31
Views
0
CrossRef citations to date
0
Altmetric
Review

Biological response modifiers as adjuncts to stem cell transplantation

, , &
Pages 467-483 | Published online: 13 Apr 2006

Bibliography

  • MUENCH MO, FIRPO MT, MOORE MA: Bone marrow transplantation with IL-1 plus kit-ligand ex vivo expanded bone marrow accelerates hematopoietic reconstitution in mice without the loss of stem cell lineage and proliferative potential. Blood (1993) 81:3463-3473.
  • TIBERGHIEN P, LAITHIER V, MABED M et al.: Interleukin-1 administration before lethal irradiation and allogeneic bone marrow transplantation: early transient increase of peripheral granulocytes and successful engraftment with accelerated leukocyte, erythrocyte, and platelet recovery. Blood (1993) 81:1933-1939.
  • ELKORDY M, CRUMP M, VREDENBURGH JJ et al.: A Phase I trial of recombinant human interleukin-1 beta (OCT-43) following high-dose chemotherapy and autologous bone marrow transplantation. Bone Marrow Transplant. (1997) 19:315-322.
  • ANTIN JH, WEISDORF D, NEUBERG D et al.: Interleukin-1 blockade does not prevent acute graft-versus-host disease: results of a randomized, double-blind, placebo-controlled trial of interleukin-1 receptor antagonist in allogeneic bone marrow transplantation. Blood (2002) 100:3479-3482.
  • SCHILLER G, WONG S, LOWE T et al.: Transplantation of IL-2-mobilized autologous peripheral blood progenitor cells for adults with acute myelogenous leukemia in first remission. Leukemia (2001) 15:757-763.
  • BIEDER A, WEISS L, SLAVIN S: The role of recombinant cytokines and other immunomodulators on engraftment following allogeneic bone marrow transplantation in mice. Bone Marrow Transplant. (1992) 9:421-426.
  • ABDUL-HAI A, LORBERBOUM-GLISKI H, MECHUSHTAN A, WEISS L, SLAVIN S, OR R: Involvement of interleukin-2 in immunologic reconstitution following bone marrow transplantation in mice. J. Interferon Cytokine Res. (1995) 15:95-101.
  • SYKES M, ROMICK ML, SACHS DH: Interleukin 2 prevents graft-versus-host disease while preserving the graft-versus-leukemia effect of allogeneic T cells. Proc. Natl. Acad. Sci. USA (1990) 87:5633-5637.
  • CHARAK BS, BRYNES RK, GROSHEN S, CHEN SC, MAZUMDER A: Bone marrow transplantation with interleukin-2-activated bone marrow followed by interleukin-2 therapy for acute myeloid leukemia in mice. Blood (1990) 76:2187-2190.
  • WEISS L, REICH S, SLAVIN S: Use of recombinant human interleukin-2 in conjunction with bone marrow transplantation as a model for control of minimal residual disease in malignant hematological disorders: I. Treatment of murine leukemia in conjunction with allogeneic bone marrow transplantation and IL-2-activated cell-mediated immunotherapy. Cancer Invest. (1992) 10:19-26.
  • SLAVIN S, STROBER S: Spontaneous murine b-cell leukaemia. Nature (1978) 272:624-626.
  • ACKERSTEIN A, KEDAR E, SLAVIN S: Use of recombinant human interleukin-2 in conjunction with syngeneic bone marrow transplantation in mice as a model for control of minimal residual disease in malignant hematologic disorders. Blood (1991) 78:1212-1215.
  • SLAVIN S, ACKERSTEIN A, KEDAR E, WEISS L: IL-2 activated cell-mediated immunotherapy: control of minimal residual disease in malignant disorders by allogeneic lymphocytes and IL-2. Bone Marrow Transplant. (1990) 6(Suppl. 1):86-90.
  • VOURKA-KARUSSIS U, KARUSSIS D, ACKERSTEIN A, SLAVIN S: Enhancement of GVL effect with rhIL-2 following BMT in a murine model for acute myeloid leukaemia in SJL/J mice. Exp. Hematol. (1995) 23:196-201.
  • NEGRIER S, RANCHERE JY, PHILIP I et al.: Intravenous interleukin-2 just after high dose BCNU and autologous bone marrow transplantation. Report of a multicentric French pilot study. Bone Marrow Transplant. (1991) 8:259-264.
