228
Views
58
CrossRef citations to date
0
Altmetric
Review

Escape strategies and reasons for failure in the interaction between tumour cells and the immune system: how can we tilt the balance towards immune-mediated cancer control?

, , , , , , , , , & show all
Pages 463-476 | Published online: 22 Apr 2005

Bibliography

  • SMYTH MJ, GODFREY DI, TRAPANI JA: A fresh look at tumor immunosurveillance and immunotherapy. Nat. Immunol (2001) 2:293–299.
  • DIEFENBACH A, RAULET DH: The innate immune response to tumors and its role in the induction of T-cell immunity. Immunol. Rev. (2002) 188:9–21.
  • SWANN J, CROWE NY, HAYAKAWA Y, GODFREY DI, SMYTH MJ: Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunol Cell Biol. (2004) 82(3):323–331.
  • PARMIANI G, CASTELLI C, DALERBA P et al: Cancer immunotherapy with peptide-based vaccines: What have we achieved? Where are we going? J. Nail. Cancer Inst. (2002) 94:805–818.
  • GARCIA-LORA A, ALGARRA I, COLLADO A, GARRIDO F: Tumour immunology, vaccination and escape strategies. Eur. j Immunogenet. (2003) 30(3):177–183.
  • MARINCOLA FM, WANG E, HERLYN M, SELIGER B, FERRONE S: Tumors as elusive targets of T-cell-based active immunotherapy. Trends Immunol (2003) 24(6):335–342.
  • SELIGER B, CABRERA T, GARRIDO F, FERRONE S: HLA class I antigen abnormalities and immune escape by malignant cells. Semin. Cancer Biol. (2002) 12(1):3–13.
  • CAMPOLI M, CHANG CC, FERRONE S: HLA class I antigen loss, tumor immune escape and immune selection. Vaccine (2002) 20\(Suppl. 4):A40–A45.
  • JAGER E, RINGHOFFER M, ALTMANNSBERGER M et al: Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int. J. Cancer (1997) 71(2):142–147.
  • KHONG HT, WANG QJ, ROSENBERG SA: Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression/. Immunother. (2004) 27(3):184–190.
  • RESTIFO NP, MARINCOLA FM, KAWAKAMI Y, TAUBENBERGER J, YANNELLI JR, ROSENBERG SA: Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. j Natl Cancer Inst. (1996) 88(2):100–108.
  • YEE C, THOMPSON JA, BYRD D et al: Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Nail Acad. Sci. USA (2002) 99(25):16168–16173.
  • LOZUPONE F, RIVOLTINI L, LUCIANI F et al.: Adoptive transfer of an anti-MART-1(27-35)-specific CD8+ T cell clone leads to immunoselection of human melanoma antigen-loss variants in SCID mice. Eur. j Immunol (2003) 33(2):556–566.
  • CASTELLI C, RIVOLTINI L, RINI F et al.: Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother. (2004) 53(3):227–233.
  • BELLI F, TESTORI A, RIVOLTINI L et al.: Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol (2002) 20(20):4169–4180.
  • WANG Z, MARGULIES L, HICKLIN DJ, FERRONE S: Molecular and functional phenotypes of melanoma cells with abnormalities in HLA class I antigen expression. Tissue Antigens (1996) 47(5):382–390.
  • PROFFER DJ, CHAO D, BRAYBROOKE JP et al.: Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin. Cancer Res. (2003) 9(1):84–92.
  • AULITZKY WE, GROSSE-WILDE H, WESTHOFF U et al.: Enhanced serum levels of soluble HLA class I molecules are induced by treatment with recombinant interferon-gamma (IFN-gamma) Clin. Exp. Immunol (1991) 86(2):236–239.
  • MOREL S, LEVY F, BURLET-SCHILTZ O et al.: Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity (2000) 12(1):107–117.
  • CERWENKA A, LANIER LL: Natural killer cells, viruses and cancer. Nat. Rev. Immunol (2001) 1:41–49.
  • COOPER MA, FEHNIGER TA, CALIGIURI MA: The biology of human natural killer-cell subsets. Trends Immunol (2001) 22:633–640.
  • KELLY JM, DARCY PK, MARKBY JL et al.: Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat. Immunol (2002) 1:83–90.
