220
Views
36
CrossRef citations to date
0
Altmetric
Review

Monoclonal antibodies for brain tumour treatment

, , , , &
Pages 1453-1471 | Published online: 23 Feb 2005

Bibliography

  • KLEIHUES P, CAVENEE WK: Pathology & Genetics - Tumours of the Nervous System. In: Pathology & Genetics. WHO, IARC Press, Lyon, France (2000):29–44
  • MAHALEY MS JR: Neuro-oncology index and review (adult primary brain tumors). Radiotherapy, chemotherapy, immunotherapy, photodynamic therapy. Neurooncol (1991) 11(2):85–147.
  • EHRLICH P: Collected Studies on Immunioi. Ehrlich P (Ed.), Wiley, New York, USA (1906).
  • HERICOURT J, RICHET C: Traitement dun cas de sarcome par la serotherapie. CR Hebd. Seances Acad. Sci. (1895) 120:948–950.
  • DAY ED, KORNGOLD L, PLANINSEKJ, PRESSMAN D: Tumor-localizing antibodies purified from antisera against Murphy rat lymphosarcoma. Nati Cancer Inst. (1956) 17(4):517–532.
  • PRESSMAN D, DAY ED, BLAU M: The use of paired labeling in the determination of tumor-localizing antibodies. Cancer Res. (1957) 17(9):845–850.
  • DAY ED, LASSITER S, WOODHALL B, MAHALEY JL, MAHALEY MS JR: The localization of radioantibodies in human brain tumors. I. Preliminary exploration. Cancer Res. (1965) 25(6):773–778.
  • MAHALEY MS JR, MAHALEY JL, DAY ED: The localization of radioantibodies in human brain tumors. II. Radioautography. Cancer Res. (1965) 25(6):779–793.
  • KOHLER G, MILSTEIN C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (1975) 256(5517):495–497.
  • WIKSTRAND CJ, ZALUTSKY MR, BIGNER DD: Radiolabeled antibodies for therapy of brain tumors. In: Brain Tumor Immunotherapy Liau LM, Becker DP, Cloughesy TF, Bigner DD (Eds), Humana Press, Totowa, NJ, USA (2001):205–229.
  • •Another review on antibodies for brain tumour therapy; includes a chapter on in vivo animal models used in predinical investigations.
  • KURPAD SN, ZHAO XG, WIKSTRAND CJ et al.: Tumor antigens in astrocytic gliomas. Glia (1995) 15(3):244–256.
  • BOURDON MA, WIKSTRAND CJ, FURTHMAYR H, MATTHEWS TJ, BIGNER DD: Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res. (1983) 43(6):2796–2805.
  • VENTIMIGLIA JB, WIKSTRAND CJ, OSTROWSKI LE et al: Tenascin expression in human glioma cell lines and normal tissues. Neuroimmunol. (1992) 36(1):41–55.
  • ZAGZAG D, FRIEDLANDER DR, DOSIK J et al: Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res. (1996) 56(1):182–189.
  • WIKSTRAND CJ, FUNG KM, TROJANOWSKI JQ, MCLENDON RE, BIGNER DD: Antibodies and molecular immunology: immunohistochemistry and antigens of diagnostic significance. In: Russell and Rubinstein's Pathology of the Nervous System. Bigner DD, McLendon RE, Bruner JM (Eds), Oxford University Press, New York, USA (1998):251–304.
  • CARNEMOLLA B, CASTELLANI P, PONASSI M et al.: Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody. Am.! Pathol (1999) 154(5):1345–1352.
  • MURPHY-ULLRICH JE, LIGHTNER VA, AUKHIL I et al.: Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin. J. Cell Biol. (1991) 115(4):1127–1136.
  • BROWN MT, COLEMAN RE, FRIEDMAN AH et al.: Intrathecal 131I-labeled antitenascin monoclonal antibody 8106 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: Phase I trial results. Clin. Cancer Res. (1996) 2(6):963–972.
  • REARDON DA, AKABANI G, COLEMAN RE et al.: Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 8106 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. Clin. Oncol (2002) 20(5):1389–1397.
  • •Recent report of relatively large-scale clinical trials with radiolabelled antitenascin 8106 mAb for patients with malignant gliomas.
  • GOETZ C, RIVA P, POEPPERL G et al: Locoregional radioimmunotherapy in selected patients with malignant glioma: experiences, side effects and survival times. Neurooncol (2003) 62(3):321–328.