  • FAVROT MC, MICHON J, FLORET D et al.: Interleukin 2 immunotherapy in children with neuroblastoma after high-dose chemotherapy and autologous bone marrow transplantation. Pediatr. Hematol. Oncol. (1990) 7:275-284.
  • BLAISE D, ATTAL M, REIFFERS J et al.: Randomized study of recombinant interleukin-2 after autologous bone marrow transplantation for acute leukemia in first complete remission. Eur. Cytokine Netw. (2000) 11:91-98.
  • NAGLER A, ACKERSTEIN A, OR R, NAPARSTEK E, SLAVIN S: Immunotherapy with recombinant human interleukin-2 and recombinant interferon-alpha in lymphoma patients postautologous marrow or stem cell transplantation. Blood (1997) 89:3951-3959.
  • SLAVIN S, NAPARSTEK E, NAGLER A et al.: Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood (1996) 87:2195-2204.
  • SOIFFER RJ, MURRAY C, GONIN R, RITZ J: Effect of low-dose interleukin-2 on disease relapse after T-cell-depleted allogeneic bone marrow transplantation. Blood (1994) 84:964-971.
  • NITSCHE A, JUNGHAHN I, THULKE S et al.: Interleukin-3 promotes proliferation and differentiation of human hematopoietic stem cells but reduces their repopulation potential in NOD/SCID mice. Stem Cells (2003) 21:236-244.
  • FABIAN I, SHAPIRA E, GADISH M et al.: Effect of human interleukin 3, macrophage and granulocyte-macrophage colony-stimulating factor on monocyte function following autologous bone-marrow transplantation. Leuk. Res. (1992) 16:703-709.
  • NAGLER A, ELDOR A, NAPARSTEK E, MUMCUOGLU M, SLAVIN S, DEUTSCH VR: Ex vivo expansion of megakaryocyte precursors by preincubation of marrow allografts with interleukin-3 and granulocyte-macrophage colony-stimulating factor in vitro. Exp. Hematol. (1995) 23:1268-1274.
  • DEUTSCH VR, OLSON TA, NAGLER A, SLAVIN S, LEVINE RF, ELDOR A: The response of cord blood megakaryocyte progenitors to IL-3, IL-6 and aplastic canine serum varies with gestational age. Br. J. Haematol. (1995) 89:8-16.
  • NAPARSTEK E, HARDAN Y, BEN-SHAHAR M et al.: Enhanced marrow recovery by short preincubation of marrow allografts with human recombinant interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood (1992) 80:1673-1678.
  • ZHU K, ATKINSON K: Effects of interleukin-4 on granulocyte-macrophage-colony formation from murine bone marrow cells and hematopoietic reconstitution following murine allogeneic bone marrow transplantation. Chin. Med. Sci. J. (1994) 9:125-128.
  • DE WOLF JT, BEENTJES JA, ESSELINK MT, SMIT JW, HALIE MR, VELLENGA E: Interleukin-4 suppresses the interleukin-3 dependent erythroid colony formation from normal human bone marrow cells. Br. J. Haematol. (1990) 74:246-250.
  • DROBYSKI WR, LEFEVER AV, TRUITT RL: Regulation of lymphokine-activated killer activity in T-replete and T-cell-depleted human bone marrow by interleukin 4. Exp. Hematol. (1991) 19:950-957.
  • ZLOTNIK A, FISCHER M, ROEHM N, ZIPORI D: Evidence for effects of interleukin 4 (B cell stimulatory factor 1) on macrophages: enhancement of antigen presenting ability of bone marrow-derived macrophages. J. Immunol. (1987) 138:4275-4279.
  • HOPE JC, WERLING D, COLLINS RA, MERTENS B, HOWARD CJ: Flt-3 ligand, in combination with bovine granulocyte-macrophage colony-stimulating factor and interleukin-4, promotes the growth of bovine bone marrow derived dendritic cells. Scand. J. Immunol. (2000) 51:60-66.
  • MATTES J, HULETT M, XIE W et al.: Immunotherapy of cytotoxic T cell resistant tumors by T helper 2 cells: an eotaxin and STAT-6 dependend process. J. Exp. Med. (2003) 197:387-393.
  • MUMCUOGLU M, SLAVIN S: Enhancement of hematopoietic reconstitution with recombinant cytokines: effect of rhIL-6 in combination with rhGM-CSF and rhIL-3 on unmodified or T cell-depleted bone marrow. J. Hematother. (1999) 8:247-253.
