100
Views
15
CrossRef citations to date
0
Altmetric
Review

Selective delivery of therapeutic agents for the diagnosis and treatment of cancer

&
Pages 39-54 | Published online: 22 Dec 2005

Bibliography

  • KIRSNER KM: Cancer: new therapies and new approaches to recurring problems. AANA J. (2003) 71(1):55-62.
  • EGGERMONT AM, BRUNSTEIN F, GRUNHAGEN D, TEN HAGEN TL: Regional treatment of metastasis: role of regional perfusion. State of the art isolated limb perfusion for limb salvage. Ann. Oncol. (2004) 15(Suppl. 4):107-112.
  • ALLEN TM: Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer (2002) 2(10):750-763.
  • PEGRAM MD, PIETRAS R, BAJAMONDE A, KLEIN P, FYFE G: Targeted therapy: wave of the future. J. Clin. Oncol. (2005) 23(8):1776-1781.
  • ROSKOSKI R JR: The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem. Biophys. Res. Commun. (2004) 319(1):1-11.
  • KIM CK, LIM SJ: Recent progress in drug delivery systems for anticancer agents. Arch. Pharm. Res. (2002) 25(3):229-239.
  • FERRARI M: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer (2005) 5(3):161-171.
  • GAO X, CUI Y, LEVENSON RM, CHUNG LW, NIE S: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. (2004) 22(8):969-976.
  • SENGUPTA S, EAVARONE D, CAPILA I et al.: Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature (2005) 436(7050):568-572.
  • DEARDEN C: Monoclonal antibody therapy of haematological malignancies. BioDrugs (2002) 16(4):283-301.
  • FLYNN AA, PEDLEY RB, GREEN AJ et al.: Antibody and radionuclide characteristics and the enhancement of the effectiveness of radioimmunotherapy by selective dose delivery to radiosensitive areas of tumour. Int. J. Radiat. Biol. (2002) 78(5):407-415.
  • MACDONALD GC, GLOVER N: Effective tumor targeting: strategies for the delivery of Armed Antibodies. Curr. Opin. Drug Disc. Dev. (2005) 8(2):177-183.
  • MARKS AJ, COOPER MS, ANDERSON RJ et al.: Selective apoptotic killing of malignant hemopoietic cells by antibody-targeted delivery of an amphipathic peptide. Cancer Res. (2005) 65(6):2373-2377.
  • DAMLE NK: Tumour-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin. Biol. Ther. (2004) 4(9):1445-1452.
  • BODEY B: Genetically engineered antibodies for direct antineoplastic treatment and systematic delivery of various therapeutic agents to cancer cells. Expert Opin. Biol. Ther. (2001) 1(4):603-617.
  • EBBINGHAUS C, RONCA R, KASPAR M et al.: Engineered vascular-targeting antibody-interferon-gamma fusion protein for cancer therapy. Int. J. Cancer (2005) 116(2):304-313.
  • CHESTER K, PEDLEY B, TOLNER B et al.: Engineering antibodies for clinical applications in cancer. Tumour Biol. (2004) 25(1-2):91-98.
  • LI KC, GUCCIONE S, BEDNARSKI MD: Combined vascular targeted imaging and therapy: a paradigm for personalized treatment. J. Cell. Biochem. Suppl. (2002) 39:65-71.
  • GUCCIONE S, LI KC, BEDNARSKI MD: Molecular imaging and therapy directed at the neovasculature in pathologies. How imaging can be incorporated into vascular-targeted delivery systems to generate active therapeutic agents. IEEE Eng. Med. Biol. Mag. (2004) 23(5):50-56.
  • SHAHBAZI-GAHROUEI D, WILLIAMS M, RIZVI S, ALLEN BJ: In vivo studies of Gd-DTPA-monoclonal antibody and gd-porphyrins: potential magnetic resonance imaging contrast agents for melanoma. J. Magn. Reson. Imaging (2001) 14(2):169-174.
