131
Views
8
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of adenovirus as a vaccine vector for chronic virus infections

&
Pages 63-72 | Published online: 22 Dec 2005

Bibliography

  • BECKER TC, NOEL RJ, COATS WS et al.: Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell. Biol. (1994) 43(Pt A):161-189.
  • YANG Y, ERTL HC, WILSON JM: MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity (1994) 1(5):433-442.
  • TATSIS N, ERTL HC: Adenoviruses as vaccine vectors. Mol. Ther. (2004) 10(4):616-629.
  • HE Z, WLAZLO AP, KOWALCZYK DW et al.: Viral recombinant vaccines to the E6 and E7 antigens of HPV-16. Virology (2000) 270(1):146-161.
  • FARINA SF, GAO GP, XIANG ZQ et al.: Replication-defective vector based on a chimpanzee adenovirus. J. Virol. (2001) 75(23):11603-11613.
  • XIANG Z, GAO G, REYES-SANDOVAL A et al.: Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J. Virol. (2002) 76(6):2667-2675.
  • FITZGERALD JC, GAO GP, REYES-SANDOVAL A et al.: A simian replication-defective adenoviral recombinant vaccine to HIV-1 gag. J. Immunol. (2003) 170(3):1416-1422.
  • GAO W, ROBBINS PD, GAMBOTTO A: Human adenovirus Type 35: nucleotide sequence and vector development. Gene Ther. (2003) 10(23):1941-1949.
  • PINTO AR, FITZGERALD JC, GILES-DAVIS W et al.: Induction of CD8+ T cells to an HIV-1 antigen through a prime boost regimen with heterologous E1-deleted adenoviral vaccine carriers. J. Immunol. (2003) 171(12):6774-6779.
  • REYES-SANDOVAL A, FITZGERALD JC, GRANT R et al.: Human immunodeficiency virus Type 1-specific immune responses in primates upon sequential immunization with adenoviral vaccine carriers of human and simian serotypes. J. Virol. (2004) 78(14):7392-7399.
  • GOGEV S, GEORGIN JP, SCHYNTS F, VANDERPLASSCHEN A, THIRY E: Bovine herpesvirus 1 glycoprotein D expression in bovine upper respiratory tract mediated by a human adenovirus Type 5. Vet. Res. (2004) 35(6):715-721.
  • ROTHEL JS, BOYLE DB, BOTH GW et al.: Sequential nucleic acid and recombinant adenovirus vaccination induces host-protective immune responses against Taenia ovis infection in sheep. Parasite Immunol. (1997) 19(5):221-227.
  • BERGELSON JM, CUNNINGHAM JA, DROGUETT G et al.: Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science (1997) 275(5304):1320-1323.
  • GAGGAR A, SHAYAKHMETOV DM, LIEBER A: CD46 is a cellular receptor for group B adenoviruses. Nat. Med. (2003) 9(11):1408-1412.
  • MATHIAS P, WICKHAM T, MOORE M, NEMEROW G: Multiple adenovirus serotypes use alpha v integrins for infection. J. Virol. (1994) 68(10):6811-6814.
  • MORELLI AE, LARREGINA AT, GANSTER RW et al.: Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J. Virol. (2000) 74(20):9617-9628.
  • HENSLEY SE, GILES-DAVIS W, MCCOY KC, WENINGER W, ERTL HC: Dendritic cell maturation, but not CD8+ T cell induction, is dependent on type I IFN signaling during vaccination with adenovirus vectors. J. Immunol. (2005) 175(9):6032-6041.
  • ASADA-MIKAMI R, HEIKE Y, KANAI S et al.: Efficient gene transduction by RGD-fiber modified recombinant adenovirus into dendritic cells. Jpn J. Cancer Res. (2001) 92(3):321-327.
  • LIU Q, ZAISS AK, COLARUSSO P et al.: The role of capsid-endothelial interactions in the innate immune response to adenovirus vectors. Hum. Gene Ther. (2003) 14(7):627-643.
  • MERCIER GT, CAMPBELL JA, CHAPPELL JD et al.: A chimeric adenovirus vector encoding reovirus attachment protein sigma1 targets cells expressing junctional adhesion molecule 1. Proc. Natl. Acad. Sci. USA (2004) 101(16):6188-6193.
  • XIANG ZQ, YANG Y, WILSON JM, ERTL HC: A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology (1996) 219(1):220-227.
  • KOWALCZYK DW, WLAZLO AP, BLASZCZYK-THURIN M et al.: A method that allows easy characterization of tumor-infiltrating lymphocytes. J. Immunol. Methods (2001) 253(1-2):163-175.
  • BAROUCH DH, PAU MG, CUSTERS JH et al.: Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J. Immunol. (2004) 172(10):6290-6297.
  • SHIVER JW, FU TM, CHEN L et al.: Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature (2002) 415(6869):331-335.
  • MORIN JE, LUBECK MD, BARTON JE et al.: Recombinant adenovirus induces antibody response to hepatitis B virus surface antigen in hamsters. Proc. Natl. Acad. Sci. USA (1987) 84(13):4626-4630.