  • IMRIE KR, SHERIDAN B, COLWILL R et al.: A Phase I study of interleukin-6 after autologous bone marrow transplantation for patients with poor prognosis Hodgkin’s disease. Leuk. Lymphoma (1997) 25:555-563.
  • LAZARUS HM, WINTON EF, WILLIAMS SF et al.: Phase I multicenter trial of interleukin 6 therapy after autologous bone marrow transplantation in advanced breast cancer. Bone Marrow Transplant. (1995) 15:935-942.
  • GIVON T, REVEL M, SLAVIN S: Potential use of interleukin-6 in bone marrow transplantation: effects of recombinant human interleukin-6 after syngeneic and semiallogeneic bone marrow transplantation in mice. Blood (1994) 83:1690-1697.
  • TAKEDA S, GILLIS S, PALACIOS R: In vitro effects of recombinant interleukin 7 on growth and differentiation of bone marrow pro-B- and pro-T-lymphocyte clones and fetal thymocyte clones. Proc. Natl. Acad. Sci. USA (1989) 86:1634-1638.
  • TUSHINSKI RJ, MCALISTER IB, WILLIAMS DE, NAMEN AE: The effects of interleukin 7 (IL-7) on human bone marrow in vitro. Exp. Hematol. (1991) 19:749-754.
  • GRZEGORZEWSKI K, KOMSCHLIES KL, MORI M et al.: Administration of recombinant human interleukin-7 to mice induces the exportation of myeloid progenitor cells from the bone marrow to peripheral sites. Blood (1994) 83:377-385.
  • ABDUL-HAI A, OR R, SLAVIN S et al.: Stimulation of immune reconstitution by interleukin-7 after syngeneic bone marrow transplantation in mice. Exp. Hematol. (1996) 24:1416-1422.
  • ABDUL-HAI A, BEN-YEHUDA A, WEISS L et al.: Interleukin-7 enhanced cytotoxic T lymphocyte activity after viral infection in marrow transplanted mice. Bone Marrow Transplant. (1997) 19:539-543.
  • SALGAR SK, YANG D, RUIZ P, MILLER J, TZAKIS AG: Viral interleukin-10 gene therapy to induce tolerance to solid organ transplants in mice. Transplant. Proc. (2004) 36:397-398.
  • BLAZAR BR, TAYLOR PA, SMITH S, VALLERA DA: Interleukin-10 administration decreases survival in murine recipients of major histocompatibility complex disparate donor bone marrow grafts. Blood (1995) 85:842-851.
  • KRENGER W, SNYDER K, SMITH S, FERRARA JL: Effects of exogenous interleukin-10 in a murine model of graft-versus-host disease to minor histocompatibility antigens. Transplantation (1994) 58:1251-1257.
  • DU XX, SCOTT D, YANG ZX, COOPER R, XIAO XL, WILLIAMS DA: Interleukin-11 stimulates multilineage progenitors, but not stem cells, in murine and human long-term marrow cultures. Blood (1995) 86:128-134.
  • ORAZI A, COOPER RJ, TONG J et al.: Effects of recombinant human interleukin-11 (Neumega rhIL-11 growth factor) on megakaryocytopoiesis in human bone marrow. Exp. Hematol. (1996) 24:1289-1297.
  • HOLYOAKE TL, FRESHNEY MG, MCNAIR L et al.: Ex vivo expansion with stem cell factor and interleukin-11 augments both short-term recovery posttransplant and the ability to serially transplant marrow. Blood (1996) 87:4589-4595.
  • PETERS SO, KITTLER EL, RAMSHAW HS, QUESENBERRY PJ: Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood (1996) 87:30-37.
  • KELLEHER P, KNIGHT SC: IL-12 increases CD80 expression and the stimulatory capacity of bone marrow-derived dendritic cells. Int. Immunol. (1998) 10:749-755.
  • SCHMITT M, TANIGUCHI M, YOSHIDA T et al.: Rapid lethality of hosts by interleukin-12 following H-2 compatible allogeneic bone marrow transplantation: reminiscence of gut-associated acute graft-versus-host reaction. Int. J. Oncol. (2002) 21:795-801.
  • SYKES M, PEARSON DA, TAYLOR PA, SZOT GL, GOLDMAN SJ, BLAZAR BR: Dose and timing of interleukin (IL)-12 and timing and type of total-body irradiation: effects on graft-vs.-host disease inhibition and toxicity of exogenous IL-12 in murine bone marrow transplant recipients. Biol. Blood Marrow Transplant. (1999) 5:277-284.
