interfering RNAs. Nat. Rev Genet. (2002) 3:737–747.
  • KASS-EISLER A, FALCK-PEDERSEN E, ALVIRA M et al.: Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes M vitro and M vivo. Proc. Nati Acad. Sci. USA (1993) 90:11498–11502.
  • SANBORN TA, HACKETT NR, LEE LY et al: Percutaneous endocardial transfer and expression of genes to the myocardium utilizing fluoroscopic guidance. Cathet. Cardiovasc. Interv. (2001) 52:260–266.
  • LEOTTA E, PATEJUNAS G, MURPHY G et al.: Gene therapy with adenovirus-mediated myocardial transfer of vascular endothelial growth factor 121 improves cardiac performance in a pacing model of congestive heart failure. Thorac. Cardiovasc. Surg. (2002) 123(6):1101–1113.
  • KYPSON AP, PEPPEL K, AKHTER SA et al.: Ex vivo adenovirus-mediated gene transfer to the adult rat heart. Thome. Cardiovasc. Surg. (1998) 115:623–630.
  • KYPSON A, HENDRICKSON S, AKHTER S et al.: Adenovirus-mediated gene transfer of the 32-adrenergic receptor to donor hearts enhances cardiac function. Gene Ther: (1999) 6:1298–1304.
  • SHAH AS, WHITE DC, TAI O et al.: Adenoviral-mediated genetic manipulation of the myocardial 3-adrenergic signaling system in transplanted hearts. Thorac. Cardiovasc. Surg. (2000) 120:581–588.
  • TEVAEARAI HT, ECKHART AD, WALTON GB, WILSON K, KOCH WJ: Myocardial gene transfer and overexpression of 32-adrenergic receptors potentiates the functional recovery of unloaded failinghearts. Circulation (2002) 106:124–129.
  • DAVIDSON MJ, JONES JM, EMANI SMet al.: Cardiac gene delivery with cardiopulmonary bypass. Circulation (2001) 104:131–133.
  • JONES JM, WILSON KH, KOCH WJ, MILANO CA: Adenoviral gene transfer to the heart during cardiopulmonary bypass:46.effect of myocardial protection technique on transgene expression. Eur: Cardiothorac. Surg. (2002) 21:847–852.
  • BRIDGES CR, BURKMAN JM, MALEKAN R et al.: Global cardiac-specific transgene expression using cardiopulmonary47.bypass with cardiac ischemia. Ann. Thorac. Surg. (2002) 73:1939–1946.
  • MARGULIES KB: Reversal mechanisms of left ventricular remodeling: lessons from left ventricular assist device experiments.48.J. Card. Fail. (2002) 8(6):5500–55005.
  • HAJJAR RJ, SCHMIDT U, MATSUI T et al.: Modulation of ventricular function through gene transfer in vivo. Proc. Nati Acad. Sci. USA (1998) 95:5251–5256.
  • MAURICE JP, HATA JA, SHAH AS et al.:49.Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary I32-adrenergic receptor gene delivery. J. Clin. Invest. (1999) 104:21–29.
  • HOSHIJIMA M, IKEDA Y, NVANAGA Y et al.: Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat. Med. (2002) 8:864-871.51.
  • WHITE DC, HATA JA, SHAH AS et al: Preservation of myocardial 3-adrenergic receptor signaling delays the development of52.heart failure after myocardial infarction. Proc. Nati Acad. Sci. USA (2000) 97:5428–5433.
  • MIYAMOTO MI, DEL MONTE F, SCHMIDT U et al.: Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl. Acad. Si". USA (2000) 97:793–798.
  • CHATTERJEE S, STEWART AS, BISH LT et al.: Viral gene transfer of the antiapoptotic factor Bc1-2 protects against chronic postischemic heart failure. Circulation (2002) 106:1212–1217.
  • BARR E, CARROLL J, KALYNYCH AM et al.: Efficient catheter-mediated gene transfer into the heart using replication- defective adenovirus. Gene Ther. (1994) 1:51–58.