  • LJUNGGREN HG, KARRE K: In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today (1990) 11(7):237–244.
  • MORETTA A, BOTTINO C, VITALE M et al.: Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. (2001) 19:197–223.
  • GROH V, RHINEHART R, SECRIST H, BAUER S, GRABSTEIN KH, SPIES T: Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc. Natl Acad. Sci. USA (1999) 96(12):6879–6884.
  • JINUSHI M, TAKEHARA T, TATSUMI T et al.: Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int. J. Cancer (2003) 104(3):354–361.
  • VETTER CS, GROH V, THOR STRATEN P, SPIES T, BROCKER EB, BECKER JC: Expression of stress-induced MHC class I related chain molecules on human melanoma. J. Invest. Dermatol. (2002) 118(4):600–605.
  • RIVOLTINI L, CARRABBA M, HUBER Vet al.: Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol. Rev. (2002) 188:97–113.
  • GROH V, WU J, YEE C, SPIES T: Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature (2002) 419(6908):734–738.
  • CASTRICONI R, CANTONI C, DELLA CHIESA M et al.: Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Nail Acad. Sci. USA (2003) 100(7):4120–4125.
  • LEE JC, LEE KM, KIM DW, HEO DS: Elevated TGF-betal secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. Immunol (2004) 172(12):7335–7340.
  • GROH V, BRUHL A, EL-GABALAWY H, NELSON JL, SPIES T: Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. NatL Acad. Sci. USA (2003) 100(16):9452–9457.
  • COSTELLO RT, SIVORI S, MARCENARO E et al.: Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood (2002) 99(10):3661–3667.
  • PILLA L, SQUARCINA P, COPPA J et al.: NK and NK-like T cell activation in colorectal carcinoma patients treated with autologous tumor-derived HSP9. Cancer Res. (2005) (In Press).
  • FERLAZZO G, TSANG ML, MORETTA L, MELIOLI G, STEINMAN RM, MUNZ C: Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. (2002) 195(3):343–351.
  • GIEBEL S, LOCATELLI F, LANIPARELLI T et aL: Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood (2003) 102(3):814–819.
  • KRIEG AM: CpG motifs: the active ingredient in bacterial extracts? Nat. Med. (2003) 9(7):831–835.
  • PARMIANI G, TESTORI A, MAIO M et al.: Heat shock proteins and their use as anticancer vaccines. Clin. Cancer Res. (2004) 10(24):8142–8146.
  • ANDREOLA G, RIVOLTINI L, CASTELLI C et al.: Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med. (2002) 195(10):1303–1316.
  • THERY C, ZITVOGEL L, AMIGORENA S: Exosomes: composition, biogenesis and function. Nat. Rev. ImmunoL (2002) 2(8):569–579.
  • HEGMANS JP, BARD MP, HEMMES A et aL: Proteomic analysis of exosomes secreted by human mesothelioma cells. Am. J. PathoL (2004) 164:1807–1815.
  • WUBBOLTS R, LECKIE RS, VEENHUIZEN PT et aL: Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J. Biol. Chem. (2003) 278:10963–10972.
  • ALTIERI SL, KHAN AN, TOMASI TB: Exosomes from plasmacytoma cells as a tumor vaccine. J. Immunother. (2004) 27:282–288.
  • WOLFERS J, LOZIER A. RAPOSO G et al.: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. (2001) 7:297–303.
  • ANDRE F, SCHARTZ NE, MOVASSAGH M et aL: Malignant effusions and immunogenic tumour-derived exosomes. Lancet (2002) 360:295–305.
  • KARLSSON M, LUNDIN S, DAHLGREN U, KAHU H, PETTERSSON I, TELEMO E: `Tolerosomes' are produced by intestinal epithelial cells. Eur. J. ImmunoL (2001) 31:2892–2900.
  • PECHE H, HESLAN M, USAL C, ANIIGORENA S, CUTURI MC: Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transp/antation (2003) 76:1503–1510.
  • MORELLI AE, LARREGINA AT, SHUFESKY WJ et aL: Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood (2004) 9104:3257–3266.
  • VAN NIEL G, MALLEGOL J, BEVILACQUA C et aL: Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut (2003) 52:1690–1697.
