363
Views
26
CrossRef citations to date
0
Altmetric
Review

Engineering of monoclonal antibodies and antibody-based fusion proteins: successes and challenges

Pages S15-S27 | Published online: 28 Sep 2005

Bibliography

  • KOHLER G, MILSTEIN C: Continuouscultures of fused cells secreting antibody of predefined specificity. (1975) Nature 256:495–497.
  • HULETT MD, HOGARTH PM: Molecular basis of Fc receptor function. Adv. Immunol. (1994) 57:1–127.
  • GHETIE V, WARD ES: Transcytosis and catabolism of antibody. Immunol. Res. (2002) 2:97–113.
  • STEINITZ M, KLEIN G, KOSKIMIES S, MAKELA 0: EB virus induced B lymphocyte cell lines producing specific antibodies. Nature (1977) 269:420–422.
  • KOZBOR D, LAGARDE A, RODER JC: Human hybridomas constructed with antigen-specific Epstein-Barr virus-transformed cell lines. Proc. Nati Acad. ScL USA (1982) 79:6651–6655.
  • CASALI P, INGHIRIAMI G, NAKAMURA M, DAVIES T, NOTKINS AL: Human monoclonals from antigen-specific selection of B lymphocytes and transformation by EBV. Science (1986) 234:476–479.
  • OLSSON L, KAPLAN HS: Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity. Proc. Nati Acad. Sci. USA (1980) 77:5429–5431.
  • CARROLL WL, THIELEMANS K, DILLEY J, LEVY R: Mousexhuman hetero-hybridomas as fusion partners with human B cell tumors. J. Immunol. Methods (1986) 89:61–72.
  • BORREBAECK CA, MOLLER SA: In vitro immunization. Effect of growth and differentiation factors on antigen-specific cell activation and production of monoclonal antibodies to autologous antigens and immunogens. Immunol. (1986) 136:3710–3715.
  • BORREBAECK CA: Strategy for the production of human monoclonal antibodies using in vitro activated B cells. Immunol. Methods (1989) 123:157-165. BANCHEREAU J, DE PAOLI P, VALLE A, GARCIA E, ROUSSET F: Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science (1989) 251:70–72.
  • KARPAS A, DREMUCHEVA A, CZEPULKOWSKI BH: A human myeloma cell line suitable for the generation of human monoclonal antibodies. Proc. Nati Acad. Sci. USA (2001) 98:1799–1804.
  • TRAGGIAI E, BECKER S, SUBBARAO Ket al.: An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. (2004) 8:871–875.
  • TRAGGIAI E, CHICHA L, MAZZUCCHELLI L et al.: Development of a human adaptative immune system in cord blood cell-tranplantated mice. Science (2004) 304:104–107.
  • MORRISON SL, JOHNSON MJ, HERZENBERG LA, OI VT: Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA (1984) 81:6851–6855.
  • TAKEDA SI, NAITO T, HAMA K, NOMA T, HONJO T: Construction of chimmric processed immunoglobulin genes containing mouse variable and human constant region sequences. Nature (1985) 314:452–454.
  • CO MS, QUEEN C: Humanized antibodies for therapy. Nature (1991) 351:501–502.
  • QUEEN C, SCHNEIDER WP, SELICK HE et al.: A humanized antibody that binds to the interleukin 2 receptor. Proc. Nati Acad. ScL USA (1989) 86:10029–10035.
  • ROGUSKA MA, PEDERSEN JT, KEDDY CA et al: Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl. Acad. ScL USA (1994) 91:969–973.
  • DELAGRAVE S, CATALAN J, SWEET C et al.: Effects of humanization by variable domain resurfacing on the antiviral activity of a single-chain antibody against respiratory syncytial virus. Protein Eng. (1999) 12:357–362.
  • KUUS-REICHEL K, GRAUER LS, KARAVODIN LM, KNOTT C, KRUSEMEIER M, KAY NE: Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin. Diagn. Lab. Immunol. (1994) 1:365–372.
  • DENARDO GL, BRADT BM, MIRICK GR, DENARDO SJ: Human antiglobulin response to foreign antibodies: therapeutic benefit? Cancer Immunol. Immunother. (2003) 52:309–316.
  • GRUBER R, VAN HAARLEM LJ, WARNAAR SO, HOLZ E, RIETHMULLER G: The human antimouse immunoglobulin response and the anti-idiotypic network have no influence on clinical outcome in patients with minimal residual colorectal cancer treated with monoclonal antibody C017-1A. Cancer Res. (2000) 60:1921–1926.