  • VERMA UN, MAZUMDER A: Interleukin-12 (IL-12) alone or in synergistic combination with IL-2 for in vitro activation of human bone marrow: differential effects at different time points. Bone Marrow Transplant. (1995) 16:365-372.
  • JU XP, XU B, XIAO ZP et al.: Cytokine expression during acute graft-versus-host disease after allogeneic peripheral stem cell transplantation. Bone Marrow Transplant. (2005) 35:1179-1186.
  • ITOI H, FUJIMORI Y, TSUTSUI H et al.: Involvement of interleukin-18 in acute graft-versus-host disease in mice. Transplantation (2004) 78:1245-1250.
  • REDDY P, TESHIMA T, KUKURUGA M et al.: Interleukin-18 regulates acute graft-versus-host disease by enhancing Fas-mediated donor T cell apoptosis. J. Exp. Med. (2001) 194:1433-1440.
  • REDDY P, TESHIMA T, HILDEBRANDT G et al.: Pretreatment of donors with interleukin-18 attenuates acute graft-versus-host disease via STAT6 and preserves graft-versus-leukemia effects. Blood (2003) 101:2877-2885.
  • FUJIMORI Y, TAKATSUKA H, TAKEMOTO Y et al.: Elevated interleukin (IL)-18 levels during acute graft-versus-host disease after allogeneic bone marrow transplantation. Br. J. Haematol. (2000) 109:652-657.
  • CARDOSO SM, DEFOR TE, TILLEY LA, BIDWELL JL, WEISDORF DJ, MACMILLAN ML: Patient interleukin-18 GCG haplotype associates with improved survival and decreased transplant-related mortality after unrelated-donor bone marrow transplantation. Br. J. Haematol. (2004) 126:704-710.
  • WODNAR-FILIPOWICZ A: Flt3 ligand: role in control of hematopoietic and immune functions of the bone marrow. News Physiol. Sci. (2003) 18:247-251.
  • JAROSCAK J, GOLTRY K, SMITH A et al.: Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a Phase I trial using the AastromReplicell System. Blood (2003) 101:5061-5067.
  • NEIPP M, ZORINA T, DOMENICK MA, EXNER BG, ILDSTAD ST: Effect of FLT3 ligand and granulocyte colony-stimulating factor on expansion and mobilization of facilitating cells and hematopoietic stem cells in mice: kinetics and repopulating potential. Blood (1998) 92:3177-3188.
  • BLAZAR BR, MCKENNA HJ, PANOSKALTSIS-MORTARI A, TAYLOR PA: Flt3 ligand (FL) treatment of murine donors does not modify graft-versus-host disease (GVHD) but FL treatment of recipients post-bone marrow transplantation accelerates GVHD lethality. Biol. Blood Marrow Transplant. (2001) 7:197-207.
  • YUNUSOV MY, GEORGES GE, STORB R et al.: FLT3 ligand promotes engraftment of allogeneic hematopoietic stem cells without significant graft-versus-host disease. Transplantation (2003) 75:933-940.
  • TESHIMA T, REDDY P, LOWLER KP et al.: Flt3 ligand therapy for recipients of allogeneic bone marrow transplants expands host CD8 alpha(+) dendritic cells and reduces experimental acute graft-versus-host disease. Blood (2002) 99:1825-1832.
  • HEHLMANN R, HOCHHAUS A, KOLB HJ et al.: Interferon-alpha before allogeneic bone marrow transplantation in chronic myelogenous leukemia does not affect outcome adversely, provided it is discontinued at least 90 days before the procedure. Blood (1999) 94:3668-3677.
  • OLAVARRIA E, REIFFERS J, BOQUE C et al.: The post-transplant cytogenetic response to interferon is a major determinant of survival after autologous stem cell transplantation for chronic myeloid leukaemia in chronic phase. Br. J. Haematol. (2002) 118:762-770.
  • ATTAL M, HUGUET F, SCHLAIFER D et al.: Maintenance treatment with recombinant alpha interferon after autologous bone marrow transplantation for aggressive myeloma in first remission after conventional induction chemotherapy. Bone Marrow Transplant. (1991) 8:125-128.
