190
Views
33
CrossRef citations to date
0
Altmetric
Review

Biodegradable scaffolds – delivery systems for cell therapies

&
Pages 485-498 | Published online: 13 Apr 2006

Bibliography

  • SHIEH SJ, VACANTI JP: State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery (2005) 137(1):1-7.
  • DUNNETT SB, BJORKLUND A: Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature (1999) 399(6738 Suppl.):A32-A39.
  • OLIVEIRA AA JR, HODGES HM: Alzheimer’s disease and neural transplantation as prospective cell therapy. Curr. Alzheimer Res. (2005) 2(1):79-95.
  • TUAN RS, BOLAND G, TULI R: Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. (2003) 5(1):32-45.
  • ZUK PA, ZHU M, MIZUNO H et al.: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. (2001) 7(2):211-228.
  • BRITTBERG M: Autologous chondrocyte transplantation. Clin. Orthop. Relat. Res. (1999) 367(Suppl.):S147-S155.
  • EHRLICH HP: Understanding experimental biology of skin equivalent: from laboratory to clinical use in patients with burns and chronic wounds. Am. J. Surg. (2004) 187(5A):29S-33S.
  • BRITTBERG M, LINDAHL A, NILSSON A et al.: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. (1994) 331(14):889-895.
  • ROBERTS S, MCCALL IW, DARBY AJ et al.: Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res. Ther. (2003) 5(1):R60-R73.
  • RUANO-RAVINA A, JATO DIAZ M: Autologous chondrocyte implantation: a systematic review. Osteoarthritis Cartilage (2006) 14(1):47-51.
  • BRITTBERG M, TALLHEDEN T, SJOGREN-JANSSON B et al.: Autologous chondrocytes used for articular cartilage repair: an update. Clin. Orthop. Relat. Res. (2001) 391(Suppl.):S337-348.
  • WHITTAKER JP, SMITH G, MAKWANA N et al.: Early results of autologous chondrocyte implantation in the talus. J. Bone Joint Surg. Br. (2005) 87(2):179-183.
  • PETERSON L, MINAS T, BRITTBERG M, LINDAHL A: Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J. Bone Joint Surg. Am. (2003) 85-A(Suppl. 2):17-24.
  • YANNAS IV, BURKE JF: Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. (1980) 14(1):65-81.
  • KEARNEY JN: Clinical evaluation of skin substitutes. Burns (2001) 27(5):545-551.
  • BANNASCH H, FOHN M, UNTERBERG T, BACH AD, WEYAND B, STARK GB: Skin tissue engineering. Clin. Plast. Surg. (2003) 30(4):573-579.
  • LAZAROW A, WELLS LJ, CARPENTER AM et al.: The Banting Memorial Lecture 1973: Islet differentiation, organ culture, and transplantation. Diabetes (1973) 22(12):877-912.
  • ORIVE G, HERNANDEZ RM, GASCON AR, IGARTUA M, PEDRAZ JL: Encapsulated cell technology: from research to market. Trends Biotechnol. (2002) 20(9):382-387.
  • ORIVE G, HERNANDEZ RM, GASCON AR et al.: Cell encapsulation: promise and progress. Nat. Med. (2003) 9(1):104-107.
  • DUNNETT SB, ROSSER AE: Cell therapy in Huntington’s disease. NeuroRx. (2004) 1(4):394-405.
  • BLOCH J, BACHOUD-LEVI AC, DEGLON N et al.: Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a Phase I study. Hum. Gene Ther. (2004) 15(10):968-975.
  • ROSSER AE, BARKER RA, HARROWER T et al.: Unilateral transplantation of human primary fetal tissue in four patients with Huntington’s disease: NEST-UK safety report ISRCTN no 36485475. J. Neurol. Neurosurg. Psychiatry (2002) 73(6):678-685.
  • GRIFFITH LG, NAUGHTON G. Tissue engineering-current challenges and expanding opportunities. Science (2002) 295(5557):1009-1014.