  • RITTER G, COHEN LS, WILLIAMS C Jr, RICHARDS EC, OLD LJ, WELT S: Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res. (2001) 61:6851–6859.
  • BAERT F, NOMAN M, VERMEIRE S et al.: Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. N Engl. I Med. (2003) 348:601–608.
  • KIMBALL JA, NORMAN DJ, SHIELD CF et al.: The OKT3 Antibody Response Study: a multicentre study of human anti-mouse antibody (HAMA) production following OKT3 use in solid organ transplantation. Transpl. Immunol. (1995) 3:212–221.
  • SMITH GP: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science (1985) 228:1315–1317.
  • HUSE WD, SASTRY L, IVERSON SA et al.: Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science (1989) 246:1275–1281.
  • MCCAFFERTY J, GRIFFITHS AD, WINTER G, CHISWELL DJ: Phage antibodies: filamentous phage displaying antibody variable domains. Nature (1990) 348:552–554.
  • AUJAME L, SOD OYER R, TEILLAUD JL: Phage display and antibody engineering: a French overview. Trends Biotechnol (1997) 15:155–157.
  • SKERRA A, PLOCKTHUN A: Assembly of a functional immunoglobulin Fv fragment in Escherichia coil. Science (1988) 240:1038–1041.
  • HUSTON JS, LEVINSON D, MUDGETT-HUNTER M et al: Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coil. Proc. Nati Acad. Li. USA (1988) 85:5879–5883.
  • BIRD RE, HARDMAN KD, JACOBSON JW et al.: Single-chain antigen-binding proteins. Science (1988) 242:423–426.
  • HOGREFE HH, MULLINAX RL, LOVEJOY AE, HAY BN SORGE JA: A bacteriophage lambda vector for the cloning and expression of immunoglobulin Fab fragments on the surface of filamentous phage. Gene (1993) 128:119–126.
  • ORLANDI R, GUSSOW DH, JONES PT, WINTER G: Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Nati Acad. Sci. USA (1989) 86:3833–3837.
  • VAUGHAN TJ, WILLIAMS AJ, PRITCHARD K et al.: Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol (1996) 14:309–314.
  • HOOGENBOOM HR, WINTER G: By-passing immunisation: human antibodies from synthetic repertoires of germline VH genes segments rearranged in vitro. J. Mol. Biol. (1992) 227:381–388.
  • GRIFFITHS AD, WILLIAMS SC, HARTLEY 0 et al.: Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. (1994) 13:3245–3260.
  • DE KRUIF J, TERSTAPPEN L, BOEL E,LOGTENBERG T: Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Nati Acad. Sci. USA (1995) 92:3938–3942.
  • HOOGENBOOM HR: Overview of antibody phage-display technology and its applications. Methods Mol. Biol. (2002) 178:1–37.
  • HAWKINS RE, RUSSELL SJ, WINTER G: Selection of phage antibodies by binding affinity: mimicking affinity maturation. J. Mol. Biol. (1992) 226:889–896.
  • HOOGENBOOM HR: Designing and optimizing library selection strategies for generating high-affinity antibodies. Trends Biotechnol. (1997) 15:62–70.
  • CUMBERS SJ, WILLIAMS GT, DAVIES SL et al.: Generation and iterative affinity maturation of antibodies in using hypermutating B-cell lines. Nat. Biotechnol (2002) 20:1129–1134.
  • HANES J, SCHAFFITZEL C, KNAPPIK A, PLOCKTHUN A: Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. (2000) 18:1287–1292.
  • BODER ET, WITTRUP KD: Yeast surfacedisplay for screening combinatorial polypeptide libraries. Nat. Biotechnol (1997) 15:553–557.
  • FELDHAUS MJ, SIEGEL RW, OPRESKO LK et al: Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat. Biotechnol (2003) 21:163–170.
  • LONBERG N, TAYLOR LD, HARDING FA et al: Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature (1994) 368:856–859.
  • GREEN LL, HARDY MC, MAYNARD-CURRIE CE et al: Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat. Genet. (1994) 7:13–21.
  • TOMIZUKA K, SHINOHARA T, YOSHIDA H et al.: Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc. Natl. Acad. Li. USA (2000) 97:722–727.
  • HUSTON JS, MUDGETT-HUNTER M, TAI MS et al.: Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. (1991) 203:46–88.
  • LO KM, SUDO Y, CHEN J et al.: Highlevel expression and secretion of Fc-X fusion proteins in mammalian cells. Protein Eng. (1998) 11:495–500.