  • ABRAHANIS VA, STRASZEWSKI SL, KANISTEEG M et aL: Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res. (2003) 63:5573–5581.
  • TAYLOR DD, GERCEL-TAYLOR C, LYONS KS, STANSON J, WHITESIDE TL: T-cell apoptosis and suppression of T-cell receptor/CD3-4 by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin. Cancer Res. (2003) 9:5113–5119.
  • GOODE BL, DRUBIN DG, BARNES G: Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. (2000) 12(1):63–71.
  • RANIONI C, LUCIANI F, SPADARO F, LUGINI L, LOZUPONE F, FATS S: Differential expression and distribution of ezrin, radixin and moesin in human natural killer cells. Eur. j ImmunoL (2002) 32(10:3059–3065.
  • BRETSCHER A: The cytoskeleton: from regulation to function. Conference: the 15th Meeting of the European Cytoskeleton Forum. EMBO Rep. (2000) 1(6):473–476.
  • LOUVET-VALLEE S: ERNI proteins: from cellular architecture to cell signalling. Biol. Cell (2000) 92(5):305–316.
  • MOREL N, DEDIEU JC, PHILIPPE JM: Specific sorting of the al isoform of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. J. Cell Sci. (2003) 116(Pt 23):4751–4762.
  • FUTTER CE, COLLINSON LM, BACKER JM, HOPKINS CR: Human VP534 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol. (2001) 155(7):1251–1264.
  • ODORIZZI G, BABST M, EMR SD: Fablp PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell (1998) 95(6):847–858.
  • NOVELLINO L, PARMIANI G, CASTELLI C: A listing of human tumor antigens: March 2004 update. Cancer ImmunoL Immunother. (2005) 54(3):187–207.
  • SURH CD, SPRENT J: T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature (1994) 372(650 0:100–103.
  • DE VISSER KE, CORDARO TA. KIOUSSIS D, HAANEN JB, SCHUMACHER TN, KRUISBEEK AM: Tracing and characterization of the low-avidity self-specific T cell repertoire. Eur. J. ImmunoL (2000) 30(5):1458–1468.
  • MORAHAN G, ALLISON J, MILLER JF: Tolerance of class I histocompatibility antigens expressed extrathymically. Nature (1989) 339(6226):622–624.
  • BURKLY LC, LO D, KANAGAWA O, BRINSTER RI,, FLAVELL RA: T-cell tolerance by clonal anergy in transgenic mice with nonlymphoid expression of MHC class II I-E. Nature (1989) 342(6249):564–566.
  • SCHWARTZ RH: A cell culture model for T lymphocyte clonal anergy. Science (1990) 248(4961):1349–1356.
  • TELANDER DG, MALVEY EN, MUELLER DL: Evidence for repression of IL-2 gene activation in anergic T cells. ImmunoL (1999) 162(3):1460–1465.
  • ROCHA B, VON BOEHMER H: Peripheral selection of the T cell repertoire. Science (1991) 251(4998):1225–1228.
  • SCHONRICH G, KALINKE U, MOMBURG F et al.: Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell (1991) 65(2):293–304.
  • HENNECKE J, WILEY DC: T cell receptor-MHC interactions up close. Cell (2001) 104(1):1–4.
  • RIVOLTINI L, LOFTUS DJ, SQUARCINA P et al.: Recognition of melanoma-derived antigens by CTL: possible mechanisms involved in down-regulating anti-tumor T-cell reactivity. Crit. Rev. Immunol (1998) 18(1-2):55–63.
  • RIVOLTINI L, KAWAKAMI Y, SAKAGUCHI K et al: Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J. Immunol. (1995) 154(5):2257–2265.
  • LOFTUS DJ, CASTELLI C, CLAY TM et al.: Identification of epitope mimics recognized by CTL reactive to the melanoma/melanocyte-derived peptide MART-1(27-35) J. Exp. Med. (1996) 184(2):647–657.
  • DUTOIT V, RUBIO-GODOY V, PITTET MJ et al.: Degeneracy of antigen recognition as the molecular basis for the high frequency of naive A2/Melan-a peptide multimer(+) CD8(+) T cells in humans. J. Exp. Med. (2002) 196(2):207–216.