  • CHANG CH, SHARKEY RM, ROSSI EA et al.: Molecular advances in pretargeting radioimunotherapy with bispecific antibodies. Mol. Cancer Ther. (2002) 1(7):553-563.
  • SANTIMARIA M, MOSCATELLI G, VIALE GL et al.: Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res. (2003) 9(2):571-579.
  • LOO C, LOWERY A, HALAS N, WEST J, DREZEK R: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. (2005) 5(4):709-711.
  • GOLDENBERG DM: Targeted therapy of cancer with radiolabeled antibodies. J. Nucl. Med. (2002) 43(5):693-713.
  • QU Z, GRIFFITHS GL, WEGENER WA et al.: Development of humanized antibodies as cancer therapeutics. Methods (2005) 36(1):84-95.
  • NIV R, COHEN CJ, DENKBERG G, SEGAL D, REITER Y: Antibody engineering for targeted therapy of cancer: recombinant Fv-immunotoxins. Curr. Pharm. Biotechnol. (2001) 2(1):19-46.
  • SUZUKI M, TAKAYANAGI A, SHIMIZU N: Targeted gene delivery using humanized single-chain antibody with negatively charged oligopeptide tail. Cancer Sci. (2004) 95(5):424-429.
  • CHESTER KA, BHATIA J, BOXER G et al.: Clinical applications of phage-derived sFvs and sFv fusion proteins. Dis. Markers (2000) 16(1-2):53-62.
  • AZZAZY HM, HIGHSMITH WE JR: Phage display technology: clinical applications and recent innovations. Clin. Biochem. (2002) 35(6):425-445.
  • HOOGENBOOM HR: Overview of antibody phage-display technology and its applications. Methods Mol. Biol. (2002) 178:1-37.
  • AINA OH, SROKA TC, CHEN ML, LAM KS: Therapeutic cancer targeting peptides. Biopolymers (2002) 66(3):184-199.
  • JANIN YL: Peptides with anticancer use or potential. Amino Acids (2003) 25(1):1-40.
  • BORGHOUTS C, KUNZ C, GRONER B: Peptide aptamers: recent developments for cancer therapy. Expert Opin. Biol. Ther. (2005) 5(6):783-797.
  • ROMANOV VI: Phage display selection and evaluation of cancer drug targets. Curr. Cancer Drug Targets (2003) 3(2):119-129.
  • NILSSON F, TARLI L, VITI F, NERI D: The use of phage display for the development of tumour targeting agents. Adv. Drug Deliv. Rev. (2000) 43(2-3):165-196.
  • SHUKLA GS, KRAG DN: Phage display selection for cell-specific ligands: development of a screening procedure suitable for small tumor specimens. J. Drug Target. (2005) 13(1):7-18.
  • SHUKLA GS, KRAG DN: Selection of tumor-targeting agents on freshly excised human breast tumors using a phage display library. Oncol. Rep. (2005) 13(4):757-764.
  • PASQUALINI R, RUOSLAHTI E: Organ targeting in vivo using phage display peptide libraries. Nature (1996) 380(6572):364-366.
  • CHEN X, PLASENCIA C, HOU Y, NEAMATI N: Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J. Med. Chem. (2005) 48(4):1098-1106.
  • MOFFATT S, WIEHLE S, CRISTIANO RJ: Tumor-specific gene delivery mediated by a novel peptide-polyethylenimine-DNA polyplex targeting aminopeptidase N/CD13. Hum. Gene Ther. (2005) 16(1):57-67.
  • KOLONIN M, PASQUALINI R, ARAP W: Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. (2001) 5(3):308-313.
  • GOODWIN DA, MEARES CF: Pretargeted peptide imaging and therapy. Cancer Biother. Radiopharm. (1999) 14(3):145-152.
  • BUCHSBAUM DJ: Imaging and therapy of tumors induced to express somatostatin receptor by gene transfer using radiolabeled peptides and single chain antibody constructs. Semin. Nucl. Med. (2004) 34(1):32-46.
  • AKERMAN ME, CHAN WC, LAAKKONEN P, BHATIA SN, RUOSLAHTI E: Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA (2002) 99(20):12617-12621.