  • SHAH AS, LILLY RE, KYPSON AP et al:Intracoronary adenovirus-mediated delivery and overexpression of the 32-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation (2000) 101:408–414.
  • EMANI SM, SHAH AS, BOWMAN MK et al.: Catheter-based intracoronary myocardial adenoviral gene delivery: Importance of intraluminal seal and infusion flow-rate. Mol. Ther. (2003) 127:787–793.
  • LLOYD-JONES DM, LARSON MG, LEIP EP et al.: Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation (2002) 106:3068–3072.
  • NO AUTHORS LISTED: Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomized Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet (1999) 353:2001–2007.
  • PACKER M, BRISTOW MR, COHN JN et al.: The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. US Carvedilol Heart Failure Study Group. N Engl. I Med. (1996) 334:1349–1355.
  • ROCKMAN HA, KOCH WJ, LEFKOWITZ RJ: Seven-transmembrane-spanning receptors and heart function. Nature (2002) 415:206–212.
  • BRODDE OE: Beta-adrenoceptors in cardiac disease. Pharmacol. Ther. (1993) 60:405–430.
  • STEINBERG SF: The molecular basis for distinct 13 adrenergic receptor subtype actions in cardiomyocytes. Circ. Res. (1999) 85:1101–1111.
  • COMMUNAL C, SINGH K, SAWYER DB, COLUCCI WS: Opposing effects of B1 and B2 adrenergic receptors on cardiac myocyte apoptosis: role of pertussis toxin-sensitive G protein. Circulation (1999) 100:2210–2212.
  • IACCARINO G, LEFKOWITZ RJ, KOCH WJ: Myocardial G-protein-coupled receptor kinases: Implications for heart failure therapy. Proc. Assoc. Am. Physicians (1999) 111:399–405.
  • SMALL KM, WAGONER LE, LEVIN AM, KARDIA SL, LIGGET SB: Synergistic polymorphisms of B1 and alpha2c-adrenergic receptors and the risk of congestive heart failure. N Engl. I Med. (2002) 347:1135–1142.
  • BRISTOW MR, GINSBURG R, UMANS V et al.: 131 and 132 adrenergic receptors subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective 131 receptor down-regulation in heart failure. Circ. Res. (1986) 59:297–309.
  • FELDMAN AM: Modulation of adrenergic receptors and G transduction proteins in failing human ventricular myocardium. Circulation (1993) 87:IV27–34.
  • UNGERER M, BOHM M, ELCE JS, ERDMANN E, LOHSE MJ: Altered Expression of 13 adrenergic receptor kinase and 131 adrenergic receptors in the failing human heart. Circulation (1993) 87:IV27-1V34.
  • MILANO CA, ALLEN LF, ROCKMAN HA et al.: Enhanced myocardial function in transgenic mice overexpressing the I32-adrenergic receptor. Science (1994) 264:582–586.
  • DORN GW, TEPE NM, LORENZ JN, DAVIS MG, KOCH WJ, LIGGET SB: Low and High transgenic expression of 132 adrenergic receptors differential affects cardiac hypertrophy and function in Gaq overexpressing mice. Proc. Nati Acad. Sci. USA (1999) 96:6400–6405.
  • ENGELHARDT S, HEIN L, WIESMANN F, LOHSE MJ: Progressive hypertrophy and heart failure in 131 adrenergic receptor transgenic mice. Proc. Nati Acad. Sci. USA (1999) 96:7059–7064.
  • ZHU WZ, ZHENG M, KOCH WJ, LEFKOWITZ RJ, KOBLIKA BK, XIAO RP: Dual modulation of cell survival and cell death by 132 adrenergic signaling in adult mouse cardiomyocytes. Proc. Natl. Acad. Sci. USA (2001) 98:1607–1612.
  • KOCH WJ, ROCKMAN HA, SAMAMA P et al.: Cardiac function in mice overexpressing the 13-adrenergic receptor kinase or a PARK inhibitor. Science (1995) 268:1350–1353.
