72
Views
10
CrossRef citations to date
0
Altmetric
Review

Gene therapy for treatment of inherited haematological disorders

, , &
Pages 509-522 | Published online: 13 Apr 2006

Bibliography

  • EDELSTEIN ML, ABEDI MR, WIXON J, EDELSTEIN RM: Gene therapy clinical trials worldwide 1989-2004-an overview. J. Gene Med. (2004) 6:597-602.
  • AIUTI A, SLAVIN S, AKER M et al.: Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science (2002) 296:2410-2413.
  • CAVAZZANA-CALVO M, HACEIN-BEY S, DE SAINT BASILE G et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science (2000) 288:669-672.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (2003) 302:415-419.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. (2003) 348:255-256.
  • KAY MA, MANNO CS, RAGNI MV et al.: Evidence for gene transfer and expression of Factor IX in haemophilia B patients treated with an AAV vector. Nat. Genet. (2000) 24:257-261.
  • MANNO CS, CHEW AJ, HUTCHISON S et al.: AAV-mediated Factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood (2003) 101:2963-2972.
  • MANNO CS, PIERCE GF, GLADER B et al.: Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. (2006) 12:342-347.
  • SUGAMURA K, ASAO H, KONDO M et al.: The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu. Rev. Immunol. (1996) 14:179-205.
  • NOGUCHI M, YI H, ROSENBLATT HM et al.: Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell (1993) 73:147-157.
  • LEONARD WJ: The molecular basis of X-linked severe combined immunodeficiency: defective cytokine receptor signaling. Annu. Rev. Med. (1996) 47:229-239.
  • FISCHER A, CAVAZZANA-CALVO M, DE SAINT BASILE G et al.: Naturally occurring primary deficiencies of the immune system. Annu. Rev. Immunol. (1997) 15:93-124.
  • WHITE H, THRASHER A, VEYS P, KINNON C, GASPAR HB: Intrinsic defects of B cell function in X-linked severe combined immunodeficiency. Eur. J. Immunol. (2000) 30:732-737.
  • ANTOINE C, MULLER S, CANT A et al.: Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99. Lancet (2003) 361:553-560.
  • BUCKLEY RH, SCHIFF SE, SCHIFF RI et al.: Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N. Engl. J. Med. (1999) 340:508-516.
  • CAVAZZANA-CALVO M, LAGRESLE C, HACEIN-BEY-ABINA S, FISCHER A: Gene therapy for severe combined immunodeficiency. Annu. Rev. Med. (2005) 56:585-602.
  • PUCK JM, NUSSBAUM RL, CONLEY ME: Carrier detection in X-linked severe combined immunodeficiency based on patterns of X chromosome inactivation. J. Clin. Invest. (1987) 79:1395-1400.
  • STEPHAN V, WAHN V, LE DEIST F et al.: Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N. Engl. J. Med. (1996) 335:1563-1567.
  • BOUSSO P, WAHN V, DOUAGI I et al.: Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc. Natl. Acad. Sci. USA (2000) 97:274-278.
  • HACEIN-BEY H, CAVAZZANA-CALVO M, LE DEIST F et al.: gamma-c gene transfer into SCID X1 patients’ B-cell lines restores normal high-affinity interleukin-2 receptor expression and function. Blood (1996) 87:3108-3116.
  • HACEIN-BEY-ABINA S, LE DEIST F, CARLIER F et al.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. (2002) 346:1185-1193.
  • GASPAR HB, PARSLEY KL, HOWE S et al.: Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet (2004) 364:2181-2187.
  • GINN SL, CURTIN JA, KRAMER B et al.: Treatment of an infant with X-linked severe combined immunodeficiency (SCID-X1) by gene therapy in Australia. Med. J. Aust. (2005) 182:458-463.
  • SCHMIDT M, HACEIN-BEY-ABINA S, WISSLER M et al.: Clonal evidence for the transduction of CD34+ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood (2005) 105:2699-2706.
  • COUZIN J, KAISER J: Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science (2005) 307:1028.
  • DAVE UP, JENKINS NA, COPELAND NG: Gene therapy insertional mutagenesis insights. Science (2004) 303:333.
  • BAUM C, VON KALLE C, STAAL FJ et al.: Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol. Ther. (2004) 9:5-13.
  • LI Z, DULLMANN J, SCHIEDLMEIER B et al.: Murine leukemia induced by retroviral gene marking. Science (2002) 296:497.
  • MODLICH U, KUSTIKOVA OS, SCHMIDT M et al.: Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood (2005) 105:4235-4246.
