59
Views
13
CrossRef citations to date
0
Altmetric
Review

DNA vaccines coding for heat-shock proteins (HSPs): tools for the activation of HSP-specific regulatory T cells

&
Pages 545-554 | Published online: 22 Apr 2005

Bibliography

  • WAUBEN MHM, WAGENAAR-HILBERS JPA, VAN EDEN W: Adjuvant arthritis. In: Autoimmune Disease Models. Cohen IR, Miller A (Eds), Academic Press, Inc., California, USA (1994).
  • WINFIELD JB: Stress proteins, arthritis, and autoimmunity. Arthritis Rheum. (1989) 32(12):1497–1504.
  • ANDERTON SM, VAN DER ZEE R, NOORDZIJ A et al.: Differential mycobacterial 65-kDa heat shock protein T cell epitope recognition after adjuvant arthritis-inducing or protective immunization protocols./ immune/. (1994) 152(7):3656–3664.
  • QUINTANA FJ, CARMI P, MOR F et al.: Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum. (2004) 50(10:3712–3720.
  • ••The discovery of cross-regulation betweenHSP60, HSP70 and HSP90.
  • QUINTANA FJ, CARMI P, MOR F et al: DNA fragments of the human 60-kDa heat shock protein (HSP60) vaccinate against adjuvant arthritis: identification of a regulatory HSP60 peptide. J. Immunol. (2003) 171(7):3533–3541.
  • QUINTANA FJ, CARMI P, MOR F et al.: Inhibition of adjuvant arthritis by a DNA vaccine encoding human heat shock protein 60.1 Immunol (2002) 169(6):3422–3428.
  • MIMRAN A, MOR F, CARMI P et ell.: DNA vaccination with the IL-2 receptor a-chain gene (CD25) protects Lewis rats from adjuvant arthritis and induces an anti-ergotypic response. J. Clin. Invest. (2004) 113:924–932.
  • TANAKA S, KIMURA Y, MITANI A et ell.: Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J. Immunol (1999) 163(10):5560–5565.
  • VAN EDEN W, THOLE JE, VAN DER ZEE R et al.: Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature (1988) 331(6152):171–173.
  • •The original discovery relating AA to HSPs.
  • HOLOSHITZ J, MATITIAU A. COHEN IR: Arthritis induced in rats by cloned T lymphocytes responsive to mycobacteria but not to collagen type II. Clin. Invest. (1984) 73(1):211–215.
  • VAN EDEN W, HOLOSHITZ J, NEVO Z et al.: Arthritis induced by a T-lymphocyte clone that responds to Mycobacterium tuberculosis and to cartilage proteoglycans. Proc. Natl. Acad. Sci. USA (1985) 82(15):5117–5120.
  • HOGERVORST EJ, SCHOULS L, WAGENAAR JP et al.: Modulation of experimental autoimmunity: treatment of adjuvant arthritis by immunization with a recombinant vaccinia virus. Infect. Immun. (1991) 59(6):2029–2035.
  • HAQUE MA, YOSHINO S, INADA S et al.: Suppression of adjuvant arthritis in rats by induction of oral tolerance to mycobacterial 65-kDa heat shock protein. Eur. J. Immunol (1996) 26(11):2650–2656.
  • VAN EDEN W, WENDLING U, PAUL L et al.: Arthritis protective regulatory potential of self-heat shock protein cross-reactive T cells. Cell Stress Chaperones (2000) 5(5):452–457.
  • PAUL AG, VAN KOOTEN PJ, VAN EDEN Wet al.: Highly autoproliferative T cells specific for 60-kDa heat shock protein produce IL-4/IL-10 and IFN-gamma and are protective in adjuvant arthritis. J. Immunol (2000) 165(12):7270–7277.
  • DE KLEER IM, KAMPHUIS SM, RIJKERS GT et al.: The spontaneous remission of juvenile idiopathic arthritis is characterized by CD30+ T cells directed to human heat-shock protein 60 capable of producing the regulatory cytokine interleukin-10. Arthritis Rheum. (2003) 48(7):2001–2010.
  • DE KLEER IM, WEDDERBURN LR, TAAMS LS et al.: CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol (2004) 172(10):6435–6443.
  • MACHT LM, ELSON CJ, KIRWAN JR et al.: Relationship between disease severity and responses by blood mononuclear cells from patients with rheumatoid arthritis to human heat-shock protein 60. Immunology (2000) 99(2):208–214.
  • PRAKKEN AB, VAN EDEN W, RIJKERS GT et al.: Autoreactivity to human heat-shock protein 60 predicts disease remission in oligoarticular juvenile rheumatoid arthritis. Arthritis Rheum. (1996) 39(11):1826–1832.