  • •Recent report of relatively large-scale clinical trials with radiolabelled antitenascin BC-2/BC-4 mAbs for patients with malignant gliomas.
  • DE SANTIS R, ANASTASI AM, D'ALESSIO V et al.: Novel antitenascin antibody with increased tumour localisation for Pretargeted Antibody-Guided RadioImmunoThetapy (PAGRIT). Br. Cancer (2003) 88(7):996–1003.
  • PIMENTEL E: Peptide growth factors. In: Handbook of Growth Factors. Pimentel E (Ed.), CRC, London, UK (1994):104–185.
  • VANHOEFER U, TEWES M, ROJO F et al: Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J. Clin. Oncol (2004) 22(1):175–184.
  • BIGNER SH, WONG AJ, MARK J et al.: Relationship between gene amplification and chromosomal deviations in malignant human gliomas. Cancer Genet. Cytogenet. (1987) 29(1):165–170.
  • WIKSTRAND CJ, REIST CJ, ARCHER GE, ZALUTSKY MR, BIGNER DD: The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target. .1. Neurovirol. (1998) 4(2):148–158.
  • KUAN CT, WIKSTRAND CJ, BIGNER DD: EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer (2001) 8(2):83–96.
  • •Extensive review of EGFR, EGFRvIII and other EGFR mutations; includes a description of the cellular function and schematic structure of these molecules. Anti-EGFR and anti-EGFRvIII mAbs are also discussed along with the various irnmunotherapeutic approaches of EGFR/ EGFRvIII-based antitumour treatments.
  • FREDERICK L, WANG XY, ELEY G, JAMES CD: Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. (2000) 60(5):1383–1387.
  • FECCI PE, SAMPSON JH: Clinical immunotherapy for brain tumors. Neuroimaging Clin. N Am. (2002) 12(4):641–664.
  • •Recent review of the various irnmunotherapeutic modalities for brain tumours, including passive, adoptive and active (dendritic cell-based vaccination) immunotherapy.
  • WIKSTRAND CJ, HALE LP, BATRA SK et al.: Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res. (1995) 55(14):3140–3148.
  • WIKSTRAND CJ, MCLENDON RE, FRIEDMAN AH, BIGNER DD: Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res. (1997) 57(18):4130–4140.
  • KIM ES, VOKES EE, KIES MS: Cetwdmab in cancers of the lung and head & neck. Semin. Oncol. (2004) 31(1 Suppl. 1):61–67.
  • WAKSAL HW: Role of an anti-epidermal growth factor receptor in treating cancer. Cancer Metastasis Rev (1999) 18(4):427–436.
  • FOON KA, YANG XD, WEINER LM et al.: Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int. .1. Radiat. Oncol Biol. Phys. (2004) 58(3)984–990.
  • SAMPSON JH, CROTTY LE, LEE S et al.: Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proc. Nati Acad. Sci. USA (2000) 97(13):7503–7508.
  • REIST CJ, BATRA SK, PEGRAM CN, BIGNER DD, ZALUTSKY MR: ha vitro and in vivo behavior of radiolabeled chimeric anti-EGFRvIII monoclonal antibody: comparison with its murine parent. Nucl. Med. Biol. (1997) 24(7)639–647.
  • KUAN CT, REIST CJ, FOULON CF et al.: 125I-labeled anti-epidermal growth factor receptor-vIII single-chain Fv exhibits specific and high-level targeting of glioma xenografts. Clin. Cancer Res. (1999) 5(6):1539–1549.
  • KUAN CT, WIKSTRAND CJ, ARCHER G et al.: Increased binding affinity enhances targeting of glioma xenografts by EGFRvIII-specific scFv. Int. J. Cancer (2000) 88(6):962–969.
  • ARCHER GE, SAMPSON JH, LORIMER IA et al.: Regional treatment of epidermal growth factor receptor viii-expressing neoplastic meningitis with a single-chain immunotcodn, MR-1. Clin. Cancer Res. (1999) 5(9):2646–2652.
  • JUNGBLUTH AA, STOCKERT E, HUANG HJ et al: A monoclonal antibody recognizing human cancers with amplification/overexpression of the human epidermal growth factor receptor. Proc. Natl. Acad. Sci. USA (2003) 100(2):639–644.
  • LEYLAND-JONES B, SMITH I: Role of Herceptin in primary breast cancer: views from North America and Europe. Oncology (2001) 61\(Suppl. 2):83–91.