  • BUCHSBAUM DJ, CHAUDHURI TR, YAMAMOTO M, ZINN KR: Gene expression imaging with radiolabeled peptides. Ann. Nucl. Med. (2004) 18(4):275-283.
  • TIAN X, ARUVA MR, QIN W et al.: Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [99mTc]peptide-peptide nucleic acid-peptide chimera. Bioconjug. Chem. (2005) 16(1):70-79.
  • FAROKHZAD OC, JON S, KHADEMHOSSEINI A, TRAN TN, LAVAN DA, LANGER R: Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. (2004) 64(21):7668-7672.
  • NIMJEE SM, RUSCONI CP, SULLENGER BA: Aptamers: an emerging class of therapeutics. Annu. Rev. Med. (2005) 56:555-583.
  • CERCHIA L, HAMM J, LIBRI D, TAVITIAN B, DE FRANCISCIS V: Nucleic acid aptamers in cancer medicine. FEBS Lett. (2002) 528(1-3):12-16.
  • BLANK M, WEINSCHENK T, PRIEMER M, SCHLUESENER H: Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. (2001) 276(19):16464-16468.
  • SURUGIU-WARNMARK I, WARNMARK A, TORESSON G, GUSTAFSSON JA, BULOW L: Selection of DNA aptamers against rat liver X receptors. Biochem. Biophys. Res. Commun. (2005) 332(2):512-517.
  • ELLINGTON AD, SZOSTAK JW: Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature (1992) 355(6363):850-852.
  • SCHMIDT KS, BORKOWSKI S, KURRECK J et al.: Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res. (2004) 32(19):5757-5765.
  • BOISGARD R, KUHNAST B, VONHOFF S et al.: In vivo biodistribution and pharmacokinetics of 18F-labelled Spiegelmers: a new class of oligonucleotidic radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging (2005) 32(4):470-477.
  • FITZSIMMONS SA, WORKMAN P, GREVER M, PAULL K, CAMALIER R, LEWIS AD: Reductase enzyme expression across the National Cancer Institute Tumor cell line panel: correlation with sensitivity to mitomycin C and EO9. J. Natl. Cancer Inst. (1996) 88(5):259-269.
  • DIRIX LY, TONNESEN F, CASSIDY J et al.: EO9 Phase II study in advanced breast, gastric, pancreatic and colorectal carcinoma by the EORTC Early Clinical Studies Group. Eur. J. Cancer (1996) 32A(11):2019-2022.
  • PAVLIDIS N, HANAUSKE AR, GAMUCCI T et al.: A randomized Phase II study with two schedules of the novel indoloquinone EO9 in non-small-cell lung cancer: a study of the EORTC Early Clinical Studies Group (ECSG). Ann. Oncol. (1996) 7(5):529-531.
  • CUMMINGS J, SPANSWICK VJ, GARDINER J, RITCHIE A, SMYTH JF: Pharmacological and biochemical determinants of the antitumour activity of the indoloquinone EO9. Biochem. Pharmacol. (1998) 55(3):253-260.
  • DEFEO-JONES D, GARSKY VM, WONG BK et al.: A peptide-doxorubicin ‘prodrug’ activated by prostate-specific antigen selectively kills prostate tumor cells positive for prostate-specific antigen in vivo. Nat. Med. (2000) 6(11):1248-1252.
  • DIPAOLA RS, RINEHART J, NEMUNAITIS J et al.: Characterization of a novel prostate-specific antigen-activated peptide-doxorubicin conjugate in patients with prostate cancer. J. Clin. Oncol. (2002) 20(7):1874-1879.
  • BROWN JM: The hypoxic cell: a target for selective cancer therapy-eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res. (1999) 59(23):5863-5870.
  • HARRIS AL: Hypoxia-a key regulatory factor in tumour growth. Nat. Rev. Cancer (2002) 2(1):38-47.
  • GATINEAU M, RIXE O, CHEVALIER TL: Tirapazamine with cisplatin and vinorelbine in patients with advanced non-small-cell lung cancer: a Phase I/II study. Clin. Lung Cancer (2005) 6(5):293-298.