  • ZIPPELIUS A, PITTET MJ, BATARD P et al.: Thymic selection generates a large T cell pool recognizing a self-peptide in humans. J. Exp. Med. (2002) 195(4):485–494.
  • CARRABBA MG, CASTELLI C, MAEURER MJ et al.: Suboptimal activation of CD8(+) T cells by melanoma-derived altered peptide ligands: role of Melan-A/MART-1 optimized analogues. Cancer Res. (2003) 63(7):1560–1567.
  • RIVOLTINI L, SQUARCINA P, LOFTUS DJ et al.: A superagonist variant of peptide MART1/Melan-A27_35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res. (1999) 59(2):301–306.
  • SLANSKY JE, RATTIS FM, BOYD LF et al.: Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity (2000) 13(4):529–538.
  • VALMORI D, FONTENEAU JF, LIZANA CM et al.: Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. Immunol (1998) 160(4):1750–1758.
  • PARKHURST MR, SALGALLER ML, SOUTHWOOD S et al.: Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. Immunol (1996) 157(6):2539–2548.
  • TROJAN A, WITZENS M, SCHULTZE JL et al.: Generation of cytotoxic T lymphocytes against native and altered peptides of human leukocyte antigen-A*0201 restricted epitopes from the human epithelial cell adhesion molecule. Cancer Res. (2001) 61(12):4761–4765.
  • ZAREMBA S, BARZAGA E, ZHU M, SOARES N, TSANG KY, SCHLOM J: Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res. (1997) 57(20):4570–4577.
  • TANGRI S, ISHIOKA GY, HUANG X et al.: Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J. Exp. Med. (2001) 194(6):833–846.
  • SALAZAR E, ZAREMBA S, ARLEN PM, TSANG KY, SCHLOM J: Agonist peptide from a cytotoxic T-lymphocyte epitope of human carcinoembryonic antigen stimulates production of tcl-type cytokines and increases tyrosine phosphorylation more efficiently than cognate peptide. Int. J. Cancer (2000) 85(6):829–838.
  • MAPARA MY, SYKES M: Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J. Clin. Oncol (2004) 22(6):1136–1151.
  • TOSI D, VALENTI R, COVAA et ed.: Role of cross-talk between IFN-alpha-induced monocyte-derived dendritic cells and NK cells in priming CD8+ T cell responses against human tumor antigens. J. Immunol (2004) 172(9):5363–5370.
  • DE JONG EC, SMITS HH, KAPSENBERG ML: Dendritic cell-mediated T cell polarization. Springer Semin. Immunopathol (2005) 26(3):289–307.
  • SMITH CM, WILSON NS, WAITHMAN Jet al.: Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat. Immunol (2004) 5(11):1143–1148.
  • DO TH, JOHNSEN HE, KJAERSGAARD E, TAANING E, SVANE IM: Impaired circulating myeloid DCs from myeloma patients. Cytotherapy (2004) 6(3):196–203.
  • JAS K, TABARKIEWICZ J, JANKIEWICZ M, ROLINSKI J: Dendritic cells in peripheral blood of patients with breast and lung cancer-a pilot study. Folia Histochem. CytobioL (2004) 42(1):45–48.
  • VAKKILA J, THOMSON AW, VETTENRANTA K, SARIOLA H, SAARINEN-PIHKALA UM: Dendritic cell subsets in childhood and in children with cancer: relation to age and disease prognosis. Clin. Exp. Immunol. (2004) 135(3):455–461.
  • DELLA BELLA S, GENNARO M, VACCARI M et al.: Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br. J. Cancer (2003) 89(8):1463–1472.
  • CHAUX P, MOUTET M, FAIVRE J, MARTIN F, MARTIN M: Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab. Invest. (1996) 74(5):975–983.
  • STEINBRINK K, GRAULICH E, KUBSCH S, KNOP J, ENK AH: CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood (2002) 99(7):2468–2476.
  • CARBONE E, TERRAZZANO G, RUGGIERO G et al: Recognition of autologous dendritic cells by human NK cells. Eur. J. Immunol (1999) 29(12):4022–4029.
  • BROWN R, MURRAY k POPE B et al: Either interleukin-12 or interferon-gamma can correct the dendritic cell defect induced by transforming growth factor beta in patients with myeloma. Br. J. Haematol (2004) 125(6):743–748.