  • GOLDENBERG MM: Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin. Thar: (1999) 21(2):309–318.
  • GROSSI PM, OCHIAI H, ARCHER GE et al.: Efficacy of intracerebral microinfusion of trastuzumab in an athymic rat model of intracerebral metastatic breast cancer. Clin. Cancer Res. (2003) 9(15):5514–5520.
  • KRIZAN Z, MURRAY JL, HERSH EM et al.: Increased labeling of human melanoma cells M vitro using combinations of monoclonal antibodies recognizing separate cell surface antigenic determinants. Cancer Res. (1985) 45(10):4904–4909.
  • COAKHAM HB, KEMSHEAD JT: Treatment of neoplastic meningitis by targeted radiation using (131)1-radiolabelled monoclonal antibodies. Results of responses and long term follow-up in 40 patients. Neurooncol (1998) 38(2–3):225–232.
  • •Update on a relatively large-scale and long-term study with intrathecal radiolabelled mAbs for patients with neoplastic meningitis of various origins.
  • PAPANASTASSIOU V, PIZER BL, COAKHAM HB et al: Treatment of recurrent and cystic malignant gliomas by a single intracavity injection of 1311 monoclonal antibody: feasibility, pharmacokinetics and dosimetry. Br. .1. Cancer (1993) 67(1):144–151.
  • BOURNE S, PEMBERTON L, MOSELEY R et al.: Monoclonal antibodies M340 and UJ181.4 recognize antigens associated with primitive neuroectodermal tumours/tissues. Hybridoma (1989) 8(4):415–426.
  • KEN WRICK S, WATKINS A, DE ANGELIS E: Neural cell recognition molecule Li: relating biological complexity to human disease mutations. Hum. MM. Genet. (2000) 9(6):879–886.
  • HOEFNAGEL CA, RUTGERS M, BUITENHUIS CK et al.: A comparison of targeting of neuroblastoma with mIBG and anti Li-CAM antibody mAb chCE7: therapeutic efficacy in a neuroblastoma xenograft model and imaging of neuroblastoma patients. Ear: Nucl. Med. (2001) 28(3):359–368.
  • CARREL F, AMSTUTZ H, NOVAK-HOFER I, SCHUBIGER PA: Evaluation of radioiodinated and radiocopper labeled monovalent fragments of monoclonal antibody chCE7 for targeting of neuroblastoma. Nucl. Med. Biol. (1997) 24(6):539–546.
  • PELKMANS L, HELENIUS A: Endocytosis via caveolae. Traffic (2002) 3(5):311–320.
  • DYKSTRA M, CHERUKURI A, SOHN HW, TZENG SJ, PIERCE SK: Location is everything: lipid rafts and immune cell signaling. Annu. Rev Immunol. (2003) 21:457–481.
  • WIKSTRAND CJ, FREDMAN P, SVENNERHOLM L, BIGNER DD: Detection of glioma-associated gangliosides GM2, GD2, GD3, 3'-isoLM1 3',6'-isoLD1 in central nervous system tumors M vitro and in vivo using epitope-defined monoclonal antibodies. Frog. Brain Res. (1994) 101:213–223.
  • HEDBERG KM, MAHESPARAN R, READ TA et al: The glioma-associated gangliosides 3'-isoLM1, GD3 and GM2 show selective area expression in human glioblastoma xenografts in nude rat brains. Neuropathol Appl. Neurobiol (2001) 27(6):451–464.
  • KUSHNER BH, KRAMER K, CHEUNG NK: Phase II trial of the anti-G(D2) monoclonal antibody 3F8 and granulocyte-macrophage colony-stimulating factor for neuroblastoma. Clin. Oncol (2001) 19(22):4189–4194.
  • CHEUNG NK, MODAK S: Oral (1- 3),(1- 4)-beta-D-glucan synergizes with antiganglioside GD2 monoclonal antibody 3F8 in the therapy of neuroblastoma. Clin. Cancer Res. (2002) 8(5):1217–1223.
  • KRAMER K, CHEUNG NK, HUMM JL et al: Targeted radioimmunotherapy for leptomeningeal cancer using (131)1-3E8. Med. Pediatr. Oncol (2000) 35(6):716–718.
  • PREWETT M, HUBER J, LI Y et al.: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. (1999) 59(20):5209–5218.
  • KUNKEL P, ULBRICHT U, BOHLEN P et al.: Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res. (2001) 61(18):6624–6628.