  • CALMELS B, FERGUSON C, LAUKKANEN MO et al.: Recurrent retroviral vector integration at the MDS1-EVI1 locus in non-human primate hematopoietic cells. Blood (2005) 106:2530-2533.
  • KIEM HP, SELLERS S, THOMASSON B et al.: Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol. Ther. (2004) 9:389-395.
  • SEGGEWISS R, PITTALUGA S, ADLER RL et al.: Acute myeloid leukemia associated with retroviral gene transfer to hematopoietic progenitor cells of a rhesus macaque. Blood (2006) (In Press).
  • ROYER-POKORA B, LOOS U, LUDWIG WD: TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene (1991) 6:1887-1893.
  • LARSON RC, OSADA H, LARSON TA, LAVENIR I, RABBITTS TH: The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice. Oncogene (1995) 11:853-862.
  • NEALE GA, REHG JE, GOORHA RM: Ectopic expression of rhombotin-2 causes selective expansion of CD4-CD8- lymphocytes in the thymus and T-cell tumors in transgenic mice. Blood (1995) 86:3060-3071.
  • SCHMIDT M, CARBONARO DA, SPECKMANN C et al.: Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nat. Med. (2003) 9:463-468.
  • CAVAZZANA-CALVO M, FISCHER A: Efficacy of gene therapy for SCID is being confirmed. Lancet (2004) 364:2155-2156.
  • SINN PL, SAUTER SL, MCCRAY PB JR: Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors-design, biosafety, and production. Gene Ther. (2005) 12:1089-1098.
  • THRASHER AJ, HACEIN-BEY-ABINA S, GASPAR HB et al.: Failure of SCID-X1 gene therapy in older patients. Blood (2005) 105:4255-4257.
  • HERSHFIELD MS: Adenosine deaminase deficiency: clinical expression, molecular basis, and therapy. Semin. Hematol. (1998) 35:291-298.
  • ALDRICH MB, BLACKBURN MR, KELLEMS RE: The importance of adenosine deaminase for lymphocyte development and function. Biochem. Biophys. Res. Commun. (2000) 272:311-315.
  • HIRSCHHORN R, YANG DR, ISRANI A, HUIE ML, OWNBY DR: Somatic mosaicism for a newly identified splice-site mutation in a patient with adenosine deaminase-deficient immunodeficiency and spontaneous clinical recovery. Am. J. Hum. Genet. (1994) 55:59-68.
  • ARREDONDO-VEGA FX, SANTISTEBAN I, RICHARD E et al.: Adenosine deaminase deficiency with mosaicism for a ‘second-site suppressor’ of a splicing mutation: decline in revertant T lymphocytes during enzyme replacement therapy. Blood (2002) 99:1005-1013.
  • BLAESE RM, CULVER KW, MILLER AD et al.: T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science (1995) 270:475-480.
  • MULLEN CA, SNITZER K, CULVER KW, MORGAN RA, ANDERSON WF, BLAESE RM: Molecular analysis of T lymphocyte-directed gene therapy for adenosine deaminase deficiency: long-term expression in vivo of genes introduced with a retroviral vector. Hum. Gene Ther. (1996) 7:1123-1129.
  • MUUL LM, TUSCHONG LM, SOENEN SL et al.: Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood (2003) 101:2563-2569.
  • BORDIGNON C, NOTARANGELO LD, NOBILI N et al.: Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science (1995) 270:470-475.
  • ONODERA M, ARIGA T, KAWAMURA N et al.: Successful peripheral T-lymphocyte-directed gene transfer for a patient with severe combined immune deficiency caused by adenosine deaminase deficiency. Blood (1998) 91:30-36.
  • AIUTI A, VAI S, MORTELLARO A et al.: Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat. Med. (2002) 8:423-425.
  • KOHN DB, HERSHFIELD MS, CARBONARO D et al.: T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat. Med. (1998) 4:775-780.
  • CHUAH MK, SCHIEDNER G, THORREZ L et al.: Therapeutic Factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. Blood (2003) 101:1734-1743.
  • BALAGUE C, ZHOU J, DAI Y et al.: Sustained high-level expression of full-length human Factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood (2000) 95:820-828.
  • MURUVE DA: The innate immune response to adenovirus vectors. Hum. Gene Ther. (2004) 15:1157-1166.
  • SARKAR R, XIAO W, KAZAZIAN HH JR: A single adeno-associated virus (AAV)-murine Factor VIII vector partially corrects the hemophilia A phenotype. J. Thromb. Haemost. (2003) 1:220-226.
  • SCALLAN CD, LILLICRAP D, JIANG H et al.: Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector. Blood (2003) 102:2031-2037.