  • BJORKSTRAND B, SVENSSON H, GOLDSCHMIDT H et al.: Alpha-interferon maintenance treatment is associated with improved survival after high-dose treatment and autologous stem cell transplantation in patients with multiple myeloma: a retrospective registry study from the European Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. (2001) 27:511-515.
  • RATANATHARATHORN V, UBERTI J, KARANES C et al.: Phase I study of alpha-interferon augmentation of cyclosporine-induced graft versus host disease in recipients of autologous bone marrow transplantation. Bone Marrow Transplant. (1994) 13:625-630.
  • BROK HP, HEIDT PJ, VAN DER MEIDE PH, ZURCHER C, VOSSEN JM: Interferon-gamma prevents graft-versus-host disease after allogeneic bone marrow transplantation in mice. J. Immunol. (1993) 151:6451-6459.
  • MEYERS JD, FLOURNOY N, SANDERS JE et al.: Prophylactic use of human leukocyte interferon after allogeneic marrow transplantation. Ann. Intern. Med. (1987) 107:809-816.
  • MCGLAVE PB, ARTHUR D, MILLER WJ, LASKY L, KERSEY J: Autologous transplantation for CML using marrow treated ex vivo with recombinant human interferon gamma. Bone Marrow Transplant. (1990) 6:115-120.
  • STIFF P: Mucositis associated with stem cell transplantation: current status and innovative approaches to management. Bone Marrow Transplant. (2001) 27(Suppl. 2):3-11.
  • RADTKE ML, KOLESAR JM: Palifermin (Kepivance) for the treatment of oral mucositis in patients with hematologic malignancies requiring hematopoietic stem cell support. J. Oncol. Pharm. Pract. (2005) 11:121-125.
  • VANCLEE A, LUTGENS LC, OVING EB et al.: Keratinocyte growth factor ameliorates acute graft-versus-host disease in a novel nonmyeloablative haploidentical transplantation model. Bone Marrow Transplant. (2005) 36:907-915.
  • KRIJANOVSKI OI, HILL GR, COOKE KR et al.: Keratinocyte growth factor separates graft-versus-leukemia effects from graft-versus-host disease. Blood (1999) 94:825-831.
  • MACDONALD KP, HILL GR: Keratinocyte growth factor (KGF) in hematology and oncology. Curr. Pharm. Des. (2002) 8:395-403.
  • MIN D, TAYLOR PA, PANOSKALTSIS-MORTARI A et al.: Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood (2002) 99:4592-4600.
  • GOODMAN J, HODGSON G: Evidence for stem cells in the peripheral blood of mice. Blood (1962) 19:702-714.
  • CAVINS JA, SCHEER SC, THOMAS ED, FERREBEE JW: The recovery of lethally irradiated dogs given infusions of autologous leucocytes preserved at -80 C. Blood (1964) 23:38-42.
  • MICKLEM HS, ANDERSON N, ROSS R: Limited potential of circulating hemopoietic stem cells. Nature (1975) 256:41-43.
  • STORB R, GRAHAM TC, EPSTEIN RB, SALE GE, THOMAS ED: Demonstration of hemopoietic stem cells in the peripheral blood of baboons by cross-circulation. Blood (1977) 50:537-542.
  • CHERKTOV JL, GUREVITCH OA, UDALOV GA: Self maintenance ability of circulating hemopoietic stem cells. Exp. Hematol. (1982) 10:90-97.
  • TO LB, HAYLOCK DN, SIMMONS PJ, JUTTNER CA: The biology and clinical uses of blood stem cells. Blood (1997) 89:2233-2258.
  • HARTUNG G, ZEIS M, GLASS B et al.: Enhanced antileukemic activity of allogeneic peripheral blood progenitor cell transplants following donor treatment with the combination of granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) in a murine transplantation model. Bone Marrow Transplant. (2003) 32:49-56.
  • DUHRSEN U, VILLEVAL JL, BOYD J, KANNOURAKIS G, MORSTYN G, METCALF D: Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood (1988) 72:2074-2081.
  • SCHWARTZBERG LS, BIRCH R, HAZELTON B et al.: Peripheral blood stem cell mobilization by chemotherapy with and without recombinant human granulocyte colony-stimulating factor. J. Hematother. (1992) 1:317-327.
  • SCHWARTZBERG LS: Peripheral blood stem cell mobilization in the out-patient setting. In: Peripheral Blood Stem Cell Autografts. Wunder EW, Henon PR (Eds), Springer-Verlag, Heidelberg, Germany (1993):177.