  • LAMSZUS K, KUNKEL P, WESTPHAL M: Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir. Sapp]. (2003) 88:169–177.
  • RUBENSTEIN JL, KIM J, OZAWA T et al: Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia (2000) 2(4):306–314.
  • KIM ES, SERUR A, HUANG J et al: Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc. Nati Acad. Sci. USA (2002) 99(17):11399–11404.
  • STEFANIK DF, FELLOWS WK, RIZKALLA LR et al: Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. Neurooncol (2001) 55(2):91–100.
  • KHAWLI LA, MIZOKAMI MM, SHARIFI J, HU P, EPSTEIN AL: Pharmacokinetic characteristics and biodistribution of radioiodinated chimeric TNT-1, -2, and -3 monoclonal antibodies after chemical modification with biotin. Cancer Biother. Radiopharm. (2002) 17(4):359–370.
  • TOBINAI K: Ritwdmab and other emerging antibodies as molecular target-based therapy of lymphoma. Intj Clin. Oncol (2003) 8(4):212–223.
  • WISEMAN GA, KORNMEHL E, LEIGH B et al: Radiation dosimetry results and safety correlations from 90Y-ibritumomab titixetan radioimmunotherapy for relapsed or refractory non-Hodgkin's lymphoma: combined data from 4 clinical trials. Nucl. Med. (2003) 44(3):465–474.
  • EL KAMAR FG, DEANGELIS LM, YAHALOM J et al.: Combined immunochemotherapy with reduced dose whole brain radiotherapy (WBRT) for newly diagnosed patients with primary CNS lymphoma (PCNSL) (abstract). Annual Meeting Proceedings of the American Socien, of Clinical Oncology (2004):111.
  • SCHULZ H, PELS H, SCHLEGEL U et al.: Intraventricular application of rituximab as a treatment option in patients with CNS lymphoma and leptomeningeal disease (abstract). Annual Meeting Proceedings of the American Socien, of Clinical Oncology (2004):112.
  • MARIANI G, LASKU A, PAU A et al.: A pilot pharmacokinetic and immunoscintigraphic study with the technetium-99m-labeled monoclonal antibody BC-1 directed against oncofetal fibronectin in patients with brain tumors. Cancer (1997) 80(12 Suppl.):2484–2489.
  • CASTELLANI P, VIALE G, DORCARATTO A et al: The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. hat. Cancer (1994) 59(5):612–618.
  • RAVIC M: Intracavitary treatment of malignant gliomas: radioimmunotherapy targeting fibronectin. Acta Neurochir. Sapp]. (2003) 88:77–82.
  • WEAVER M, LASKE DW: Transferrin receptor ligand-targeted toxin conjugate (Tf-CRIVI107) for therapy of malignant gliomas. Neurooncol (2003) 65(1):3–13.
  • LASKE DW, MURASZKO KM, OLDFIELD EH et al: Intraventricular immunotoxin therapy for leptomeningeal neoplasia. Neurosurgery (1997) 41(5):1039–1049; discussion 1049–1051.
  • LASKE DW, ILERCIL O, AKBASAK A, YOULE RJ, OLDFIELD EH: Efficacy of direct intratumoral therapy with targeted protein toxins for solid human gliomas in nude mice. Neurosurg. (1994) 80(3):520–526.
  • WETERMAN MA, AJUBI N, VAN DINTER IM et al.: nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. hat. Cancer (1995) 60(1):73–81.
  • KOOL M, VAN DER LINDEN M, DE HAAS M et al: MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl. Acad. Sci. USA (1999) 96(12):6914–6919.
  • LOGING WT, LAL A, SIU IM et al.: Identifying potential tumor markers and antigens by database mining and rapid expression screening. aflame Res. (2000) 10(9):1393–1402.
  • •This article provides interesting examples of novel methods to identify new potential brain tumour antigens.
  • RICH JN, GUO C, MCLENDON RE et al: A genetically tractable model of human glioma formation. Cancer Res. (2001) 61(9):3556–3560.
  • KUAN CT, WIKSTRAND C, WAKIYA K, RIGGINS GJ, BIGNER DD: Expression of GPNMBwt/GPNMBsv mRNA and protein in human high-grade gliomas (abstract). Neuro-oncol (2003) 5:387.
  • KAST C, GROS P: Topology mapping of the amino-terminal half of multidrug resistance-associated protein by epitope insertion and immunofluorescence. I Biol. Chem. (1997) 272(42):26479–26487.