  • SCALLAN CD, LIU T, PARKER AE et al.: Phenotypic correction of a mouse model of hemophilia A using AAV2 vectors encoding the heavy and light chains of FVIII. Blood (2003) 102:3919-3926.
  • SARKAR R, TETREAULT R, GAO G et al.: Total correction of hemophilia A mice with canine FVIII using an AAV 8 serotype. Blood (2004) 103:1253-1260.
  • GAO G, ALVIRA MR, SOMANATHAN S et al.: Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc. Natl. Acad. Sci. USA (2003) 100:6081-6086.
  • MILLER DG, ADAM MA, MILLER AD: Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol. (1990) 10:4239-4242.
  • VANDENDRIESSCHE T, VANSLEMBROUCK V, GOOVAERTS I et al.: Long-term expression of human coagulation Factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in Factor VIII-deficient mice. Proc. Natl. Acad. Sci. USA (1999) 96:10379-10384.
  • PARK F, OHASHI K, KAY MA: Therapeutic levels of human Factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver. Blood (2000) 96:1173-1176.
  • STEIN CS, KANG Y, SAUTER SL et al.: In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol. Ther. (2001) 3:850-856.
  • SARZOTTI M: Immunologic tolerance. Curr. Opin. Hematol. (1997) 4:48-52.
  • XU L, NICHOLS TC, SARKAR R, MCCORQUODALE S, BELLINGER DA, PONDER KP: Absence of a desmopressin response after therapeutic expression of Factor VIII in hemophilia A dogs with liver-directed neonatal gene therapy. Proc. Natl. Acad. Sci. USA (2005) 102:6080-6085.
  • SAENKO EL, ANANYEVA NM, MOAYERI M, RAMEZANI A, HAWLEY RG: Development of improved Factor VIII molecules and new gene transfer approaches for hemophilia A. Curr. Gene Ther. (2003) 3:27-41.
  • MOAYERI M, RAMEZANI A, MORGAN RA, HAWLEY TS, HAWLEY RG: Sustained phenotypic correction of hemophilia a mice following oncoretroviral-mediated expression of a bioengineered human Factor VIII gene in long-term hematopoietic repopulating cells. Mol. Ther. (2004) 10:892-902.
  • MOAYERI M, HAWLEY TS, HAWLEY RG: Correction of murine hemophilia a by hematopoietic stem cell gene therapy. Mol. Ther. (2005) 12:1034-1042.
  • BROWN BD, SHI CX, POWELL S, HURLBUT D, GRAHAM FL, LILLICRAP D: Helper-dependent adenoviral vectors mediate therapeutic Factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A. Blood (2004) 103:804-810.
  • GALLO-PENN AM, SHIRLEY PS, ANDREWS JL et al.: Systemic delivery of an adenoviral vector encoding canine Factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia A dogs. Blood (2001) 97:107-113.
  • ANDREWS JL, SHIRLEY PS, IVERSON WO et al.: Evaluation of the duration of human Factor VIII expression in nonhuman primates after systemic delivery of an adenoviral vector. Hum. Gene Ther. (2002) 13:1331-1336.
  • CHUAH MK, COLLEN D, VANDENDRIESSCHE T: Clinical gene transfer studies for hemophilia A. Semin. Thromb. Hemost. (2004) 30:249-256.
  • SCHNELL MA, ZHANG Y, TAZELAAR J et al.: Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol. Ther. (2001) 3:708-722.
  • POWELL JS, RAGNI MV, WHITE GC 2ND et al.: Phase I trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood (2003) 102:2038-2045.
  • ROTH DA, TAWA NE JR, O’BRIEN JM, TRECO DA, SELDEN RF: Nonviral transfer of the gene encoding coagulation Factor VIII in patients with severe hemophilia A. N. Engl. J. Med. (2001) 344:1735-1742.
  • HERZOG RW, HAGSTROM JN, KUNG SH et al.: Stable gene transfer and expression of human blood coagulation Factor IX after intramuscular injection of recombinant adeno-associated virus. Proc. Natl. Acad. Sci. USA (1997) 94:5804-5809.
  • HERZOG RW, YANG EY, COUTO LB et al.: Long-term correction of canine hemophilia B by gene transfer of blood coagulation Factor IX mediated by adeno-associated viral vector. Nat. Med. (1999) 5:56-63.
  • HERZOG RW, FIELDS PA, ARRUDA VR et al.: Influence of vector dose on Factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum. Gene Ther. (2002) 13:1281-1291.