  • REITER Y, PASTAN I: Recombinant Fv immunotoxins and Fv fragments as novel agents for cancer therapy and diagnosis. Trends Biotechnol (1998) 16:513–520.
  • BERGER M, SHANKAR V, VAFAI A: Therapeutic applications of monoclonal antibodies. Am. J. Med. Sci. (2002) 324:14–30.
  • BAGSHAWE KD, SHARMA SK, BEGENT RH: Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Expert Opin. Biol. Ther. (2004) 11:1777–1789.
  • BOULAIN J-C, DUCANCEL F: Expression of recombinant alkaline phosphatase conjugates in Escherichia coil. Methods Mol. Biol. (2004) 267:101–112.
  • SEGAL DM, WEINER GJ, WEINER LM: Bispecific antibodies in cancer therapy. Curr. Opin. brununol. (1999) 11:558–562.
  • WEINER LM, ADAMS GP: New approaches to antibody therapy. Oncogene (2000) 19:6144–6151.
  • MICHON J, MOUTEL S, BARBET J et al: In vitro killing of neuroblastoma cells by neutrophils derived from granulocyte colony-stimulating factor-treated cancer patients using an anti-disialoganglioside/anti-FcyRI bispecific antibody. Blood (1995) 86:1124–1130.
  • LE DOUSSAL J-M, MARTIN M, GAUTHEROT E, DELAAGE M, BARBET J: Li vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell bound antibody conjugate. J. Nucl. Med. (1989) 30:1358–1366.
  • CHANG CH, SHARKEY RM, ROSSI EA et al: Molecular advances in pretargeting radioimmunotherapy with bispecific antibodies. Mol. Cancer Ther. (2002) 1:553–563.
  • CLARK JI, ALPAUGH RK, VON MEHREN M et al: Induction of multiple anti-c-erbB-2 specificities accompanies a classical idiotypic cascade following 2B1 bispecific monoclonal antibody treatment. Cancer brununol. Immunother. (1997) 44:265–272.
  • MCGUINNESS BT, WALTER G, FITZGERALD K et al: Phage diabody repertoires for selection of large numbers of bispecific antibody fragments. Nat. Biotechnol. (1996) 14:1149–1154.
  • GROSS G, WAKS T, ESHHAR Z: Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Nati Acad. Sci. USA (1989) 86:10024–10028.
  • PINTHUS JH, WAKS T, MALINA V et al.: Adoptive immunotherapy of prostate cancer bone lesions using redirected effector lymphocytes. J. Clin. Invest. (2004) 114:1774–1781.
  • MORELAND LW, BAUMGARTNER SW, SCHIFF MH et al.: treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor (p75)-Fc fusion protein. N Engl. I Med. (1997) 337:141–147.
  • FLEISCHMANN RM, BAUMGARTNER SW, TINDALL EA et al.: Response to etanercept (Enbrel) in elderly patients with rheumatoid arthritis: a retrospective analysis of clinical trial results. Rheumatol. (2003) 30:691–696.
  • KLARESKOG L, VAN DER HEIDJE D, DE JAGER JP et al.: Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet (2004) 363:675–681.
  • GOMEZ-PUERTA JA, SANMARTI R, RODRIGUEZ-CROS JR, CANETE JD: Etanercept is effective in patients with rheumatoid arthritis with no response to infliximab therapy. Ann. Rheum. Dis. (2004) 63:896.
  • YAZICI Y, ERKAN D: Do etanercept-naive patients with rheumatoid arthritis respond better to infliximab patients for whom etanercept has failed? Ann. Rheum. Dis. (2004) 63:607–608.
  • VAN VOLLENHOVEN R, HARJU A, BRANNEMARK S, KLARESKOG L: Treatment with infliximab (Remicade) when etanercept (Enbrel) has failed or vice versa: data from the STURE registry showing that switching tumour necrosis factor a blockers can make sense. Ann. Rheum. Dis. (2003) 62:1195–1198.
  • KEANE J: Tumor necrosis factor blockersand reactivation of latent tuberculosis. Clin. Infect. Dis. (2004) 39:300–302.
  • SCHEINFELD N: A comprehensive review and evaluation of the side effects of the TNFa blockers etanercept, infliximab and adalimumab. ./. Dermatol. Treat. (2004) 15:280–294.
  • CHAMIAN F, LOWES MA, UN SL et al: Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc. Natl. Acad. Sci. USA (2005) 102:2075–2080.