  • KONIG J, ROST D, CUT Y, KEPPLER D: Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology (1999) 29(4):1156–1163.
  • KIUCHI Y, SUZUKI H, HIROHASHI T, TYSON CA, SUGIYAMA Y: cDNA cloning and inducible expression of human multidrug resistance associated protein 3 (MRP3). FEBS Lett. (1998) 433(1-2):149–152.
  • WAKIYA K, KUAN CT, RIGGINS GJ, WIKSTRAND C, BIGNER DD: MRP3: a potential target for glioma therapy (abstract). Neuro-oncol (2003) 5:401.
  • WIKSTRAND C, WAKIYA K, KUAN CT, RIGGINS GJ, BIGNER DD: Expression of multidrug resistance protein 3 (MRP3) by human gliomas: detection and determination of incidence with polyclonal and monoclonal antibodies (MABs) (abstract). Proc. Am. Assoc. Cancer Res. (2003) 44:424.
  • HAGA S, HINOSHITA E, IKEZAKI K et al.: Involvement of the multidrug resistance protein 3 in drug sensitivity and its expression in human glioma. fpn. Cancer Res. (2001) 92(2):211–219.
  • YOUNG LC, CAMPLING BG, COLE SP, DEELEY RG, GERLACH JH: Multidnig resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin. Cancer Res. (2001) 7(6):1798–1804.
  • SCHEFFER GL, KOOL M, HEIJN M et al.: Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5, and MDR3 P-glycoprotein with a panel of monoclonal antibodies. Cancer Res. (2000) 60(18):5269–5277.
  • MODAK S, KRAMER K, GULTEKIN SH, GUO HF, CHEUNG NK: Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res. (2001) 61(10):4048–4054.
  • ONDA M, WANG QC, GUO HF, CHEUNG NK, PASTAN I: ha vitro and in vivo cytotoxic activities of recombinant immunotoxin 8H9(Fv)-PE38 against breast cancer, osteosarcoma, and neuroblastoma. Cancer Res. (2004) 64(4):1419–1424.
  • BATRA SK, JAIN M, WITTEL UA, CHAUHAN SC, COLCHER D: Pharmacokinetics and biodistribution of genetically engineered antibodies. Curc Opin. Biotechnol (2002) 13(6):603–608.
  • ••Review of the characteristics and specificities of the various Ab formats.
  • KEMSHEAD JT, HOPKINS K, PIZER B et al.: Dose escalation with repeated intrathecal injections of 131I-labelled MAbs for the treatment of central nervous system malignancies. Br. J. Cancer (1998) 77(12):2324–2330.
  • MORRISON SL, JOHNSON MJ, HERZENBERG LA, OI VT: Chimeric human antibody molecules: mouse antigen- binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA (1984) 81(21):6851–6855.
  • BOULIANNE GL, HOZUMI N, SHULMAN MJ: Production of functional chimaeric mouse/human antibody. Nature (1984) 312(5995):643–646.
  • COLCHER D, PAVLINKOVA G, BERESFORD G et al.: Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q. I Nucl. Med. (1998) 42(4):225–241.
  • SHIN SU: Chimeric antibody: potential applications for drug delivery and immunotherapy. Biotherapy (1991) 3(1):43–53.
  • REIST CJ, BIGNER DD, ZALUTSKY MR: Human IgG2 constant region enhances in vivo stability of anti-tenascin antibody 8106 compared with its murine parent. Clin. Cancer Res. (1998) 4(10)2495–2502.
  • BATRA SK, NISWONGER ML, WIKSTRAND CJ et al.: Mouse/human chimeric Mel-14 antibody: genomic cloning of the variable region genes, linkage to human constant region genes, expression, and characterization. Hybridoma (1994) 13(2):87–97.
  • ZALUTSKY MR, ARCHER GE, GARG PK, BATRA SK, BIGNER DD: Chimeric anti-tenascin antibody 8106: increased tumor localization compared with its murine parent. Nucl. Med. Biol. (1996) 23(4):449–458.
  • HE X, ARCHER GE, WIKSTRAND CJ et al.: Generation and characterization of a mouse/human chimeric antibody directed against extracellular matrix protein tenascin. NeuroimmunoL (1994) 52(2):127–137.
  • KHAZAELI MB, SALEH MN, LIU TP et al.: Pharmacokinetics and immune response of 131I-chimeric mouse/human B72.3 (human gamma 4) monoclonal antibody in humans. Cancer Res. (1991) 51(20):5461–5466.