  • DE GRAEFF-MEEDER ER, VAN EDEN W, RIJKERS GT et al.: Juvenile chronic arthritis: T cell reactivity to human HSP60 in patients with a favorable course of arthritis. J. Clin. Invest. (1995) 95(3):934–940.
  • CORRIGALL VM, BODMAN-SMITH MD, FIFE MS et al.: The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. Immunol (2001) 166(3):1492–1498.
  • WENDLING U, PAUL L, VAN DER ZEE R et al.: A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. Immunol (2000) 164(5):2711–2717.
  • KINGSTON AE, HICKS CA, COLSTON MJ et al.: A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin. Exp. Immunol (1996) 103(1):77–82.
  • RAGNO S, WINROW V11, MASCAGNI P et al.: A synthetic 10-kD heat shock protein (hsp10) from Mycobacterium tuberculosis modulates adjuvant arthritis. Clin. Exp. Immunol (1996) 103(3):384–390.
  • PRAKKEN BJ, WENDLING U, VAN DER ZEE R et al.: Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins. J. Immunol (2001) 167(8):4147–4153.
  • GURUNATHAN S, KLINMAN DM, SEDER RA: DNA vaccines: immunology, application, and optimization*. Annu. Rev. Immunol (2000) 18:927–974.
  • STAN AC, CASARES S, BRUMEANU TD et al.: CpG motifs of DNA vaccines induce the expression of chemokines and MHC class II molecules on myocytes. Eur. J. Immunol (2001) 31(1): 301–310.
  • AKBARI O, PANJWANI N, GARCIA S et al.: DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J. Exp. Med. (1999) 189(1):169–178.
  • TRIPATHY SK, SVENSSON EC, BLACK HB et al.: Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc. Natl Acad. Sci. USA (1996) 93(20):10876–10880.
  • CHASTAIN M, SIMON AJ, SOPER KA et al.: Antigen levels and antibody titers after DNA vaccination. J. Pharm. Sci. (2001) 90(4):474–484.
  • SAT P, RIVEREAU AS: Prevention of diabetes in the nonobese diabetic mouse by oral immunological treatments. Comparative efficiency of human insulin and two bacterial antigens, lipopolysacharide from Escherichia coli and glycoprotein extract from Idebsiella pneumoniae. Diabetes Metab. (1996) 22(5):341–348.
  • SERREZE DV HAMAGUCHI K, LETTER EH: Immunostimulation circumvents diabetes in NOD/Lt mice. Autoimmun. (1989) 2(6):759–776.
  • TIAN J, ZEKZER D, HANSSEN L et ell.: Lipopolysaccharide-activated B cells down-regulate Thl immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol (2001) 167(2):1081–1089.
  • MCCLUSKIE MJ, WEERATNA RD, DAVIS HL: The role of CpG in DNA vaccines. Springer Semin. Immunopathol (2000) 22(1-2):125–132.
  • KRIEG AM: CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immund. (2002) 20:709–760.
  • HEMMI H, TAKEUCHI O, KAWAI T et al.: A Toll-like receptor recognizes bacterial DNA. Nature (2000) 408(6813):740–745.
  • SATO Y, ROMAN M, TIGHE H et al.: Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science (1996) 273(5273):352–354.
  • TSUNODA I, TOLLEY ND, THEIL DJ et al.: Exacerbation of viral and autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol (1999) 9(3):481–493.
  • RAGNO S, COLSTON MJ, LOWRIE DB et al.: Protection of rats from adjuvant arthritis by immunization with naked DNA encoding for mycobacterial heat shock protein 65. Arthritis Rheum. (1997) 40(2):277–283.
  • LOPEZ-GUERRERO JA, LOPEZ-BOTE JP, ORTIZ MA et al.: Modulation of adjuvant arthritis in Lewis rats by recombinant vaccinia virus expressing the human 60-kilodalton heat shock protein. Infect. Immun. (1993) 61(10):4225–4231.
  • LOPEZ-GUERRERO JA, ORTIZ MA, PAEZ E et al.: Therapeutic effect of recombinant vaccinia virus expressing the 60-kd heat-shock protein on adjuvant arthritis. Arthritis Rheum. (1994) 37(10):1462–1467.
  • ANDERTON SM, VAN DER ZEE R, PRAKKEN B et al.: Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. J. Exp. Med. (1995) 181(3):943–952.
  • BOCKOVA J, ELIAS D, COHEN IR: Treatment of NOD diabetes with a novel peptide of the hsp60 molecule induces Th2-type antibodies./ Autoimmun. (1997) 10(4):323–329.