  • SITTINGER M, HUTMACHER DW, RISBUD MV: Current strategies for cell delivery in cartilage and bone regeneration. Curr. Opin. Biotechnol. (2004) 15(5):411-418.
  • RISBUD M: Tissue engineering: implications in the treatment of organ and tissue defects. Biogerontology (2001) 2(2):117-125.
  • AHSAN T, NEREM RM: Bioengineered tissues: the science, the technology, and the industry. Orthod. Craniofac. Res. (2005) 8(3):134-140.
  • HUBBELL JA: Biomaterials in tissue engineering. Biotechnology (NY) (1995) 13(6):565-576.
  • LANGER R, VACANTI JP: Tissue engineering. Science (1993) 260(5110):920-926.
  • YANG Y, EL HAJ AJ: Bone tissue engineering. Scope (2004) 13(3):33-35.
  • MALDA J, WOODFIELD TB, VAN DER VLOODT F et al.: The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials (2005) 26(1):63-72.
  • FREED LE, VUNJAK-NOVAKOVIC G, BIRON RJ et al.: Biodegradable polymer scaffolds for tissue engineering. Biotechnology (NY) (1994) 12(7):689-693.
  • CHEN G, USHIDA T, TATEISHI T: Development of biodegradable porous scaffolds for bone tissue engineering. Mater. Sci. Eng. (2001) 17:63-69.
  • HUTMACHER DW, SCHANTZ T, ZEIN I et al.: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. (2001) 55:203-216.
  • YANG Y, YIU HH, EL HAJ AJ: On-line fluorescent monitoring the degradation of polymeric scaffolds for tissue engineering. Analyst (2005) 130:1502-1506.
  • HUTMACHER DW: Scaffolds in tissue engineering bone and cartilage. Biomaterials (2000) 21:2529-2543.
  • EL-GHALBZOURI A, LAMME EN, VAN BLITTERSWIJK C et al.: The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials (2004) 25(15):2987-2996.
  • CHEN GQ, WU Q: The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials (2005) 26(33):6565-6578.
  • COOPER JA, LU HH, KO FK et al.: Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials (2005) 26(13):1523-1532.
  • SHERWOOD JK, RILEY SL, PALAZZOLO R et al.: A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials (2002) 23(24):4739-4751.
  • JEONG SI, KIM SH, KIM YH et al.: Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J. Biomater. Sci. Polym. Ed. (2004) 15(5):645-660.
  • GUAN J, FUJIMOTO KL, SACKS MS et al.: Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials (2005) 26(18):3961-3971.
  • HEIJKANTS RG, VAN CALCK RV, VAN TIENEN TG et al.: Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(ε-caprolactone) and 1,4-butane diisocyanate with uniform hard segment. Biomaterials (2005) 26:4219-4228.
  • D’EREDITA R, MARSH RR, LORA S et al.: A new absorbable pressure-equalizing tube. Otolaryngol. Head Neck Surg. (2002) 127(1):67-72.
  • NOVIKOV LN, NOVIKOVA LN, MOSAHEBI A et al.: A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials (2002) 23(16):3369-3376.
  • DOMB AJ, MANOR N, ELMALAK O: Biodegradable bone cement compositions based on acrylate and epoxide terminated poly(propylene fumarate) oligomers and calcium salt compositions. Biomaterials (1996) 17(4):411-417.
  • PANOYAN A, QUESNEL R, HILDGEN P: Injectable nanospheres from a novel multiblock copolymer: cytocompatibility, degradation and in vitro release studies. J. Microencapsul. (2003) 20(6):745-758.
  • FUJIMOTO M, ISOBE M, YAMAGUCHI S et al.: Poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane containing hydroxyapatite particles as scaffolds for bone regeneration. J. Biomater. Sci. Polym. Ed. (2005) 16(12):1611-1621.
  • CLAASE MB, GRIJPMA DW, MENDES SC, DE BRUIJN JD, FEIJEN J: Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing. J. Biomed. Mater. Res. A. (2003) 64(2):291-300.
  • MA PX, CHOI JW: Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. (2001) 7(1):23-33.