  • COWEN RL, WILLIAMS KJ, CHINJE EC et al.: Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: reversing tumor radioresistance and effecting cure. Cancer Res. (2004) 64(4):1396-1402.
  • JOHNSON CA, KILPATRICK D, VON ROEMELING R et al.: Phase I trial of tirapazamine in combination with cisplatin in a single dose every 3 weeks in patients with solid tumors. J. Clin. Oncol. (1997) 15(2):773-780.
  • RISCHIN D, PETERS L, HICKS R et al.: Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J. Clin. Oncol. (2001) 19(2):535-542.
  • PATTERSON LH: Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy. Drug Metab. Rev. (2002) 34(3):581-592.
  • PATTERSON LH, MCKEOWN SR, RUPARELIA K et al.: Enhancement of chemotherapy and radiotherapy of murine tumours by AQ4N, a bioreductively activated anti-tumour agent. Br. J. Cancer (2000) 82(12):1984-1990.
  • FRIERY OP, GALLAGHER R, MURRAY MM et al.: Enhancement of the anti-tumour effect of cyclophosphamide by the bioreductive drugs AQ4N and tirapazamine. Br. J. Cancer (2000) 82(8):1469-1473.
  • HAFFTY BG, SON YH, WILSON LD et al.: Bioreductive alkylating agent porfiromycin in combination with radiation therapy for the management of squamous cell carcinoma of the head and neck. Radiat. Oncol. Invest. (1997) 5(5):235-245.
  • BLOWER PJ, DILWORTH JR, MAURER RI, MULLEN GD, REYNOLDS CA, ZHENG Y: Towards new transition metal-based hypoxic selective agents for therapy and imaging. J. Inorg. Biochem. (2001) 85(1):15-22.
  • RAJENDRAN JG, KROHN KA: Imaging hypoxia and angiogenesis in tumors. Radiol. Clin. North Am. (2005) 43(1):169-187.
  • BAGSHAWE KD, SHARMA SK, BEGENT RH: Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Expert Opin. Biol. Ther. (2004) 4(11):1777-1789.
  • VRUDHULA VM, SVENSSON HP, KENNEDY KA, SENTER PD, WALLACE PM: Antitumor activities of a cephalosporin prodrug in combination with monoclonal antibody-beta-lactamase conjugates. Bioconjug. Chem. (1993) 4(5):334-340.
  • RODRIGUES ML, PRESTA LG, KOTTS CE et al.: Development of a humanized disulfide-stabilized anti-p185HER2 Fv-beta-lactamase fusion protein for activation of a cephalosporin doxorubicin prodrug. Cancer Res. (1995) 55(1):63-70.
  • KERR DE, SCHREIBER GJ, VRUDHULA VM et al.: Regressions and cures of melanoma xenografts following treatment with monoclonal antibody beta-lactamase conjugates in combination with anticancer prodrugs. Cancer Res. (1995) 55(16):3558-3563.
  • MEYER DL, LAW KL, PAYNE JK et al.: Site-specific prodrug activation by antibody-beta-lactamase conjugates: preclinical investigation of the efficacy and toxicity of doxorubicin delivered by antibody directed catalysis. Bioconjug. Chem. (1995) 6(4):440-446.
  • SVENSSON HP, FRANK IS, BERRY KK, SENTER PD: Therapeutic effects of monoclonal antibody-beta-lactamase conjugates in combination with a nitrogen mustard anticancer prodrug in models of human renal cell carcinoma. J. Med. Chem. (1998) 41(9):1507-1512.
  • SVENSSON HP, VRUDHULA VM, EMSWILER JE et al.: In vitro and in vivo activities of a doxorubicin prodrug in combination with monoclonal antibody beta-lactamase conjugates. Cancer Res. (1995) 55(11):2357-2365.
  • VRUDHULA VM, KERR DE, SIEMERS NO, DUBOWCHIK GM, SENTER PD: Cephalosporin prodrugs of paclitaxel for immunologically specific activation by L-49-sFv-beta-lactamase fusion protein. Bioorg. Med. Chem. Lett. (2003) 13(3):539-542.