  • SHERIDAN WP, BEGLEY CG, JUTTNER CA et al.: Effect of peripheral blood progenitor cells mobilized by filgrastim (G-CSF) on platelet recovery after high does chemotherapy. Lancet (1992) 339:640-644.
  • DELUCA E, SHERIDAN WP, WATSON D, SZER J, BEGLEY CG: Prior chemotherapy does not prevent effective mobilisation by G-CSF of peripheral blood progenitor cells. Br. J. Cancer (1992) 66:893-899.
  • TO LB, HAYLOCK DN, DOWSE T et al.: A comparative study of the phenotype and proliferative capacity of peripheral blood (PB) CD34+ cells mobilized by four different protocols and those of steady-phase PB and bone marrow CD34+ cells. Blood (1994) 84:2930-2939.
  • DEMUYNCK H, PETTENGELL R, DECAMPOS E, DEXTER TM, TESTA NG: The capacity of peripheral blood stem cells mobilised with chemotherapy plus G-CSF to repopulate irradiated marrow stroma in vitro is similar to that of bone marrow. Eur. J. Cancer (1992) 28:381-386.
  • SHAPIRA MY, KASPLER P, SAMUEL S, SHOSHAN S, OR R: Granulocyte colony stimulating factor does not induce long-term DNA instability in healthy peripheral blood stem cell donors. Am. J. Hematol. (2003) 73:33-36.
  • BACIGALUPO A, VAN LINT MT, VALBONESI M et al.: Thiotepa cyclophosphamide followed by granulocyte colony-stimulating factor mobilized allogeneic peripheral blood cells in adults with advanced leukemia. Blood (1996) 88:353-357.
  • BENSINGER WI, CLIFT R, MARTIN P et al.: Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation. Blood (1996) 88:2794-2800.
  • BENSINGER WI, MARTIN PJ, STORER B et al.: Transplantation of bone marrow as compared with peripheral blood cells from HLA-identical relatives in patients with hematologic cancers. N. Engl. J. Med. (2001) 344:175-181.
  • BLAISE D, KUENTZ M, FORTANIER C et al.: Randomized trial of bone marrow versus lenograstim-primed blood cell allogeneic transplantation in patients with early-stage leukemia: a report from the Societe Francaise de Greffe de Moelle. J. Clin. Oncol. (2000) 18:537-546.
  • HELDAL D, TJONNFJORD G, BRINCH L et al.: A randomised study of allogeneic transplantation with stem cells from blood or bone marrow. Bone Marrow Transplant. (2000) 25:1129-1136.
  • PRZEPIORKA D, ANDERLINI P, IPPOLITI C et al.: Allogeneic blood stem cell transplantation in advanced hematologic cancers. Bone Marrow Transplant. (1997) 19:455-460.
  • PRZEPIORKA D, IPPOLITI C, KHOURI I et al.: Allogeneic transplantation for advanced leukemia: improved short-term outcome with blood stem cell grafts and tacrolimus. Transplantation (1996) 62:1806-1810.
  • POWLES R, MEHTA J, KULKARNI S et al.: Allogeneic blood and bone marrow stem cell transplantation in haematological malignant diseases: a randomized trial. Lancet (2000) 355:1231-1237.
  • PAVLETIC ZS, BISHOP MR, TARANTOLO SR et al.: Hematopoietic recovery after allogeneic blood stem cell transplantation compared with bone marrow transplantation in patients with hematologic malignancies. J. Clin. Oncol. (1997) 15:1608-1616.
  • SMITH TJ, HILLNER BE, SCHMITZ N et al.: Economic analysis of a randomized clinical trial to compare filgrastim-mobilized peripheral blood progenitor-cell transplantation and autologous bone marrow transplantation in patients with Hodgkin’s and non-Hodgkin’s lymphoma. J. Clin. Oncol. (1997) 15:5-10.
  • MORTON J, HUTCHINS C, DURRANT S: Granulocyte-colony-stimulating factor (G-CSF)-primed allogeneic bone marrow: significantly less graft-versus-host disease and comparable engraftment to G-CSF-mobilized peripheral blood stem cells. Blood (1998) 100:749-755.
  • FU S, LIESVELD J: Mobilization of hematopoietic stem cells. Blood Rev. (2000) 14:205.