  • THOMSON RC, SHUNG AK, YASZEMSKI MJ: Polymer scaffold processing. In: Principles of Tissue Engineering. Lanza RP, Langer R, Vancanti J (Eds), Academic Press, USA (1997):251-262.
  • GOMES ME, RIBEIRO AS, MALAFAYA PB et al.: A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials (2001) 22(9):883-889.
  • WHITAKER MJ, QUIRK RA, HOWDLE SM et al.: Growth factor release from tissue engineering scaffolds. J. Pharm. Pharmacol. (2001) 53(11):1427-1437.
  • CHUN KW, CHO KC, KIM SH et al.: Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method. J. Biomater. Sci. Polym. Ed. (2004) 15(11):1341-1353.
  • JIN HJ, CHEN J, KARAGEORGIOU V et al.: Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials (2004) 25(6):1039-1047.
  • LIN CY, KIKUCHI N, HOLLISTER SJ: A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. (2004) 37(5):623-636.
  • LU HH, COOPER JA JR, MANUEL S et al.: Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials (2005) 26(23):4805-4816.
  • HENCH LL, POLAK JM: Third-generation biomedical materials. Science (2002) 295(5557):1014-1017.
  • BHATI RS, MUKHERJEE DP, MCCARTHY KJ et al.: The growth of chondrocytes into a fibronectin-coated biodegradable scaffold. J. Biomed. Mater. Res. (2001) 56(1):74-82.
  • NAITO M, FUNAKI C, HAYASHI T et al.: Substrate-bound fibrinogen, fibrin and other cell attachment-promoting proteins as a scaffold for cultured vascular smooth muscle cells. Atherosclerosis (1992) 96(2-3):227-234.
  • YANG Y, MAGNAY J, COOLING L, COOPER JJ, EL HAJ AJ: Effects of substrate characteristics on bone cell response to the mechanical environment. Med. Biol. Eng. Comput. (2004) 42(1):22-29.
  • SCOTCHFORD CA, CASCONE MG, DOWNES S et al.: Osteoblast responses to collagen-PVA bioartificial polymers in vitro: the effects of cross-linking method and collagen content. Biomaterials (1998) 19(1-3):1-11.
  • HEATH DJ, CHRISTIAN P, GRIFFIN M: Involvement of tissue transglutaminase in the stabilisation of biomaterial/tissue interfaces important in medical devices. Biomaterials (2002) 23(6):1519-1526.
  • OHYA Y, MATSUNAMI H, OUCHI T: Cell growth on the porous sponges prepared from poly(depsipeptide-co-lactide) having various functional groups. J. Biomater. Sci. Polym. Ed. (2004) 15(1):111-123.
  • YANG Y, PORTE MC, MARMEY P et al.: Covalent bonding of collagen on poly(L-lactic acid) by gamma irradiation. Nucl. Instr. Meth. B. (2003) 207(2):165-174.
  • SHIN H, JO S, MIKOS AG: Biomimetic materials for tissue engineering. Biomaterials (2003) 24(24):4353-4364.
  • DEE KC, ANDERSEN TT, BIZIOS R: Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J. Biomed. Mater. Res. (1998) 40(3):371-377.
  • YOO HS, LEE EA, YOON JJ et al.: Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials (2005) 26(14):1925-1933.
  • YOON JJ, SONG SH, LEE DS et al.: Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials (2004) 25(25):5613-5620.
  • BUCK CA, HORWITZ AF: Cell surface receptors for extracellular matrix molecules. Annu. Rev. Cell Biol. (1986) 3:179-205.
  • GRZESIK WJ, ROBEY PR: Bone matrix RGD glycoproteins: immunolocalization and interaction with primary osteoblastic cells in vitro. J. Bone Miner. Res. (1994) 9:487-496.
  • HERN DL, HUBBELL JA: Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. (1998) 39:266-276.
  • YANG XB, ROACH HI, CLARKE NM et al.: Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone (2001) 29(6):523-531.