  • WALLACE PM, MACMASTER JF, SMITH VF, KERR DE, SENTER PD, COSAND WL: Intratumoral generation of 5-fluorouracil mediated by an antibody-cytosine deaminase conjugate in combination with 5-fluorocytosine. Cancer Res. (1994) 54(10):2719-2723.
  • HOUBA PH, BOVEN E, ERKELENS CA et al.: The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts. Br. J. Cancer (1998) 78(12):1600-1606.
  • BIELA BH, KHAWLI LA, HU P, EPSTEIN AL: Chimeric TNT-3/human beta-glucuronidase fusion proteins for antibody-directed enzyme prodrug therapy (ADEPT). Cancer Biother. Radiopharm. (2003) 18(3):339-353.
  • HAISMA HJ, SERNEE MF, HOOIJBERG E et al.: Construction and characterization of a fusion protein of single-chain anti-CD20 antibody and human beta-glucuronidase for antibody-directed enzyme prodrug therapy. Blood (1998) 92(1):184-190.
  • DE GRAAF M, BOVEN E, OOSTERHOFF D et al.: A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug. Br. J. Cancer (2002) 86(5):811-818.
  • SMITH GK, BANKS S, BLUMENKOPF TA et al.: Toward antibody-directed enzyme prodrug therapy with the T268G mutant of human carboxypeptidase A1 and novel in vivo stable prodrugs of methotrexate. J. Biol. Chem. (1997) 272(25):15804-15816.
  • WALLACE PM, SENTER PD: In vitro and in vivo activities of monoclonal antibody-alkaline phosphatase conjugates in combination with phenol mustard phosphate. Bioconjug. Chem. (1991) 2(5):349-352.
  • SENTER PD, SAULNIER MG, SCHREIBER GJ et al.: Anti-tumor effects of antibody-alkaline phosphatase conjugates in combination with etoposide phosphate. Proc. Natl. Acad. Sci. USA (1988) 85(13):4842-4846.
  • SENTER PD, SCHREIBER GJ, HIRSCHBERG DL, ASHE SA, HELLSTROM KE, HELLSTROM I: Enhancement of the in vitro and in vivo antitumor activities of phosphorylated mitomycin C and etoposide derivatives by monoclonal antibody-alkaline phosphatase conjugates. Cancer Res. (1989) 49(21):5789-5792.
  • BAGSHAWE KD, SHARMA SK, SPRINGER CJ et al.: Antibody directed enzyme prodrug therapy (ADEPT): clinical report. Dis. Markers (1991) 9(3-4):233-238.
  • BAGSHAWE KD, SHARMA SK, SPRINGER CJ, ANTONIW P: Antibody-directed enzyme prodrug therapy: a pilot scale clinical trial. Tumor Targeting (1995) 1(1):17-29.
  • NAPIER MP, SHARMA SK, SPRINGER CJ et al.: Antibody-directed enzyme prodrug therapy: efficacy and mechanism of action in colorectal carcinoma. Clin. Cancer Res. (2000) 6(3):765-772.
  • MARTIN J, STRIBBLING SM, POON GK et al.: Antibody-directed enzyme prodrug therapy: pharmacokinetics and plasma levels of prodrug and drug in a Phase I clinical trial. Cancer Chemother. Pharmacol. (1997) 40(3):189-201.
  • FRANCIS RJ, SHARMA SK, SPRINGER C et al.: A Phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br. J. Cancer (2002) 87(6):600-607.
  • DENNY WA, WILSON WR: The design of selectively-activated anti-cancer prodrugs for use in antibody-directed and gene-directed enzyme-prodrug therapies. J. Pharm. Pharmacol. (1998) 50(4):387-394.
  • MASON DW, WILLIAMS AF: The kinetics of antibody binding to membrane antigens in solution and at the cell surface. Biochem. J. (1980) 187(1):1-20.