  • SULLIVAN NJ, SANCHEZ A, ROLLIN PE, YANG ZY, NABEL GJ: Development of a preventive vaccine for Ebola virus infection in primates. Nature (2000) 408(6812):605-609.
  • BRUNA-ROMERO O, ROCHA CD, TSUJI M, GAZZINELLI RT: Enhanced protective immunity against malaria by vaccination with a recombinant adenovirus encoding the circumsporozoite protein of Plasmodium lacking the GPI-anchoring motif. Vaccine (2004) 22(27-28):3575-3584.
  • PHILLPOTTS RJ, O’BRIEN L, APPLETON RE, CARR S, BENNETT A: Intranasal immunisation with defective adenovirus serotype 5 expressing the Venezuelan equine encephalitis virus E2 glycoprotein protects against airborne challenge with virulent virus. Vaccine (2005) 23(13):1615-1623.
  • WANG J, THORSON L, STOKES RW et al.: Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol. (2004) 173(10):6357-6365.
  • KASUYA K, BOYER JL, TAN Y et al.: Passive immunotherapy for anthrax toxin mediated by an adenovirus expressing an anti-protective antigen single-chain antibody. Mol. Ther. (2005) 11(2):237-244.
  • ZAKHARTCHOUK AN, VISWANATHAN S, MAHONY JB, GAULDIE J, BABIUK LA: Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice. J. Gen. Virol. (2005) 86(Pt 1):211-215.
  • QUEZADA SA, JARVINEN LZ, LIND EF, NOELLE RJ: CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. (2004) 22:307-328.
  • KHOURY SJ, SAYEGH MH: The roles of the new negative T cell costimulatory pathways in regulating autoimmunity. Immunity (2004) 20(5):529-538.
  • SHARPE AH, FREEMAN GJ: The B7-CD28 superfamily. Nat. Rev. Immunol. (2002) 2(2):116-126.
  • WANG S, CHEN L: Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses. Microbes Infect. (2004) 6(1-4):759-766.
  • GROHMANN U, ORABONA C, FALLARINO F et al.: CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. (2002) 3(11):1097-1101.
  • MUNN DH, SHARMA MD, MELLOR AL: Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. (2004) 172(7):4100-4110.
  • HUTLOFF A, DITTRICH AM, BEIER KC et al.: ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature (1999) 397(6716):263-266.
  • GONZALO JA, TIAN J, DELANEY T et al.: ICOS is critical for T helper cell-mediated lung mucosal inflammatory responses. Nat. Immunol. (2001) 2(7):597-604.
  • GREENWALD RJ, MCADAM AJ, VAN DER WOUDE D, SATOSKAR AR, SHARPE AH: Cutting edge: inducible costimulator protein regulates both Th1 and Th2 responses to cutaneous leishmaniasis. J. Immunol. (2002) 168(3):991-995.
  • LOHNING M, HUTLOFF A, KALLINICH T et al.: Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J. Exp. Med. (2003) 197(2):181-193.
  • AKBARI O, FREEMAN GJ, MEYER EH et al.: Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. (2002) 8(9):1024-1032.
  • HERMAN AE, FREEMAN GJ, MATHIS D, BENOIST C: CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J. Exp. Med. (2004) 199(11):1479-1489.
  • NISHIMURA H, NOSE M, HIAI H, MINATO N, HONJO T: Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity (1999) 11(2):141-151.
  • CHEMNITZ JM, PARRY RV, NICHOLS KE, JUNE CH, RILEY JL: SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. (2004) 173(2):945-954.
  • FREEMAN GJ, LONG AJ, IWAI Y et al.: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. (2000) 192(7):1027-1034.
  • DONG H, ZHU G, TAMADA K, CHEN L: B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. (1999) 5(12):1365-1369.
  • LATCHMAN Y, WOOD CR, CHERNOVA T et al.: PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. (2001) 2(3):261-268.
  • TSENG SY, OTSUJI M, GORSKI K et al.: B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. (2001) 193(7):839-846.
  • LIANG SC, LATCHMAN YE, BUHLMANN JE et al.: Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur. J. Immunol. (2003) 33(10):2706-2716.
  • WATANABE N, GAVRIELI M, SEDY JR et al.: BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. (2003) 4(7):670-679.
  • SEDY JR, GAVRIELI M, POTTER KG et al.: B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat. Immunol. (2005) 6(1):90-98.
  • CHAPOVAL AI, NI J, LAU JS et al.: B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol. (2001) 2(3):269-274.
  • SUH WK, GAJEWSKA BU, OKADA H et al.: The B7 family member B7-H3 preferentially down-regulates T helper Type 1-mediated immune responses. Nat. Immunol. (2003) 4(9):899-906.
  • SICA GL, CHOI IH, ZHU G et al.: B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity (2003) 18(6):849-861.
  • ZANG X, LOKE P, KIM J et al.: B7x: a widely expressed B7 family member that inhibits T cell activation. Proc. Natl. Acad. Sci. USA (2003) 100(18):10388-10392.