  • MANJUBALA I, WOESZ A, PILZ C et al.: Biomimetic mineral-organic composite scaffolds with controlled internal architecture. J. Mater. Sci. Mater. Med. (2005) 16(12):1111-1119.
  • STEVENS MM, MAYER M, ANDERSON DG, WEIBEL DB, WHITESIDES GM, LANGER R: Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials (2005) 26(36):7636-7641.
  • FUKUDA J, KHADEMHOSSEINI A, YEH J et al.: Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials (2006) 27(8):1479-1486.
  • YANG Y, MAGNAY J, COOLING L et al.: Development of a ‘mechano-active’ scaffold for tissue engineering. Biomaterials (2002) 23:2119-2126.
  • WOOD MA, HUGHES S, YANG Y, EL HAJ AJ: Characterizing the efficacy of calcium channel agonist-release strategies for bone tissue engineering applications. J. Control. Release (2006) (In Press).
  • PEAKE MA, COOLING LM, MAGNAY JL, THOMAS PB, EL HAJ AJ: Selected contribution: regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells. J. Appl. Physiol. (2000) 89(6):2498-2507.
  • HUBBELL JA: Materials as morphogenetic guides in tissue engineering. Curr. Opin. Biotechnol. (2003) 14(5):551-558.
  • LU Q, GANESAN K, SIMIONESCU DT et al.: Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials (2004) 25(22):5227-5237.
  • CAMPODONICO F, BENELLI R, MICHELAZZI A et al.: Bladder cell culture on small intestinal submucosa as bioscaffold: experimental study on engineered urothelial grafts. Eur. Urol. (2004) 46(4):531-537.
  • DI MARTINO A, SITTINGER M, RISBUD MV: Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials (2005) 26(30):5983-5990.
  • CHUPA JM, FOSTER AM, SUMNER SR, MADIHALLY SV, MATTHEW HW: Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials (2000) 21(22):2315-2322.
  • BAGNANINCHI P, YANG Y, MAFFULLI N et al.: Investigation of tennocytes proliferation under perfusion in microchannel chitosan scaffolds by optical coherence tomography. Proceedings of the Annual Meeting of the Tissue and Cell Engineering Society. London, UK (20 – 22 June 2005).
  • DOILLON CJ, WATSKY MA, HAKIM M et al.: A collagen-based scaffold for a tissue engineered human cornea: physical and physiological properties. Int. J. Artif. Organs (2003) 26(8):764-773.
  • FREYRIA AM, YANG Y, CHAJRA H et al.: Optimisation of dynamic culture conditions: effects on biosynthetic activities of chondrocytes grown in collagen sponges. Tissue Eng. (2005) 11(5-6):674-684.
  • KOOB TJ, WILLIS TA, QIU YS et al.: Biocompatibility of NDGA-polymerized collagen fibers. II. Attachment, proliferation, and migration of tendon fibroblasts in vitro. J. Biomed. Mater. Res. (2001) 56(1):40-48.
  • GRIGOLO B, ROSETI L, FIORINI M et al.: Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials (2001) 22(17):2417-2424.
  • TURNER NJ, KIELTY CM, WALKER MG et al.: A novel hyaluronan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials (2004) 25(28):5955-5964.
  • PEREIRA CS, CUNHA AM, REIS RL et al.: New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J. Mater. Sci. Mater. Med. (1998) 9(12):825-833.
  • AZEVEDO HS, GAMA FM, REIS RL: In vitro assessment of the enzymatic degradation of several starch based biomaterials. Biomacromolecules (2003) 4(6):1703-1712.
  • GOMES ME, REIS RL, CUNHA AM et al.: Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing. Biomaterials (2001) 22(13):1911-1917.
  • DOYLE C, TANNER ET, BONFIELD W: In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials (1991) 12(9):841-847.
  • CHEN GQ, WU Q: The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials (2005) 26(33):6565-6578.
  • BACKDAHL H, HELENIUS G, BODIN A et al.: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials (2006) 27(9):2141-2149.
  • ALMANY L, SELIKTAR D: Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials (2005) 26(15):2467-2477.