  • BOEVE S, STRUPECK J, CREECH S, STIFF PJ: Analysis of remobilization success in patients undergoing autologous stem cell transplants who fail an initial mobilization: risk factors, cytokine use and cost. Bone Marrow Transplant. (2004) 33:997-1003.
  • STEIDL U, FENK R, BRUNS I et al.: Successful transplantation of peripheral blood stem cells mobilized by chemotherapy and a single dose of pegylated G-CSF in patients with multiple myeloma. Bone Marrow Transplant. (2005) 35:33-36.
  • GOLAB J, STOKLOSA T, ZAGOZDZON R et al.: G-CSF prevents the suppression of bone marrow hematopoiesis induced by IL-12 and augments its antitumor activity in a melanoma model in mice. Ann. Oncol. (1998) 9:63-69.
  • BENCE-BRUCKLER I, BREDESON C, ATKINS H et al.: A randomized trial of granulocyte colony-stimulating factor (Neupogen) starting day 1 versus day 7 post-autologous stem cell transplantation. Bone Marrow Transplant. (1998) 22:965-969.
  • KAWANO Y, TAKAUE Y, MIMAYA J et al.: Marginal benefit/disadvantage of granulocyte colony-stimulating factor therapy after autologous blood stem cell transplantation in children: results of a prospective randomized trial. The Japanese Cooperative Study Group of PBSCT. Blood (1998) 92:4040-4046.
  • GONZALEZ-VICENT M, MADERO L, SEVILLA J, RAMIREZ M, DIAZ MA: A prospective randomized study of clinical and economic consequences of using G-CSF following autologous peripheral blood progenitor cell (PBSC) transplantation in children. Bone Marrow Transplant. (2004) 34:1077-1081.
  • BROSS DS, TUTSCHKA PJ, FARMER ER et al.: Predictive factors for acute graft-versus-host disease in patients transplanted with HLA-identical bone marrow. Blood (1984) 63:1265-1270.
  • FLOWERS ME, PEPE MS, LONGTON G et al.: Previous donor pregnancy as a risk factor for acute graft-versus-host disease in patients with aplastic anaemia treated by allogeneic marrow transplantation. Br. J. Haematol. (1990) 74:492-496.
  • GALE RP, BORTIN MM, VAN BEKKUM DW et al.: Risk factors for acute graft-versus-host disease. Br. J. Haematol. (1987) 67:397-406.
  • NASH RA, PEPE MS, STORB R et al.: Acute graft-versus-host disease: analysis of risk factors after allogeneic marrow transplantation and prophylaxis with cyclosporine and methotrexate. Blood (1992) 80:1838-1845.
  • JI SQ, CHEN HR, WANG HX, YAN HM, PAN SP, XUN CQ: Comparison of outcome of allogeneic bone marrow transplantation with and without granulocyte colony-stimulating factor (lenograstim) donor-marrow priming in patients with chronic myelogenous leukemia. Biol. Blood Marrow Transplant. (2002) 8:261-267.
  • RINGDEN O, LABOPIN M, GORIN NC et al.: Treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for acute leukemia increases the risk of graft-versus-host disease and death: a study from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. J. Clin. Oncol. (2004) 22:416-423.
  • KHOURY HJ, LOBERIZA FR, RINGDEN O et al.: Impact of posttransplant G-CSF on outcomes of allogeneic hematopoietic stem cell transplantation. Blood (2005) 107:1712-1716.
  • SOCINSKI MA, CANNISTRA SA, ELIAS A, ANTMAN KH, SCHNIPPER L, GRIFFIN JD: Granulocyte-macrophage colony-stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet (1988) 1:1194-1198.
  • GIANNI AM, BREGNI M, SIENA S et al.: Recombinant human granulocyte-macrophage colony-stimulating factor reduces hematologic toxicity and widens clinical applicability of high-dose cyclophosphamide treatment in breast cancer and non-Hodgkin’s lymphoma. J. Clin. Oncol. (1990) 8:768-778.
  • HAAS R, HO AD, BREDTHAUER U et al.: Successful autologous transplantation of blood stem cells mobilized with recombinant human granulocyte-macrophage colony-stimulating factors. Exp. Hematol. (1990) 18:94-98.
  • ARORA M, BURNS LJ, BARKER JN et al.: Randomized comparison of granulocyte colony-stimulating factor versus granulocyte-macrophage colony-stimulating factor plus intensive chemotherapy for peripheral blood stem cell mobilization and autologous transplantation in multiple myeloma. Biol. Blood Marrow Transplant. (2004) 10:395-404.