  • PEGUET-NAVARRO J, SPORTOUCH M, POPA I, BERTHIER O, SCHMITT D, PORTOUKALIAN J: Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. j Immunol. (2003) 170(7):3488–3894.
  • SHEN W, LADISCH S: Ganglioside GD la impedes lipopolysaccharide-induced maturation of human dendritic cells. Cell. Immunol. (2002) 220(2):125–133.
  • CHIEPPA M, BIANCHI G, DONI A et al.: Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J. Immunol. (2003) 171(9):4552–4560.
  • GOSSET P, BUREAU F, ANGELI V et ell.: Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J. Immunol. (2003) 170(10):4943–4952.
  • WHITESIDE TL, STANSON J, SHURIN MR, FERRONE S: Antigen-processing machinery in human dendritic cells: up-regulation by maturation and down-regulation by tumor cells./ Immunol. (2004) 173(3):1526–1534.
  • KUPPNER MC, GASTPAR R, GELWER S et al.: The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur. J. Immunol. (2001) 31(5):1602–1609.
  • MITANI H, KATAYAMA N, ARAKI H et al.: Activity of interleukin 6 in the differentiation of monocytes to macrophages and dendritic cells. Br. J. Haematol. (2000) 109(2):288–295.
  • MANTOVANI A, SOZZANI S, LOCATI M, ALLAVENA P, SICA A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. (2002) 23(10:549–555.
  • DINAPOLI MR, CALDERON CL, LOPEZ DM: The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J. Exp. Med. (1996) 183(4):1323–1329.
  • MANTOVANI A, BOTTAZZI B, COLOTTA F, SOZZANI S, RUCO L: The origin and function of tumor-associated macrophages. Immunol. Today (1992) 13(7):265–270.
  • BALKWILL F, MANTOVANI A: Inflammation and cancer: back to Virchow? Lancet (2001) 357(9255):539–545.
  • KONO K, SALAZAR-ONFRAY F, PETERSSON M et al.: Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur. j Immunol. (1996) 26(6):1308–1313.
  • HUBER V, FATS S, VALENTI R et al.: Human colon carcinoma cells release microvesicles bearing active FasL ans TRAIL and affecting tumor/immune interactions. Proceedings of the American Association of Cancer Research. Volume 45, March (2004).
  • JAGER E, JAGER D, KNUTH A: Antigen-specific immunotherapy and cancer vaccines. Int. J. Cancer (2003) 106(6):817–820.
  • SCHEIBENBOGEN C, SCHADENDORF D, BECHRAKIS NE et al.: Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides. Int. J. Cancer (2003) 104(2):188–194.
  • CERUNDOLO V HERMANS IF, SALIO M: Dendritic cells: a journey from laboratory to clinic. Nat. Immunol. (2004) 5(1):7–10.
  • FIGDOR CG, DE VRIES IJ, LESTERHUIS WJ, MELIEF CJ: Dendritic cell immunotherapy: mapping the way. Nat. Med. (2004) 10(5):475–480.
  • KLEIN C, BUELER H, MULLIGAN RC: Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J. Exp. Med. (2000) 191(10):1699–1708.
  • BRONTE V, WANG M, OVERWIJK WW et al.: Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+ /Gr-1+ cells. J. Immunol. (1998) 161(10):5313–5320.
  • BRONTE V, APOLLONI E, CABRELLE A et al.: Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood (2000) 96(12)0838–3846.
  • SERAFINI P, CARBLEY R, NOONAN KA, TAN G, BRONTE BORRELLO I: High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. (2004) 64(17):6337–6343.
  • SERAFINI P, DE SANTO C, MARIGO I et al.: Derangement of immune responses by myeloid suppressor cells. Cancer Immunol. Immunother. (2004) 53(2):64–72.
  • KUSMARTSEV S, CHENG F, YU B et al.: All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. (2003) 63(15):4441–4449.
  • MAZZONI A, BRONTE V, VISINTIN A et al.: Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. Immunol. (2002) 168(2):689–695.
  • MEDOT-PIRENNE M, HEILMAN MJ, SAXENA M, MCDERMOTT PE, MILLS CD: Augmentation of an antitumor CTL response In vivo by inhibition of suppressor macrophage nitric oxide. Immunol. (1999) 163(11):5877–5882.