  • HALSTENBERG S, PANITCH A, RIZZI S et al.: Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules (2002) 3(4):710-23.
  • TAKAHASHI Y, YAMAMOTO M, TABATA Y: Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomaterials (2005) 26(17):3587-3596.
  • TEMENOFF JS, MIKOS AG: Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials (2000) 21(23):2405-2412.
  • BENSAID W, TRIFFITT JT, BLANCHAT C et al.: A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials (2003) 24(14):2497-2502.
  • BALAKRISHNAN B, JAYAKRISHNAN A: Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials (2005) 26(18):3941-3951.
  • SHIN H, QUINTEN RUHE P, MIKOS AG et al.: In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials (2003) 24(19):3201-3211.
  • CHANG TM: Semipermeable microcapsules. Science (1964) 146:524-525.
  • LI RH: Materials for immunoisolated cell transplantation. Adv. Drug Deliv. Rev. (1998) 33(1-2):87-109.
  • RIHOVA B: Immunocompatibility and biocompatibility of cell delivery systems. Adv. Drug Deliv. Rev. (2000) 42:65-80.
  • ULUDAG H, DE VOS P, TRESCO PA: Technology of mammalian cell encapsulation. Adv. Drug Deliv. Rev. (2000) 42:29-64.
  • KLOCK G, PFEFFERMANN A, RYSER C et al.: Biocompatibility of mannuronic acid-rich alginates. Biomaterials (1997) 18(10):707-713.
  • HAQUE T, CHEN H, OUYANG W et al.: In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnol. Lett. (2005) 27(5):317-322.
  • LOU WH, QIN XY, WU ZG: Preliminary research on biocompatibility of alginate chitosan-polyethyleneglycol microcapsules. Minerva Biotecnol. (2000) 12:235-240.
  • CELLESI F, TIRELLI N, HUBBELL JA: Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Biomaterials (2004) 25(21):5115-5124.
  • YANG Y, ZHANG S, JONES G, MORGAN N, EL HAJ AJ: Phosphorylcholine-containing polymers for use in cell encapsulation. Artif. Cells Blood Substit. Immobil. Biotechnol. (2004) 32(1):91-104.
  • PUTNAM AJ, MOONEY DJ: Tissue engineering using synthetic extracellular matrices. Nat. Med. (1996) 2(7):824-826.
  • RICHARDSON TP, MURPHY WL, MOONEY DJ: Polymeric delivery of proteins and plasmid DNA for tissue engineering and gene therapy. Crit. Rev. Eukaryot. Gene Expr. (2001) 11(1-3):47-58.
  • SIMMONS CA, ALSBERG E, HSIONG S et al.: Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone (2004) 35(2):562-569.
  • ROYCE SM, ASKARI M, MARRA KG: Incorporation of polymer microspheres within fibrin scaffolds for the controlled delivery of FGF-1. J. Biomater. Sci. Polym. Ed. (2004) 15(10):1327-1336.
  • LUTOLF MP, HUBBELL JA: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. (2005) 23(1):47-55.
  • RICHARDSON TP, PETERS MC, ENNETT AB, MOONEY DJ: Polymeric system for dual growth factor delivery. Nat. Biotechnol. (2001) 19(11):1029-1034.
  • NIKKOLA L, SEPPALA J, ANDREU A et al.: Electrospun diclofenac sodium releasing nanoscaffold. J. Nanosci. Nanotechnol. (2006) (In Press).
  • SOHIER J, VLUGT TJ, CABROL N, VAN BLITTERSWIJK C, DE GROOT K, BEZEMER JM: Dual release of proteins from porous polymeric scaffolds. J. Control. Release (2006) 111(1-2):95-106.

Patent

Website

  • http://www.tissue-engineering-oc.com/ebook_topics_in_t_e/ebooks_links.html BTE website press release (2004). YANG Y, EL HAJ AJ: Enhancement of mechanical signals for tissue engineering bone. In: Topics in Tissue Engineering (Chapter 2). Ashammaki N, Waris T (Eds).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.