  • JONES PT, DEAR PH, FOOTE J, NEUBERGER MS, WINTER G: Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature (1986) 321(6069):522–525.
  • RIECHMANN L, CLARK M, WALDMANN H, WINTER G: Reshaping human antibodies for therapy. Nature (1988) 332(6162):323–327.
  • VAUGHAN TJ, OSBOURN JK, TEMPEST PR: Human antibodies by design. Nat. Biotechnol. (1998) 16(6):535–539.
  • GREEN LL: Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. Immunol. Methods (1999) 231(1-2):11–23.
  • LYNCH DH, YANG XD: Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Semin. Oncol (2002) 29(1 Suppl. 4):47–50.
  • POWERS DB, MARKS JD: Monovalent phage display of Fab and scEv fusions. In: Antibody Fusion Proteins Chamow SM, Ashkenazi A (Eds), Wiley Liss, John Wiley & Sons, NY, USA (1999):151–188.
  • GARG PK, ALSTON KL, ZALUTSKY MR: Catabolism of radioiodinated murine monoclonal antibody F(ab')2 fragment labeled using N-succinimidyl 3-iodobenzoate and Iodogen methods. Bioconjug. Chem. (1995) 6(4):493–501.
  • BOSKOVITZ A, AKABANI GH, PEGRAM CN, BIGNER DD, ZALUTSKY MR: Human/murine chimeric 8106 F(ab') (2) fragment: preclinical evaluation of a potential construct for the targeted radiotherapy of malignant glioma. Nucl. Med. Biol. (2004) 31(3):345–355.
  • KUAN CT, WANG G, PEGRAM CN, ZALUTSKY M, BIGNER DD: Canine serum half-life of a chimeric antibody 8106 deleted of the CH2 domain and directed against tenascin (abstract). Neuro-oncol (2001) 3(4):316.
  • COLCHER D, BIRD R, ROSELLI M et al.: hi vivo tumor targeting of a recombinant single-chain antigen-binding protein. Nati Cancer Inst. (1990) 82(14):1191–1197.
  • SCHIER R, MCCALL A, ADAMS GP et al.: Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. Ma Biol. (1996) 263(4):551–567.
  • YOKOTA T, MILENIC DE, WHITLOW M, SCHLOM J: Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. (1992) 52(12):3402–3408.
  • ADAMS GP, SCHIER R, MARSHALL K et al: Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. (1998) 58(3):485–490.
  • BEGENT RH, VERHAAR MJ, CHESTER KA et al.: Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat. Med. (1996) 2(9):979–984.
  • TODOROVSKA A, ROOVERS RC, DOLEZAL O et al: Design and application of diabodies, triabodies and tetrabodies for cancer targeting. Immunol Methods (2001) 248(1-2):47–66.
  • HU S, SHIVELY L, RAUBITSCHEK A et al: Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. (1996) 56(13):3055–3061.
  • YAZAKI PJ, WU AM: Construction and characterization of minibodies for imaging and therapy of colorectal carcinomas. Methods MM. Biol. (2003) 207:351–364.
  • SUNDARESAN G, YAZAKI PJ, SHIVELY JE et al.: 124I-labeled engineered anti- CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. Nucl. Med. (2003) 44(12):1962–1969.
  • KUAN CT, VAIDYANATHAN G, ZALUTSKY M, PASTAN I, BIGNER DD: Anti-EGFRvIII minibody (MR1- lscFv-CH3) targeting of human glioma xenografts (abstract). Proc. Am. Assoc. Cancer Res. (2004) 45:693.
  • ZALUTSKY M: Radionuclide therapy. In: Handbook of Nuclear Chemistry Vertes A, Nagy S, Klencsar Z, Lovas RG, Nagy S (Eds), Kluwer, Dordrecht, Netherlands (2003):315–348.
  • ••Review of the characteristics and selectioncriteria of radionuclides (I3-emitters, a-emitters and Auger electron-emitters) used for targeted radiotherapy of tumours as well as other diseases.
  • MILENIC DE, GARMESTANI K, CHAPPELL LL et al.: In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nucl. Med. Biol. (2002) 29(4):431–442.
  • ZALUTSKY MR, VAIDYANATHAN G: Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curc Pharm. Des. (2000) 6(14):1433–1455.