  • SHARMA SK, PEDLEY RB, BHATIA J et al.: Sustained tumor regression of human colorectal cancer xenografts using a multifunctional mannosylated fusion protein in antibody-directed enzyme prodrug therapy. Clin. Cancer Res. (2005) 11(2 Pt 1):814-825.
  • MAYER A, SHARMA SK, TOLNER B et al.: Modifying an immunogenic epitope on a therapeutic protein: a step towards an improved system for antibody-directed enzyme prodrug therapy (ADEPT). Br. J. Cancer (2004) 90(12):2402-2410.
  • BHATIA J, SHARMA SK, CHESTER KA et al.: Catalytic activity of an in vivo tumor targeted anti-CEA scFv::carboxypeptidase G2 fusion protein. Int. J. Cancer (2000) 85(4):571-577.
  • MICHAEL NP, CHESTER KA, MELTON RG et al.: In vitro and in vivo characterisation of a recombinant carboxypeptidase G2::anti-CEA scFv fusion protein. Immunotechnology (1996) 2(1):47-57.
  • WONG BK, DEFEO-JONES D, JONES RE et al.: PSA-specific and non-PSA-specific conversion of a PSA-targeted peptide conjugate of doxorubicin to its active metabolites. Drug Metab. Dispos. (2001) 29(3):313-318.
  • DACHS GU, TUPPER J, TOZER GM: From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer. Drugs (2005) 16(4):349-359.
  • XU G, MCLEOD HL: Strategies for enzyme/prodrug cancer therapy. Clin. Cancer Res. (2001) 7(11):3314-3324.
  • SHAND N, WEBER F, MARIANI L et al.: A Phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum. Gene Ther. (1999) 10(14):2325-2335.
  • HERMAN JR, ADLER HL, AGUILAR-CORDOVA E et al.: In situ gene therapy for adenocarcinoma of the prostate: a Phase I clinical trial. Hum. Gene Ther. (1999) 10(7):1239-1249.
  • SATOH T, TEH BS, TIMME TL et al.: Enhanced systemic T-cell activation after in situ gene therapy with radiotherapy in prostate cancer patients. Int. J. Radiat. Oncol. Biol. Phys. (2004) 59(2):562-571.
  • TEH BS, AYALA G, AGUILAR L et al.: Phase I-II trial evaluating combined intensity-modulated radiotherapy and in situ gene therapy with or without hormonal therapy in treatment of prostate cancer-interim report on PSA response and biopsy data. Int. J. Radiat. Oncol. Biol. Phys. (2004) 58(5):1520-1529.
  • STERMAN DH, TREAT J, LITZKY LA et al.: Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a Phase I clinical trial in malignant mesothelioma. Hum. Gene Ther. (1998) 9(7):1083-1092.
  • SHALEV M, KADMON D, TEH BS et al.: Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancer. J. Urol. (2000) 163(6):1747-1750.
  • RAINOV NG: A Phase III clinical evaluation of herpes simplex virus Type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. (2000) 11(17):2389-2401.
  • JACOBS A, VOGES J, RESZKA R et al.: Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet (2001) 358(9283):727-729.
  • LOHR M, HOFFMEYER A, KROGER J et al.: Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet (2001) 357(9268):1591-1592.
  • PALMER DH, MAUTNER V, MIRZA D et al.: Virus-directed enzyme prodrug therapy: intratumoral administration of a replication-deficient adenovirus encoding nitroreductase to patients with resectable liver cancer. J. Clin. Oncol. (2004) 22(9):1546-1552.
  • PANDHA HS, MARTIN LA, RIGG A et al.: Genetic prodrug activation therapy for breast cancer: a Phase I clinical trial of erbB-2-directed suicide gene expression. J. Clin. Oncol. (1999) 17(7):2180-2189.
  • JAIN KK: Use of bacteria as anticancer agents. Expert Opin. Biol. Ther. (2001) 1(2):291-300.
  • SOGHOMONYAN SA, DOUBROVIN M, PIKE J et al.: Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. (2005) 12(1):101-108.