  • LIU Y, VAN GINDERACHTER JA, BRYS L, DE BAETSELIER P, RAES G, GELDHOF AB: Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producingM2) myeloid cells. J. Immunol. (2003) 170(10):5064–5074.
  • BRONTE V SERAFINI P, DE SANTO C et al.: IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. Immunol. (2003) 170(1):270–278.
  • TERABE M, MATSUI S, NOBEN-TRAUTH N et al.: NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat. Immunol. (2000) 1(6):515–520.
  • TERABE M, MATSUI S, PARK JM et al.: Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD id-restrictedT cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J. Exp. Med. (2003) 198(10:1741–1752.
  • YANAGISAWA K, SEINO K, ISHIKAWAY, NOZUE M, TODOROKI T, FUKAO K: Impaired proliferative response of V alpha 24 NKT cells from cancer patients against 475 Expert Opin. Biol. Ther (2005) 5(4) alpha-galactosylceramide. j Immunol (2002) 168(12):6494–6499.
  • TERABE M, BERZOFSKY JA: Immunoregulatory T cells in tumor immunity. Cuff. Opin. Immunol. (2004) 16(2):157–162.
  • GARRITY T, PANDIT R, WRIGHT MA, BENEFIELD J, KENT S, YOUNG MR: Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int. J. Cancer (1997) 73(5):663–669.
  • ALMAND B, CLARK JI, NIKITINA E et al.: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. (2001) 166(1):678–689.
  • JONULEIT H, SCHMITT E, STASSEN M, TUETTENBERG A, KNOP J, ENK AH: Identification and functional characterization of human CD4*CD25* T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. (2001) 193:1285–1294.
  • DIECKMANN D, PLOTTNER H, BERCHTOLD S, BERGER T, SCHULER G: Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood./ Exp. Med. (2001) 193:1303–1310.
  • RONCAROLO MG, LEVINGS MK: The role of different subsets of T regulatory cells in controlling autoimmunity. Curr. Opin. Immunol (2000) 12:676–683.
  • BLUESTONE JA, ABBAS AK: Natural versus adaptive regulatory T cells. Nat. Rev. Immunol (2003) 3(3):253–257.
  • WOOD KJ, SAKAGUCHI S: Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol (2003) 3:199–210.
  • HUANG CT, WORKMAN CJ, FLIES D et al.: Role of LAG-3 in regulatory T cells. Immunity (2004) 21(4):503–513.
  • WORKMAN CJ, VIGNALI DA: Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). Immunol (2005) 174(2):688–695.
  • TRIEBEL F: LAG-3: a regulator of T-cell and DC responses and its use in therapeutic vaccination. Trends Immunol. (2003) 24:619–622.
  • SHIMIZU J, YAMAZAKI S, SAKAGUCHI S.Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. (1999) 163(10):5211–5218.
  • GOLGHER D, JONES E, POWRIE F, ELLIOTT T, GALLIMORE A: Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur. j Immunol (2002) 32(11):3267–3275.
  • SUTMULLER RP, VAN DUIVENVOORDE LM, VAN ELSAS A et al.: Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. (2001) 194:823–832.
  • TURK MJ, GUEVARA-PATINO JA, RIZZUTO GA, ENGELHORN ME, SAKAGUCHI S, HOUGHTON AN: Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J. Exp. Med. (2004) 200:771–782.
  • JONES E, DAHM-VICKER M, SIMON AK et al.: Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun. (2002) 2:1.
  • LIYANAGE UK, MOORE TT, J00 HG et al.: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. (2002) 169:2756–2761.
  • WOO EY, YEH H, CHU CS et al.: Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J. Immunol. (2002) 168:4272–4276.
  • WANG HY, LEE DA, PENG G et al.: Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity (2004) 20(1):107–118.
  • DUDLEY ME, WUNDERLICH JR, ROBBINS PF et al.: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science (2002) 298:850–854.
  • HODI FS, MIHM MC, SOIFFER RJ et al.: Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA (2003) 100:4712–4717.
  • PHAN GQ, YANG JC, SHERRY RM et al.: Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA (2003) 100:8372–8377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.