  • REARDON DA, AKABANI G, COLEMAN RE et al.: Phase I trial of 131I-labeled human/mouse chimeric anti-tenascin monoclonal antibody 8106 administered into surgically created resection cavities of patients with malignant gliomas. (2004) (In Press).
  • AKABANI G, REIST CJ, COKGOR I et al.: Dosimetry of 131I-labeled 8106 monoclonal antibody administered into surgically created resection cavities in patients with malignant brain tumors. Nucl. Med. (1999) 40(4):631–638.
  • VAIDYANATHAN G, AFFLECK DJ, BIGNER DD, ZALUTSKY MR: Improved xenograft targeting of tumor-specific anti-epidermal growth factor receptor variant III antibody labeled using N-succinimidyl 4-guanidinomethy1-3-iodobenzoate. Nucl. Med. Biol. (2002) 29(1):1–11.
  • VAIDYANATHAN G, AFFLECK DJ, BIGNER DD, ZALUTSKY MR: N-succinimidyl 3- [211At]astato-4-guanidinomethylbenzoate: an acylation agent for labeling internalizing antibodies with alpha-particle emitting 211At. Nucl. Med. Biol. (2003) 30(4):351–359.
  • PAGANELLI G, GRANA C, CHINOL M et al.: Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Ear. Nucl. Med. (1999) 26(4):348–357.
  • GRANA C, CHINOL M, ROBERTSON C et al.: Pretargeted adjuvant radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br. Cancer (2002) 86(2):207–212.
  • RUSTAMZADEH E, LOW WC, VALLERA DA, HALL WA: Immunotoxin therapy for CNS tumor. Neurooncol (2003) 64(1-2):101–116.
  • ••Publication includes structural andfunctional descriptions of irnmunotoxins (including fusion toxins) used against brain tumours, as well as a detailed review of clinical trials.
  • HALL WA, FODSTAD O: Immunotoidns and central nervous system neoplasia. .1. Neurosurg. (1992) 76(1):1–12.
  • PRINS RM, LIAU LM: Immunology and immunotherapy in neurosurgical disease. Neurosurgery (2003) 53(1):144–152; discussion 152–143.
  • WEBER FW, FLOETH F, ASHER A et al: Local convection enhanced delivery of IL4-Pseudomonasexotoxin (NBI-3001) for treatment of patients with recurrent malignant glioma. Acta Neuruchic Stipp]. (2003) 88:93–103.
  • KUNWAR S: Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing Phase I studies. Acta Neuruchir. Stipp]. (2003) 88:105–111.
  • SAMPSON JH, AKABANI G, ARCHER GE et al.: Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseuclumunas exotwdn termed PE-38 (TP-38) for the treatment of malignant brain tumors. Neurouncol. (2003) 65 (1):27–35.
  • ZALUTSKY MR, MOSELEY RP, BENJAMIN JC et al.: Monoclonal antibody and F(ab')2 fragment delivery to tumor in patients with glioma: comparison of intracarotid and intravenous administration. Cancer Res. (1990) 50(13):4105–4110.
  • SCHOLD SC JR, ZALUTSKY MR, COLEMAN RE et al.: Distribution and dosimetry of I-123-labeled monoclonal antibody 8106 in patients with anaplastic glioma. Invest. Radial. (1993) 28(6):488–496.
  • LEE YS, BULLARD DE, WIKSTRAND CJ et al.: Comparison of monoclonal antibody delivery to intracranial glioma xenografts by intravenous and intracarotid administration. Cancer Res. (1987) 47(7):1941–1946.
  • FAILLOT T, MAGDELENAT H, MADY E et al.: A Phase I study of an anti-epidermal growth factor receptor monoclonal antibody for the treatment of malignant gliomas. Neurosurgery (1996) 39(3):478–483.
  • STRAGLIOTTO G, VEGA F, STASIECKI P et al.: Multiple infusions of anti-epidermal growth factor receptor (EGER) monoclonal antibody (EMD 55,900) in patients with recurrent malignant gliomas. Ear: J. Cancer (1996) 32A(4):636–640.
  • KALOFONOS HP, PAWLIKOWSKA TR, HEMINGWAY A et al.: Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase. Nucl. Med. (1989) 30(10):1636–1645.
  • BRADY LW, MIYAMOTO C, WOO DV et al.: Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody 425 against epidermal growth factor receptor: a Phase II trial. Int. J. Radiat. Onto]. Biol. Phys. (1992) 22(1):225–230.