  • FINCK B, LINSLEY PS, WOFSY D: Treatment of murine lupus with CTLA4Ig. Science (1994) 256:1225–1227.
  • UN H, BOLLING SF, LINSLEY PS et al: Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J. Exp. Med. (1993) 178:1801–1806.
  • MORELAND LW ALTEN R, VAN DEN BOSCH F et al.: Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum. (2002) 46:1470–1479.
  • KREMER JM, WESTHOVENS R, LEON M et al: Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl. J. Med. (2004) 349:1907–1915.
  • JOHNSON P, GLENNIE M: The mechanisms of action of rituximab in the elimination of tumor cells. Semin. Oncol. (2003) 30:3–8.
  • SMITH MR: Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene (2003) 22:7359–7368.
  • CARTRON G, WATIER H, GOLAY J, SOLAL-CELIGNY P: From the bench to the bedside: ways to improve rituximab efficacy. Blood (2004) 104:2635–2642.
  • CLYNES R, TAKECHI Y, MOROI Y, HOUGHTON A, RAVETCH JV: Fc receptors are required in passive and active immunity to melanoma. Proc. Natl. Acad. Sci. USA (1998) 95:652–656.
  • CLYNES RA, TOWERS TL, PRESTA LG, RAVETCH JV: Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med. (2000) 6:443–446.
  • DI GAETANO N, CITTERA E, NOTA R et al: Complement activation determines the therapeutic activity of rituximab in vivo. Immunol. (2003) 171:1581–1587.
  • TEELING JL, FRENCH RR, CRAGG MS et al.: Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood (2004) 104: 1793-1800.
  • AMIGORENA S, BONNEROT C, DRAKE J et al: Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B-lymphocytes. Science (1992) 256:1808–1812.
  • DAERON M, LATOUR S, MALBEC 0 et al.: The same tyrosine-based inhibition motif, in the intracytoplasmic domain of FcyRIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity (1995) 3:635–646.
  • SHIELDS RL, NAMENUK AK, HONG K: High resolution mapping of the binding site on human IgG1 for FcyRI, FcyRII, FcyRIII, and FcRn and design of IgG1 variants with improved binding to the FcyR. Bial Chem. (2001) 276:6591–6604.
  • RADAEV S, SUN PD: Recognition of IgG by Fey receptor. The role of Fc glycosylation and the binding of peptide inhibitors. J. Biol. Chem. (2001) 276:16478–16483.
  • LUND J, TAKAHASHI N, POPPLEWELL A et al.: Expression and characterization of truncated forms of humanized L243 IgGl. Architectural features can influence synthesis of its ofigosaccharide chains and affect superoxide production triggered through human Fey receptor I. Eur. Biochem. (2000) 267:7246–7257.
  • WEIKERT S, PAPAC D, BRIGGS J et al: Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. (1999) 17:1116–1121.
  • BOYD PN, LINES AC, PATEL AK: The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. (1995) 32:1311–1318.
  • KUMPEL BM, RADEMACHER TW, ROOK GA, WILLIAMS PJ, WILSON IB: Galactosylation of human IgG monoclonal anti-D produced by EBV-transformed B-lymphoblastoid cell lines is dependent on culture method and affects Fc receptor-mediated functional activity. Hum. Antibodies Hybridomas (1994) 5:143–151.
  • UMANA P, JEAN-MAIRET J, MOUDRY R, AMSTUTZ H, BAILEY JE: Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol (1999) 17:176–180.
  • SHINKAWA T, NAKAMURA K, YAMANE N et al.: The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. (2003) 278:3466–3473.
  • SHIELDS RL, LAI J, KECK R et al: Lackof fucose on human IgG1 N-linked oligosaccharide improves binding to human FcyRIII and antibody-dependent cellular toxicity../. Biol. Chem. (2002) 277:26733–26740.
  • CARTRON G, DACHEUX L, SALLES G et al.: Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcyRIIIa gene. Blood (2002) 99:754–758.
  • WENG WK, LEVY R: Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. ./. Clin. Oncol (2003) 21:3940–3947.
  • FARAG SS, FLINN IW, MODALI R, LEHMAN TA, YOUNG D, BYRD JC: FcyRIIIa and FcyRIIa polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood (2004) 103:1472–1474.
  • BINZ HK, AMSTUTZ P, KOHL A et al:High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol (2004) 22:575–582.
  • BESTE G, SCHMIDT FS., STIBORA T, SKERRA A: Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl. Acad Sci. USA (1999) 96:1898–1903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.