  • ELIAS D, MARKOVITS D, RESHEF T et al.: Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc. NatL Acad. Sci. USA (1990) 87(4):1576–1580.
  • ELIAS D, RESHEF T, BIRK OS et aL: Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc. NatL Acad. Sci. USA (1991) 88(8):3088–3091.
  • MOUDGIL KD, KIM E, YUN OJ et aL: Environmental modulation of autoimmune arthritis involves the spontaneous microbial induction of T cell responses to regulatory determinants within heat shock protein 65. Immunol. (2001) 166(6):4237–4243.
  • MOUDGIL KD, CHANG TT, ERADAT H et al.: Diversification of T cell responses to carboxy-terminal determinants within the 65-kD heat-shock protein is involved in regulation of autoimmune arthritis. J. Exp. Med. (1997) 185(7):1307–1316.
  • BLASS S, UNION A, RAYMACKERS J et al.: The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. (2001) 44(4):761–771.
  • MOUDGIL KD: Diversification of response to hsp65 during the course of autoimmune arthritis is regulatory rather than pathogenic. Immunol. Rev. (1998) 164:175–184.
  • QUINTANA FJ, CARMI P, MOR F et aL: Network cross-reactivity: DNA vaccination with HSP70 or HSP90 modulates immunity to HSP60 and inhibits adjuvant arthritis. 12th International Congress of Immunology and 4th Annual Conference of FOCIS. Medimond S.R.L., Montreal, Canada (2004).
  • BEG AA: Endogenous ligands of Toll-likereceptors: implications for regulating inflammatory and immune responses. Trends Immunol. (2002) 23(11):509–512.
  • HARTL FU, HAYER-HARTL M: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science (2002) 295(5561):1852–1858.
  • BECKER T, HARTL FU, WIELAND F: CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J. Cell Biol. (2002) 158(7):1277–1285.
  • BLACHERE NE, LI Z, CHANDAWARKAR RY et al.: Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med. (1997) 186(8):1315–1322.
  • MENORET A, PENG P, SRI VASTAVA PK: Association of peptides with heat shock protein gp96 occurs in vivo and not after cell lysis. Biochem. Biophys. Res. Commun. (1999) 262(3):813–818.
  • SENGUPTA D, NORRIS PJ, SUSCOVICH TJ et al.: Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. J. Immunol. (2004) 173(3):1987–1993.
  • VABULAS RM, WAGNER H, SCHILD H: Heat shock proteins as ligands of toll-like receptors. Curr. Top. MicrobioL Immunol. (2002) 270:169–184.
  • SOMERSAN S, LARSSON M, FONTENEAU JF et al.: Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J. Immunol. (2001) 167(9):4844–4852.
  • FENG H, ZENG Y, GRANER MW et aL: Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood (2002) 100(12):4108–4115.
  • PLANELLES L, THOMAS M, PULGAR M, MARANON C, GRABBE S, LOPEZ MC: Trypanosoma mai heat-shock protein-70 kDa, alone or fused to the parasite KMP11 antigen, induces functional maturation of murine dendritic cells. Immunol. Cell Biol. (2002) 80(3):241–247.
  • FLOHE SB, BRUGGEMANN J, LENDEMANS S et al.: Human heat shock protein 60 induces maturation of dendritic cells versus a Thl-promoting phenotype. J. Immunol. (2003) 170(5):2340–2348.
  • BETHKE K, STAIB F, DISTLER M et al.: Different efficiency of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of HSP60. Immunol. (2002) 169(11):6141–6148.
  • BASU S, BINDER RJ, SUTO R et al.: Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol. (2000) 12(11):1539–1546.
  • PANJWANI NN, POPOVA L, SRI VASTAVA PK: Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J. Immunol. (2002) 168(6):2997–3003.
  • VABULAS RM, AHMAD-NEJAD P, GHOSE S et al.: HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. (2002) 277(17):15107–15112.
  • OSTERLOH A, MEIER-STIEGEN F, VEIT A et al.: LPS-free heat shock protein 60 activates T cells. J. Biol. Chem. (2004) 279(46):47906–47911.
  • ZANIN-ZHOROV A. NUSSBAUM G, FRANITZA S et al.: T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J. (2003) 17(11):1567–1569.
  • RICO Al, GIRONES N, FRESNO M et aL: The heat shock proteins, Hsp70 and Hsp83, of Leishmania infantum are mitogens for mouse B cells. Cell Stress Chaperones (2002) 7(4):339–346.