  • KING I, BERMUDES D, LIN S et al.: Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum. Gene Ther. (2002) 13(10):1225-1233.
  • BERMUDES D, ZHENG LM, KING IC: Live bacteria as anticancer agents and tumor-selective protein delivery vectors. Curr. Opin. Drug Disc. Dev. (2002) 5(2):194-199.
  • TJUVAJEV J, BLASBERG R, LUO X, ZHENG LM, KING I, BERMUDES D: Salmonella-based tumor-targeted cancer therapy: tumor amplified protein expression therapy (TAPET) for diagnostic imaging. J. Control. Release (2001) 74(1-3):313-315.
  • BARNETT BG, CREWS CJ, DOUGLAS JT: Targeted adenoviral vectors. Biochim. Biophys. Acta (2002) 1575(1-3):1-14.
  • WEYEL D, SEDLACEK HH, MULLER R, BRUSSELBACH S: Secreted human beta-glucuronidase: a novel tool for gene-directed enzyme prodrug therapy. Gene Ther. (2000) 7(3):224-231.
  • HAMSTRA DA, LEE KC, TYCHEWICZ JM et al.: The use of 19F spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies. Mol. Ther. (2004) 10(5):916-928.
  • BROWN SB, BROWN EA, WALKER I: The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. (2004) 5(8):497-508.
  • SHARMAN WM, VAN LIER JE, ALLEN CM: Targeted photodynamic therapy via receptor mediated delivery systems. Adv. Drug Deliv. Rev. (2004) 56(1):53-76.
  • JICHLINSKI P, LEISINGER HJ: Photodynamic therapy in superficial bladder cancer: past, present and future. Urol. Res. (2001) 29(6):396-405.
  • BARR H, KENDALL C, STONE N: Photodynamic therapy for esophageal cancer: a useful and realistic option. Technol. Cancer Res. Treat. (2003) 2(1):65-76.
  • BARBER P, BARR H, GEORGE J, KRASNER N, MORRIS AI, SUTEDJA TG: Photodynamic therapy in the treatment of lung and oesophageal cancers. Clin. Oncol. (R. Coll. Radiol.) (2002) 14(2):110-116.
  • O’NEAL DP, HIRSCH LR, HALAS NJ, PAYNE JD, WEST JL: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. (2004) 209(2):171-176.
  • LOO C, LIN A, HIRSCH L et al.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. (2004) 3(1):33-40.
  • HAFELI UO: Magnetically modulated therapeutic systems. Int. J. Pharm. (2004) 277(1-2):19-24.
  • BABINCOVA M, LESZCZYNSKA D, SOURIVONG P, BABINEC P, LESZCZYNSKI J: Principles of magnetodynamic chemotherapy. Med. Hypotheses (2004) 62(3):375-377.
  • JORDAN A, SCHOLZ R, WUST P et al.: Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int. J. Hyperthermia (1997) 13(6):587-605.
  • JOHANNSEN M, THIESEN B, JORDAN A et al.: Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate (2005) 64(3):283-292.
  • MOROZ P, JONES SK, WINTER J, GRAY BN: Targeting liver tumors with hyperthermia: ferromagnetic embolization in a rabbit liver tumor model. J. Surg. Oncol. (2001) 78(1):22-29; discussion 30-21.
  • HILGER I, ANDRA W, HERGT R, HIERGEIST R, SCHUBERT H, KAISER WA: Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology (2001) 218(2):570-575.
  • LUBBE AS, BERGEMANN C, RIESS H et al.: Clinical experiences with magnetic drug targeting: a Phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. (1996) 56(20):4686-4693.
  • WILSON MW, KERLAN RK JR, FIDELMAN NA et al.: Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite-initial experience with four patients. Radiology (2004) 230(1):287-293.
  • HALLAHAN DE, MAUCERI HJ, SEUNG LP et al.: Spatial and temporal control of gene therapy using ionizing radiation. Nat. Med. (1995) 1(8):786-791.
  • HALLAHAN DE, GENG L, CMELAK AJ et al.: Targeting drug delivery to radiation-induced neoantigens in tumor microvasculature. J. Control. Release (2001) 74(1-3):183-191.