  • ARRUDA VR, FIELDS PA, MILNER R et al.: Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. Mol. Ther. (2001) 4:586-592.
  • FIELDS PA, KOWALCZYK DW, ARRUDA VR et al.: Role of vector in activation of T cell subsets in immune responses against the secreted transgene product Factor IX. Mol. Ther. (2000) 1:225-235.
  • FIELDS PA, ARRUDA VR, ARMSTRONG E et al.: Risk and prevention of anti-factor IX formation in AAV-mediated gene transfer in the context of a large deletion of F9. Mol. Ther. (2001) 4:201-210.
  • HERZOG RW, MOUNT JD, ARRUDA VR, HIGH KA, LOTHROP CD JR: Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation. Mol. Ther. (2001) 4:192-200.
  • WANG L, CAO O, SWALM B, DOBRZYNSKI E, MINGOZZI F, HERZOG RW: Major role of local immune responses in antibody formation to Factor IX in AAV gene transfer. Gene Ther. (2005) 12:1453-1464.
  • ARRUDA VR, STEDMAN HH, NICHOLS TC et al.: Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood (2005) 105:3458-3464.
  • SCHUETTRUMPF J, HERZOG RW, SCHLACHTERMAN A, KAUFHOLD A, STAFFORD DW, ARRUDA VR: Factor IX variants improve gene therapy efficacy for hemophilia B. Blood (2005) 105:2316-2323.
  • SNYDER RO, MIAO C, MEUSE L et al.: Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat. Med. (1999) 5:64-70.
  • WANG L, NICHOLS TC, READ MS, BELLINGER DA, VERMA IM: Sustained expression of therapeutic level of Factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol. Ther. (2000) 1:154-158.
  • MOUNT JD, HERZOG RW, TILLSON DM et al.: Sustained phenotypic correction of hemophilia B dogs with a Factor IX null mutation by liver-directed gene therapy. Blood (2002) 99:2670-2676.
  • NATHWANI AC, DAVIDOFF AM, HANAWA H et al.: Sustained high-level expression of human Factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood (2002) 100:1662-1669.
  • WANG L, TAKABE K, BIDLINGMAIER SM, ILL CR, VERMA IM: Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc. Natl. Acad. Sci. USA (1999) 96:3906-3910.
  • NATHWANI AC, DAVIDOFF A, HANAWA H, ZHOU JF, VANIN EF, NIENHUIS AW: Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human Factor IX cDNA. Blood (2001) 97:1258-1265.
  • MINGOZZI F, LIU YL, DOBRZYNSKI E et al.: Induction of immune tolerance to coagulation Factor IX antigen by in vivo hepatic gene transfer. J. Clin. Invest. (2003) 111:1347-1356.
  • DOBRZYNSKI E, FITZGERALD JC, CAO O, MINGOZZI F, WANG L, HERZOG RW: Prevention of cytotoxic T lymphocyte responses to Factor IX expressing hepatocytes by gene transfer-induced regulatory T cells. Proc. Natl Acad. Sci. USA (2006) 103:4592-4597.
  • DOBRZYNSKI E, MINGOZZI F, LIU YL et al.: Induction of antigen-specific CD4+ T-cell anergy and deletion by in vivo viral gene transfer. Blood (2004) 104:969-977.
  • WANG L, HERZOG RW: AAV-mediated gene transfer for treatment of hemophilia. Curr. Gene Ther. (2005) 5:349-360.
  • GAO GP, ALVIRA MR, WANG L, CALCEDO R, JOHNSTON J, WILSON JM: Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad. Sci. USA (2002) 99:11854-11859.
  • DAVIDOFF AM, GRAY JT, NG CY et al.: Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol. Ther. (2005) 11:875-888.
  • WANG L, CALCEDO R, NICHOLS TC et al.: Sustained correction of disease in naive and AAV2-pretreated hemophilia B dogs: AAV2/8-mediated, liver-directed gene therapy. Blood (2005) 105:3079-3086.
  • SABATINO DE, MINGOZZI F, HUI DJ et al.: Identification of mouse AAV capsid-specific CD8+ T cell epitopes. Mol. Ther. (2005) 12:1023-1033.
  • XU L, GAO C, SANDS MS et al.: Neonatal or hepatocyte growth factor-potentiated adult gene therapy with a retroviral vector results in therapeutic levels of canine Factor IX for hemophilia B. Blood (2003) 101:3924-3932.
  • ZHANG J, XU L, HASKINS ME, PARKER PONDER K: Neonatal gene transfer with a retroviral vector results in tolerance to human Factor IX in mice and dogs. Blood (2004) 103:143-151.