  • YORK A, CLIFT RA, SANDERS JE, BUCKNER CD: Recombinant human erythropoietin (rh-Epo) administration to normal marrow donors. Bone Marrow Transplant. (1992) 10:415-417.
  • MITUS AJ, ANTIN JH, RUTHERFORD CJ, MCGARIGLE CJ, GOLDBERG MA: Use of recombinant human erythropoietin in allogeneic bone marrow transplantation donor/recipient pairs. Blood (1994) 83:1952-1957.
  • LINK H, BOOGAERTS MA, FAUSER AA et al.: A controlled trial of recombinant human erythropoietin after bone marrow transplantation. Blood (1994) 84:3327-3335.
  • IRELAND RM, ATKINSON K, CONCANNON A, DODDS A, DOWNS K, BIGGS JC: Serum erythropoietin changes in autologous and allogeneic bone marrow transplant patients. Br. J. Haematol. (1990) 76:128-134.
  • BEGUIN Y, CLEMONS GK, ORIS R, FILLET G: Circulating erythropoietin levels after bone marrow transplantation: inappropriate response to anemia in allogeneic transplants. Blood (1991) 77:868-873.
  • MILLER CB, JONES RJ, ZAHURAK ML et al.: Impaired erythropoietin response to anemia after bone marrow transplantation. Blood (1992) 80:2677-2682.
  • PALTIEL O, COURNOYER D, RYBKA W: Pure red cell aplasia following ABO-incompatible bone marrow transplantation: response to erythropoietin. Transfusion (1993) 33:418-421.
  • VON DRYGALSKI A, ALESPEITI G, REN L, ADAMSON JW: Murine bone marrow cells cultured ex vivo in the presence of multiple cytokine combinations lose radioprotective and long-term engraftment potential. Stem Cells Dev. (2004) 13:101-111.
  • NACHBAUR D, KIRCHER B: Dendritic cells in allogeneic hematopoietic stem cell transplantation. Leuk. Lymphoma (2005) 46:1387-1396.
  • STROBL H, BELLO-FERNANDEZ C, RIEDL E et al.: Flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood (1997) 90:1425-1434.
  • LUFT T, PANG KC, THOMAS E et al.: Type I IFNs enhance the terminal differentiation of dendritic cells. J. Immunol. (1998) 161:1947-1953.
  • BROSSART P, GRUNEBACH F, STUHLER G et al.: Generation of functional human dendritic cells from adherent peripheral blood monocytes by CD40 ligation in the absence of granulocyte-macrophage colony-stimulating factor. Blood (1998) 92:4238-4247.
  • PERRUCCIO K, BOZZA S, MONTAGNOLI C et al.: Prospects for dendritic cell vaccination against fungal infections in hematopoietic transplantation. Blood Cells Mol. Dis. (2004) 33:248-55.
  • ASAVAROENGCHAI W, KOTERA Y, KOIKE N, PILON-THOMAS S, MULE JJ: Augmentation of antitumor immune responses after adoptive transfer of bone marrow derived from donors immunized with tumor lysate-pulsed dendritic cells. Biol. Blood Marrow Transplant. (2004) 10:524-533.
  • REICHARDT VL, OKADA CY, LISO A et al.: Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma--a feasibility study. Blood (1999) 93:2411-2419.
  • LEE JJ, KOOK H, PARK MS et al.: Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysatesfor acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J. Clin. Apher. (2004) 19:66-70.
  • RUGGERI L, MANCUSI A, CAPANNI M, MARTELLI MF, VELARDI A: Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr. Opin. Immunol. (2005) 17:211-217.
  • KLINGEMANN HG, MARTINSON J: Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy (2004) 6:15-22.
  • CARLENS S, GILLJAM M, CHAMBERS BJ et al.: A new method for in vitro expansion of cytotoxic human CD3-CD56+ natural killer cells. Hum. Immunol. (2001) 62:1092-1098.
  • PASSWEG JR, STERN M, KOEHL U, UHAREK L, TICHELLI A: Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant. (2005) 35:637-643.
  • NAGLER A, ACKERSTEIN A, OR R, NAPARSTEK E, SLAVIN S: Immunotherapy with recombinant human interleukin-2 and recombinant interferon-alpha in lymphoma patients post autologous marrow or stem cell transplantation. Blood (1997) 89:3951-3959.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.