  • HALLAHAN D, GENG L, QU S et al.: Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell (2003) 3(1):63-74.
  • HALLAHAN DE, QU S, GENG L et al.: Radiation-mediated control of drug delivery. Am. J. Clin. Oncol. (2001) 24(5):473-480.
  • UNGER EC, PORTER T, CULP W, LABELL R, MATSUNAGA T, ZUTSHI R: Therapeutic applications of lipid-coated microbubbles. Adv. Drug Deliv. Rev. (2004) 56(9):1291-1314.
  • HAUFF P, SEEMANN S, RESZKA R et al.: Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. Radiology (2005) 236(2):572-578.
  • YUH EL, SHULMAN SG, MEHTA SA et al.: Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model. Radiology (2005) 234(2):431-437.
  • HOSAIN F, SPENCER RP, COUTHON HM, STURTZ GL: Targeted delivery of antineoplastic agent to bone: biodistribution studies of technetium-99m-labeled gem-bisphosphonate conjugate of methotrexate. J. Nucl. Med. (1996) 37(1):105-107.
  • HIRABAYASHI H, FUJISAKI J: Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents. Clin. Pharmacokinet. (2003) 42(15):1319-1330.
  • CHOURASIA MK, JAIN SK: Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci. (2003) 6(1):33-66.
  • ERION MD, VAN POELJE PD, MACKENNA DA et al.: Liver-targeted drug delivery using HepDirect prodrugs. J. Pharmacol. Exp. Ther. (2005) 312(2):554-560.
  • NERI D, BICKNELL R: Tumour vascular targeting. Nat. Rev. Cancer (2005) 5(6):436-446.
  • CHEN EX, SIU LL: Development of molecular targeted anticancer agents: successes, failures and future directions. Curr. Pharm. Des. (2005) 11(2):265-272.
  • LI KC, PANDIT SD, GUCCIONE S, BEDNARSKI MD: Molecular imaging applications in nanomedicine. Biomed. Microdevices (2004) 6(2):113-116.
  • NISHI Y: Enzyme/abzyme prodrug activation systems: potential use in clinical oncology. Curr. Pharm. Des. (2003) 9(26):2113-2130.
  • SHABAT D, LODE HN, PERTL U et al.: In vivo activity in a catalytic antibody-prodrug system: antibody catalyzed etoposide prodrug activation for selective chemotherapy. Proc. Natl. Acad. Sci. USA (2001) 98(13):7528-7533.
  • DESGRANGES C: [Monoclonal antibodies and therapeutics]. Pathol. Biol. (Paris) (2004) 52(6):351-364.
  • VATER A, KLUSSMANN S: Toward third-generation aptamers: Spiegelmers and their therapeutic prospects. Curr. Opin. Drug Disc. Dev. (2003) 6(2):253-261.
  • EULBERG D, KLUSSMANN S: Spiegelmers: biostable aptamers. Chembiochem (2003) 4(10):979-983.
  • REDDY JA, ALLAGADDA VM, LEAMON CP: Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr. Pharm. Biotechnol. (2005) 6(2):131-150.
  • SHUKER SB, HAJDUK PJ, MEADOWS RP, FESIK SW: Discovering high-affinity ligands for proteins: SAR by NMR. Science (1996) 274(5292):1531-1534.
  • ERLANSON DA, MCDOWELL RS, O’BRIEN T: Fragment-based drug discovery. J. Med. Chem. (2004) 47(14):3463-3482.
  • ERLANSON DA, WELLS JA, BRAISTED AC: Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. (2004) 33:199-223.
  • EDELSTEIN ML, ABEDI MR, WIXON J, EDELSTEIN RM: Gene therapy clinical trials worldwide 1989-2004-an overview. J. Gene Med. (2004) 6(6):597-602.

Website

  • http://www.wiley.co.uk/wileychi/genmed/clinical/ Gene Therapy Clinical Trials Worldwide, website provided by The Journal of Gene Medicine, updated July 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.