  • AKHTER SA, ECKHART AD, ROCKMAN HA, SHOTWELL KF, LEFKOWITZ RJ, KOCH WJ: In vivo inhibition of elevated myocardial 13-adrenergic receptor kinase activity in hybrid transgenic mice restores normal 13-adrenergic signaling and function. Circulation (1999) 100:648–653.
  • KOCH WJ, INGLESE J, STONE WC, LEFKOWITZ RJ: The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. Biol. Chem. (1993) 268:8256–8260.
  • ROCKMAN HA, AKHTER SA, CHOI DJ et al.: Regulation of myocardial contractile function by the level of 13-adrenergic receptor kinase-1 in gene targeted mice. Biol. Chem. (1998) 273:18180–18184.
  • ROCKMAN HA, CHIEN KR, CHOI DJ et al: Expression of 13-adrenergic receptor kinase 1 inhibitor prevents the development of heart failure in gene targeted mice. Proc. Natl. Acad. Sci. USA (1998) 95:7000–7005.
  • FREEMAN K, OLSSON MC, IACCARINO G et al.: Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyoptathy. Clin. Invest. (2001) 107:967–974.
  • HARDING VB, JONES LR, LEFKOWITZ RJ, KOCH WJ, ROCKMAN HA: Cardiac 13ARK1 inhibition prolongs survival and augments P-blocker therapy in a mouse model of severe heart failure. Proc. Nati Acad. Sci. USA (2001) 98:5809–5814.
  • ECKHART AD, FENTZKE RC, LEPORE J et al.: Inhibition of 13ARK1 and restoration of myocardial 13-adrenergic signaling in a mouse model of dilated cardiomyopathy induced by CREBA133 expression.j Ma Cell. Cardiol (2002) 34:669–677.
  • SHAH AS, WHITE DC, EMANI S et al:In vivo ventricular gene delivery of a 13-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation (2001) 103:1311–1316.
  • EMANI SM, SHAH AS, BOWMAN MK et al.: Right ventricular targeted gene transfer of a 13-adrenergic receptor kinase inhibitor improves ventricular performance after pulmonary artery banding. Thorac. Cardiovasc. Stow. (2004) 127(3):787–793.
  • TEVAEARAI HT, ECKHART AD, SHOT WELL KF, WILSON K, KOCH WJ: Ventricular dysfunction after cardioplegic arrest is improved after myocardial gene transfer of a 13-adrenergic receptor kinase inhibitor. Circulation (2001) 104:2069–2074.
  • TEVAEARAI HT, WALTON GB, ECKHART AD, KEYS JR, KOCH WJ: Donor heart contractile dysfunction following prolonged ex vivopreservation can be prevented by gene-mediated 13-adrenergic signaling modulation. Ear: j Cardiothorac. Sing. (2002) 22:733–737.
  • WILLIAMS ML, HATA JA, SCHRODER J et al.: Targeted beta-adrenergic receptor kinase (betaARK1) inhibition by gene transfer in failing human hearts. Circulation (2004) 109(13):1590–1593.
  • GAO MH, LAI NC, ROTH DM et al: Adenylyl cyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation (1999) 99:1618–1622.
  • ROTH DM, GAO MH, LAI NC et al: Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation (1999) 99:3099–3102.
  • LAI NC, ROTH DM, GAO MH et al: Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation (2000) 102:2396–2401.
  • BERS DM: Cardiac excitation-contraction coupling. Nature (2002) 415:198–205.
  • DAVIES CH, DAVIA K, BENNETT JG et al.: Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation (1995) 92:2540–2549.
  • GWATHMEY JK, COPELAS L, MACKINNON R et al.: Abnormal Ca2' handling in myocardium from patients with end-stage heart failure. Circ. Res. (1987) 61:70–76.