  • PRASAD DV, RICHARDS S, MAI XM, DONG C: B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity (2003) 18(6):863-873.
  • SARANTOPOULOS S, LU L, CANTOR H: Qa-1 restriction of CD8+ suppressor T cells. J. Clin. Invest. (2004) 114(9):1218-1221.
  • CHANG CC, CIUBOTARIU R, MANAVALAN JS et al.: Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. (2003) 171:3348-3352.
  • FEHERVARI Z, SAKAGUCHI S: CD4+ Tregs and immune control. J. Clin. Invest. (2004) 114(9):1209-1217.
  • AKBARI O, FREEMAN GJ, MEYER EH et al.: Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. (2002) 8(9):1024-1032.
  • SAKAGUCHI S: The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery. J. Clin. Invest. (2003) 112(9):1310-1312.
  • NIXON DF, AANDAHL EM, MICHAELSSON J: CD4(+)CD25(+) regulatory T cells in HIV infection. Microbes Infect. (2005) 7(7-8):1063-1065.
  • WANG HY, WANG RF: Antigen-specific CD4(+) regulatory T cells in cancer: implications for immunotherapy. Microbes Infect. (2005) 7(7-8):1056-1062.
  • BRYL E, WITKOWSKI JM: Decreased proliferative capability of CD4(+) cells of elderly people is associated with faster loss of activation-related antigens and accumulation of regulatory T cells. Exp. Gerontol. (2004) 39(4):587-595.
  • ROUSE BT, SUVAS S: Regulatory cells and infectious agents: detentes cordiale and contraire. J. Immunol. (2004) 173(4):2211-2215.
  • BURGERT HG: Subversion of the MHC class I antigen-presentation pathway by adenoviruses and herpes simplex viruses. Trends Microbiol. (1996) 4(3):107-112.
  • WALL EM, CAO JX, UPTON C: Subversion of cytokine networks by viruses. Int. Rev. Immunol. (1998) 17(1-4):121-55.
  • NELSON DS, NELSON M, FARRAM E, INOUE Y: Cancer and subversion of host defences. Aust. J. Exp. Biol. Med. Sci. (1981) 59(Pt 3):229-262.
  • CHEHIMI J, CAMPBELL DE, AZZONI L et al.: Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J. Immunol. (2002) 168(9):4796-4801.
  • BAIN C, FATMI A, ZOULIM F et al.: Impaired allostimulatory function of dendritic cells in chronic hepatitis C infection. Gastroenterology (2001) 120(2):512-524.
  • WHERRY EJ, BLATTMAN JN, MURALI-KRISHNA K, VAN DER MOST R, AHMED R: Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. (2003) 77(8):4911-4927.
  • GINALDI L, DE MARTINIS M, D’OSTILIO A et al.: The immune system in the elderly: II. Specific cellular immunity. Immunol. Res. (1999) 20(2):109-115.
  • FRANCESCHI C, BONAFE M, VALENSIN S: Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine (2000) 18(16):1717-1720.
  • GINALDI L, LORETO MF, CORSI MP, MODESTI M, DE MARTINIS M: Immunosenescence and infectious diseases. Microbes Infect. (2001) 3(10):851-857.
  • PASARE C, MEDZHITOV R: Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science (2003) 299(5609):1033-1036.
  • BRANDSMA JL, SHLYANKEVICH M, ZHANG L et al.: Vaccination of rabbits with an adenovirus vector expressing the papillomavirus E2 protein leads to clearance of papillomas and infection. J. Virol. (2004) 78(1):116-123.
  • DURAISWAMY J, BHARADWAJ M, TELLAM J et al.: Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Res. (2004) 64(4):1483-1489.
  • ELZEY BD, SIEMENS DR, RATLIFF TL, LUBAROFF DM: Immunization with Type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (ALVAC) cytokine gene delivery induces destruction of established prostate tumors. Int. J. Cancer (2001) 94(6):842-849.
  • GALLO P, DHARMAPURI S, NUZZO M et al.: Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int. J. Cancer (2005) 113(1):67-77.
  • ROSENBERG SA, ZHAI Y, YANG JC et al.: Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J. Natl. Cancer Inst. (1998) 90(24):1894-1900.
  • MINCHEFF M, ALTANKOVA I, ZOUBAK S et al.: In vivo transfection and/or cross-priming of dendritic cells following DNA and adenoviral immunizations for immunotherapy of cancer-changes in peripheral mononuclear subsets and intracellular IL-4 and IFN-gamma lymphokine profile. Crit. Rev. Oncol. Hematol. (2001) 39(1-2):125-132.
  • ZHANG L, TANG Y, AKBULUT H et al.: An adenoviral vector cancer vaccine that delivers a tumor-associated antigen/CD40-ligand fusion protein to dendritic cells. Proc. Natl. Acad. Sci. USA (2003) 100(25):15101-15106.
  • SAKAI Y, MORRISON BJ, BURKE JD et al.: Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice. Cancer Res. (2004) 64(21):8022-8028.
  • OKADA N, IIYAMA S, OKADA Y et al.: Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther. (2005) 12(1):72-83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.