  • SADELAIN M, RIVELLA S, LISOWSKI L, SAMAKOGLU S, RIVIERE I: Globin gene transfer for treatment of the beta-thalassemias and sickle cell disease. Best Pract. Res. Clin. Haematol. (2004) 17:517-534.
  • PERSONS DA, ALLAY ER, SAWAI N et al.: Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood (2003) 102:506-513.
  • LI Q, ZHANG M, HAN H, ROHDE A, STAMATOYANNOPOULOS G: Evidence that DNase I hypersensitive site 5 of the human beta-globin locus control region functions as a chromosomal insulator in transgenic mice. Nucleic Acids Res. (2002) 30:2484-2491.
  • MAY C, RIVELLA S, CALLEGARI J et al.: Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature (2000) 406:82-86.
  • PAWLIUK R, WESTERMAN KA, FABRY ME et al.: Correction of sickle cell disease in transgenic mouse models by gene therapy. Science (2001) 294:2368-2371.
  • OH IH, FABRY ME, HUMPHRIES RK et al.: Expression of an anti-sickling beta-globin in human erythroblasts derived from retrovirally transduced primitive normal and sickle cell disease hematopoietic cells. Exp. Hematol. (2004) 32:461-469.
  • HANAWA H, HEMATTI P, KEYVANFAR K et al.: Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood (2004) 103:4062-4069.
  • IMREN S, FABRY ME, WESTERMAN KA et al.: High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J. Clin. Invest. (2004) 114:953-962.
  • MIYOSHI H, SMITH KA, MOSIER DE, VERMA IM, TORBETT BE: Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science (1999) 283:682-686.
  • GUENECHEA G, GAN OI, INAMITSU T et al.: Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol. Ther. (2000) 1:566-573.
  • HANAWA H, KELLY PF, NATHWANI AC et al.: Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol. Ther. (2002) 5:242-251.
  • HORN PA, MORRIS JC, BUKOVSKY AA et al.: Lentivirus-mediated gene transfer into hematopoietic repopulating cells in baboons. Gene Ther. (2002) 9:1464-1471.
  • HORN PA, TOPP MS, MORRIS JC, RIDDELL SR, KIEM HP: Highly efficient gene transfer into baboon marrow repopulating cells using GALV-pseudotype oncoretroviral vectors produced by human packaging cells. Blood (2002) 100:3960-3967.
  • AN DS, WERSTO RP, AGRICOLA BA et al.: Marking and gene expression by a lentivirus vector in transplanted human and nonhuman primate CD34(+) cells. J. Virol. (2000) 74:1286-1295.
  • AN DS, KUNG SK, BONIFACINO A et al.: Lentivirus vector-mediated hematopoietic stem cell gene transfer of common gamma-chain cytokine receptor in rhesus macaques. J. Virol. (2001) 75:3547-3555.
  • KUNG SK, AN DS, BONIFACINO A et al.: Induction of transgene-specific immunological tolerance in myeloablated nonhuman primates using lentivirally transduced CD34+ progenitor cells. Mol. Ther. (2003) 8:981-991.
  • PERSONS DA, HARGROVE PW, ALLAY ER, HANAWA H, NIENHUIS AW: The degree of phenotypic correction of murine beta-thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood (2003) 101:2175-2183.
  • HANAWA H, HARGROVE PW, KEPES S, SRIVASTAVA DK, NIENHUIS AW, PERSONS DA: Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. Blood (2004) 104:2281-2290.
  • GERSON SL: Clinical relevance of MGMT in the treatment of cancer. J. Clin. Oncol. (2002) 20:2388-2399.
  • NEFF T, HORN PA, PETERSON LJ et al.: Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. J. Clin. Invest. (2003) 112:1581-1588.
  • ZIELSKE SP, GERSON SL: Cytokines, including stem cell factor alone, enhance lentiviral transduction in nondividing human LTCIC and NOD/SCID repopulating cells. Mol. Ther. (2003) 7:325-333.
  • OTT MG, GREZ M, STEIN S et al.: Long-term follow-up of patients treated by gene therapy for X-linked chronic granulomatous disease. Blood (2005) 106:60a.
  • GALIMI F, NOLL M, KANAZAWA Y et al.: Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors. Blood (2002) 100:2732-2736.
  • HORN PA, KEYSER KA, PETERSON LJ et al.: Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol. Blood (2004) 103:3710-3716.
  • LIU JM, KIM S, READ EJ et al.: Engraftment of hematopoietic progenitor cells transduced with the Fanconi anemia group C gene (FANCC). Hum. Gene Ther. (1999) 10(14):2337-2346.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.