  • BULUT Y, FAURE E, THOMAS Let aL: Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. (2002) 168(3):1435–1440.
  • BEIMNET K, SODERSTROM K, JINDAL S et aL: Induction of heat shock protein 60 expression in human monocytic cell lines infected with Mycobacterium leprae. Infect. Immun. (1996) 64(10):4356–4358.
  • SAITO K, KATSURAGI H, MIKAMI M et aL: Increase of heat-shock protein and induction of gamma/delta T cells in peritoneal exudate of mice after injection of live Fusobacterium nucleatum. Immunology (1997) 90(2):229–235.
  • WAINBERG Z, OLIVEIRA M, LERNER S et aL: Modulation of stress protein (hsp27 and hsp70) expression in
  • •• CD4+ lymphocytic cells following acute infection with human immunodeficiency virus type-1. Virology (1997) 233(2):364–373.
  • KUMARAGURU U, PACK CD, ROUSE BT: Toll-like receptor ligand links innate and adaptive immune responses by the production of heat-shock proteins. J. Leukoc. Biol. (2003) 73(5):574–583.
  • BOOG CJ, DE GRAEFF-MEEDER ER, LUCASSEN MA et al: Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. J. E. Med. (1992) 175(6):1805–1810.
  • TESHIMA S, ROKUTAN K, TAKAHASHI M et al.: Induction of heat shock proteins and their possible roles in macrophages during activation by macrophage colony-stimulating factor. Biochem. J. (1996) 315(Pt 2):497–504.
  • FERRIS DK, HAREL-BELLAN A, MORIMOTO RI et al: Mitogen and lymphokine stimulation of heat shock proteins in T lymphocytes. Proc. Nail. Acad. Sci. USA (1988) 85(11):3850–3854.
  • VABULAS RM, AHMAD-NEJAD P, DA COSTA C et al: Endocytosed HSP6Os use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. (2001) 276(33):31332–31339.
  • KOL A, LICHTMAN AH, FINBERG RW et al.: Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J. Immunol. (2000) 164(1):13–17.
  • BASU S, BINDER RJ, RAMALINGAM T et al.: CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity (2001) 14(3):303–313.
  • VABULAS RM, BRAEDEL S, HILF N et al: The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J. Biol. Chem. (2002) 277(23):20847–20853.
  • CARAMALHO I, LOPES-CARAVALHO T, OSTLER D et al: Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. (2003) 197(4):403–411.
  • QUINTANA FJ, CARMI P, COHEN IR: DNA vaccination with heat shock protein 60 inhibits cyclophosphamide-accelerated diabetes. J. immuna. (2002) 169(10):6030–6035.
  • KAUFMANN SH: Immunity to intracellular bacteria. Annu. Rev. Immunol (1993) 11:129–163.
  • WEINER HL, FRIEDMAN A, MILLER Aet al: Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol (1994) 12:809–837.
  • CHANDAWARKAR RY, WAGH MS, SRI VASTAVA PK: The dual nature of specific immunological activity of tumor-derived gp96 preparations. J. Exp. Med. (1999) 189(9):1437–1442.
  • GALAZKA G, WALCZAK A, BERKOWICZ T et al: Effect of Hsp70-peptide complexes generated in vivo on modulation EAE. Adv. Exp. Med. Biol. (2001) 495:227–230.
  • CHANDAWARKAR RY, WAGH MS, KOVALCHIN JT et al.: Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int. Immunol (2004) 16(4):615–624.
  • MOR F, REIZIS B, COHEN IR et al: IL-2 and TNF receptors as targets of regulatory T-T interactions: isolation and characterization of cytokine receptor-reactive T cell lines in the Lewis rat. Immunol (1996) 157(11):4855–4861.
  • LOHSE AW, MOR F, KARIN N et ed.: Control of experimental autoimmune encephalomyelitis by T cells responding to activated T cells. Science (1989) 244(4906):820–822.
  • COHEN IR, QUINTANA FJ, MIMRAN A: Tregs in T cell vaccination: exploring the regulation of regulation. Clin. Invest. (2004) 114(9):1227–1232.
  • RAZ I, ELIAS D, AVRON A et al.: Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, Phase II trial. Lancet (2001) 358(9295):1749–1753.
  • COHEN IR: TendingAdam's Garden: Evolving the Cognitive Immune Self Academic Press. London, UK (2000).
  • QUINTANA FJ, HAGEDORN PH, ELIZUR G et al.: Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc. Natl Acad. Sci. USA (2004) 101\(Suppl. 2):14615–14621.
  • ••IgG antibodies to HSP60 peptides are prominent elements in natural resistance to type 1 diabetes induced in mice.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.