  • HOUSER SR, MARGULIES KB: Is depressed myocyte contractility centrally involved in heart failure? Circ Res. (2003) 92:350–358.
  • SCHWINGER RH, BOHM M, SCHMIDT U et al.: Unchanged protein levels of SERCA II and phospholamban but reduced Ca2' uptake and Ca2*-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Ciculation (1995) 92:3220–3228.
  • LIMAS CJ, OLIVARI M-T, GOLDENBERG IF, LEVINE TB, BENDITT DG, SIMON A: Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc. Res. (1987) 21:601–605.
  • MOVSESIAN MA, KARIMI M, GREEN K, JONES JR: Ca2+ -transporting ATPase, phospholamban, and calsequestran levels in nonfailing and failing human myocardium. Circulation. (1994) 90:653–657.
  • MEYER M, SCHILLINGERW, PIESKE Bet al.: Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation (1995) 92:778–784.
  • DEL MONTE F, WILLIAMS E, LEBECHE D et al.: Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca2+-ATPase in a rat model of heart failure. Circulation (2001) 104:1424–1429.
  • DEL MONTE F, HARDING SE, SCHMIDT U et al.: Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation (1999) 100:2308–2311.
  • EIZEMA K, FECHNER H, BEZSTAROSTI K et al: Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter. Circulation (2000) 101:2193–2199.
  • DEL MONTE F, HARDING SE, DEC GW, GWATHMEY JK, HAJJAR RJ: Targeting phospholamban by gene transfer in human heart failure. Circulation (2002) 105:904–907.
  • WEBER CR, PIACENTINO V, MARGULIES KB, BERS DM, HOUSER SR: Calcium influx via I (NCX) is favored in failing ventricular myocytes. Ann. NY Acad. Sci. (2002) 976:478–479.
  • SIPIDO KR, VOLDERS PG, VOS MA, VERDONCK F: Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: A new target for therapy? Cardiovasc. Res. (2002) 53:782–805.
  • SCHILLINGER W, JANSSEN PM, EMAMI S et al.: Impaired contractile performance of cultured rabbit ventricular myocytes after adenoviral gene transfer of Na+-Ca2+ exchanger. Circ. Res. (2000) 87:581–587.
  • HAIMOTO H, KATO K: S100a0 (alpha alpha) protein in cardiac muscle. Isolation from human cardiac muscle and ultrastructural localization. Eur. Biochein. (1988) 171:409–415.
  • REMPPIS A, GRETEN T, SCHAFER BW et al.: Altered expression of the Ca2+-binding protein S100A1 in human cardiomyopathy. Biochim. Biophys. Acta. (1996) 1313:253–257.
  • EHLERMANN P, REMPPIS A, GUDDAT O et al: Right ventricular upregulation of the Ca2+ binding protein S100A1 in chronic pulmonary hypertension. Biochim. Biophys. Acta. (2000) 1500:249–255.
  • DU XJ, COLE TJ, TENIS N et al: Impaired cardiac contractility response to hemodynamic stress in S100A1 -deficient mice. Ma Cell. Biol. (2002) 8:2821–2829.
  • MOST P, BOERRIES M, EICHER C et al.: Extracellular SINAI protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2). J. Biol. Chem. (2003) 278(48):48404–48412.
  • MOST P, BERNOTAT J, EHLERMANN P et al: S100A1; a regulator of myocardial contractility. Proc. Natl. Acad. Sci. USA (2001) 98:13889–13894.
  • REMPPIS A, MOST P, LOFFLER E et al.: The small EF-hand Ca2+ binding protein S100A1 increases contractility and Ca2+ cycling in rat cardiac myocytes. Basic Res. Cardiol. (2002) 97:156–162.
  • HIRSCH IC, BORTON AR, ALBAYYA FP et al.: Comparative analysis of parvalbumin and SERCA2a cardiac myocytes gene transfer in a large animal model of diastolic dysfunction. Am. J. Physiol Heart Circ. Physiol (2004) 286(6):H2314–H2321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.