  • EPENETOS AA, COURTENAY-LUCK N, PICKERING D et al.: Antibody guided irradiation of brain glioma by arterial infusion of radioactive monoclonal antibody against epidermal growth factor receptor and blood group A antigen. Br. Med. J. (Clin. Res. Ed.) (1985) 290(6480):1463–1466.
  • QUANG TS, BRADY LW: Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high-grade brain gliomas. hat. I Radiat. Onto]. Biol. Phys. (2004) 58(3):972–975.
  • •Update on a relatively large-scale study with systemic anti-EGFR radiolabelled mAb for patients with malignant gliomas; long-term follow-up is provided.
  • BARTUS RT, ELLIOTT PJ, DEAN RL et al.: Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. Exp. Nauru]. (1996) 142(1):14–28.
  • NINGARAJ NS, RAO MK, BLACK KL: Adenosine 5'-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model. Cancer Res. (2003) 63(24):8899–8911.
  • GROOTHUIS DR: The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Nauru-ulna (2000) 2(1):45–59.
  • LASHFORD LS, DAVIES AG, RICHARDSON RB et al: A pilot study of 1311 monoclonal antibodies in the therapy of leptomeningeal tumors. Cancer (1988) 61(5):857–868.
  • MOSELEY RP, DAVIES AG, RICHARDSON RB et al: Intrathecal administration of 1311 radiolabelled monoclonal antibody as a treatment for neoplastic meningitis. Br. .1. Cancer (1990) 62(4):637–642.
  • COKGOR I, AKABANI G, FRIEDMAN HS et al.: Long term response in a patient with neoplastic meningitis secondary to melanoma treated with (131)1-radiolabeled antichondroitin proteoglycan sulfate Mel-14 F(ab')(2): a case study. Cancer (2001) 91(9):1809–1813.
  • BIGNER DD, BROWN M, COLEMAN RE et al.: Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 1311-radiolabeled monoclonal antibodies anti-tenascin 8106 and anti-chondroitin proteoglycan sulfate Mel-14 F (ab')2-a preliminary report. J. Neurouncol. (1995) 24(1):109–122.
  • KRAMER K, CHEUNG NK, HUMM J et al.: Pharmacokinetics and acute toxicology of intraventricular 131 I-monoclonal antibody targeting disialoganglioside in non-human primates. Neurouncol. (1997) 35(2):101–111.
  • BOBO RH, LASKE DW, AKBASAK A et al.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA (1994) 91(6):2076–2080.
  • JAIN RK, BAXTER LT: Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. (1988) 48(24 Pt 1):7022–7032.
  • WERSALL P, OHLSSON I, BIBERFELD P et al.: Intratumoral infusion of the monoclonal antibody, mAb 425, against the epidermal-growth-factor receptor in patients with advanced malignant glioma. Cancer Inununol. Inamunother: (1997) 44 (3) :157–164.
  • RIVA P, FRANCESCHI G, RIVA N et al: Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach. Ear: Nucl. Med. (2000) 27(5):601–609.
  • BIGNER DD, BROWN MT, FRIEDMAN AH et al.: Iodine-131-labeled antitenascin monoclonal antibody 8106 treatment of patients with recurrent malignant gliomas: Phase I trial results. Clin. amyl. (1998) 16(6):2202–2212.
  • COKGOR I, AKABANI G, KUAN CT et al.: Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 8106 treatment of patients with newly diagnosed malignant gliomas. Clin. Oncul. (2000) 18(22):3862–3872.
  • AKABANI G, COKGOR I, COLEMAN RE et Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with iodine-131-labeled anti-tenascin monoclonal antibody 8106 therapy. Int. J. Radler Once]. Biel. Phys. (2000) 46(0947–958.
  • ZALUTSKY M, REARDON DA, AKABANI G et al.: Astatine-211 labeled human/mouse chimeric anti-tenascin monoclonal antibody via surgically created resection cavities for patients with recurrent glioma: Phase I study (abstract). Neure-encel (2002) 4(Suppl.):103.
  • http://www.clinicaltrials.gov National Institutes of Health clinical trials information. http://www.peregrineinc.com Peregrine Pharmaceuticals, Inc. website. http://www.antisoma.com Antisoma website. http://www.mskcc.org Memorial Sloan-Kettering Cancer Center website.
  • http://www.virtualtrials.com Clinical trials and noteworthy treatments for brain tumours, presented by the Musella Foundation For Brain Tumor Research Information.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.