161
Views
15
CrossRef citations to date
0
Altmetric
Review

Gene therapy for chronic granulomatous disease

, MD, , MD PhD, , PhD & , MD
Pages 1799-1809 | Published online: 22 Nov 2007

Bibliography

  • BRENNER S, MALECH HL: Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochim. Biophys. Acta (2003) 1640:1-24.
  • ROE T, REYNOLDS TC, YU G, BROWN PO: Integration of murine leukemia virus DNA depends on mitosis. EMBO J. (1993) 12:2099-2108.
  • ROESLER J, BRENNER S, BUKOVSKY AA et al.: Third-generation, self-inactivating gp91(phox) lentivector corrects the oxidase defect in NOD/SCID mouse-repopulating peripheral blood-mobilized CD34+ cells from patients with X-linked chronic granulomatous disease. Blood (2002) 100:4381-4390.
  • BRENNER S, RYSER MF, WHITING-THEOBALD NL et al.: The late dividing population of g-retroviral vector transduced human mobilized peripheral blood progenitor cells contributes most to gene-marked cell engraftment in nonobese diabetic/severe combined immunodeficient mice. Stem Cells (2007) 25:1807-1813.
  • CAVAZZANA-CALVO M, HACEIN-BEY S, DE SAINT BG et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science (2000) 288:669-672.
  • HACEIN-BEY-ABINA S, LE DEIST F, CARLIER F et al.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. (2002) 346:1185-1193.
  • KAISER J: Gene therapy. Panel urges limits on X-SCID trials. Science (2005) 307:1544-1545.
  • HACEIN-BEY-ABINA S, VON KC, SCHMIDT M et al.: A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. (2003) 348:255-256.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (2003) 302:415-419.
  • FISCHER A, ABINA SH, THRASHER A, VON KC, CAVAZZANA-CALVO M: LMO2 and gene therapy for severe combined immunodeficiency. N. Engl. J. Med. (2004) 350:2526-2527.
  • GASPAR HB, PARSLEY KL, HOWE S et al.: Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped g-retroviral vector. Lancet (2004) 364:2181-2187.
  • LI Z, DULLMANN J, SCHIEDLMEIER B et al.: Murine leukemia induced by retroviral gene marking. Science (2002) 296:497.
  • KUSTIKOVA O, FEHSE B, MODLICH U et al.: Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science (2005) 308:1171-1174.
  • HEMATTI P, HONG BK, FERGUSON C et al.: Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol. (2004) 2:E423.
  • SEGGEWISS R, PITTALUGA S, ADLER RL et al.: Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood (2006) 107:3865-3867.
  • BAUM C, DULLMANN J, LI Z et al.: Side effects of retroviral gene transfer into hematopoietic stem cells. Blood (2003) 101:2099-2114.
  • NIENHUIS AW, DUNBAR CE, SORRENTINO BP: Genotoxicity of retroviral integration in hematopoietic cells. Mol. Ther. (2006) 13:1031-1049.
  • BAUM C: Insertional mutagenesis in gene therapy and stem cell biology. Curr. Opin. Hematol. (2007) 14:337-342.
  • CONRAD DJ, WARNOCK M, BLANC P, COWAN M, GOLDEN JA: Microgranulomatous aspergillosis after shoveling wood chips: report of a fatal outcome in a patient with chronic granulomatous disease. Am. J. Ind. Med. (1992) 22:411-418.
  • CURNUTTE JT: Chronic granulomatous disease: the solving of a clinical riddle at the molecular level. Clin. Immunol. Immunopathol. (1993) 67:S2-S15.
  • FORREST CB, FOREHAND JR, AXTELL RA, ROBERTS RL, JOHNSTON RB Jr: Clinical features and current management of chronic granulomatous disease. Hematol. Oncol. Clin. North Am. (1988) 2:253-266.
  • JOHNSTON RB Jr: Clinical aspects of chronic granulomatous disease. Curr. Opin. Hematol. (2001) 8:17-22.
  • JUNG K, ELSNER J, EMMENDORFFER A et al.: Severe infectious complications in a girl suffering from atopic dermatitis were found to be due to chronic granulomatous disease. Acta Derm. Venereol. (1993) 73:433-436.
  • KELLY JK, PINTO AR, WHITELAW WA et al.: Fatal Aspergillus pneumonia in chronic granulomatous disease. Am. J. Clin. Pathol. (1986) 86:235-240.
  • LACY DE, SPENCER DA, GOLDSTEIN A, WELLER PH, DARBYSHIRE P: Chronic granulomatous disease presenting in childhood with Pseudomonas cepacia septicaemia. J. Infect. (1993) 27:301-304.
  • SEGAL BH, LETO TL, GALLIN JI, MALECH HL, HOLLAND SM: Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) (2000) 79:170-200.
  • CHIN TW, STIEHM ER, FALLOON J, GALLIN JI: Corticosteroids in treatment of obstructive lesions of chronic granulomatous disease. J. Pediatr. (1987) 111:349-352.
  • MARCIANO BE, ROSENZWEIG SD, KLEINER DE et al.: Gastrointestinal involvement in chronic granulomatous disease. Pediatrics (2004) 114:462-468.
  • MOSKALUK CA, POGREBNIAK HW, PASS HI, GALLIN JI, TRAVIS WD: Surgical pathology of the lung in chronic granulomatous disease. Am. J. Clin. Pathol. (1994) 102:684-691.
  • DE RAVIN SS, NAUMANN N, ROBINSON MR et al.: Sarcoidosis in chronic granulomatous disease. Pediatrics (2006) 117:E590-E595.
  • BRUNNER J, DOCKTER G, ROSEN-WOLFF A, ROESLER J: X-linked chronic granulomatous disease (CGD) caused by an intra-exonic splice mutation (CYBB exon 3, c.262G->A) is mimicking juvenile sarcoidosis. Clin. Exp. Rheumatol. (2007) 25:336-338.
  • SEGAL AW: How superoxide production by neutrophil leukocytes kills microbes. Novartis Found. Symp. (2006) 279:92-98.
  • FEMLING JK, CHERNY VV, MORGAN D et al.: The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels. J. Gen. Physiol. (2006) 127:659-672.
  • ROESLER J, KOCH A, PORKSEN G et al.: Benefit assessment of preventive medical check-ups in patients suffering from chronic granulomatous disease (CGD). J.Eval. Clin. Pract. (2005) 11:513-521.
  • GALLIN JI, ALLING DW, MALECH HL et al.: Itraconazole to prevent fungal infections in chronic granulomatous disease. N. Engl. J. Med. (2003) 348:2416-2422.
  • MARGOLIS DM, MELNICK DA, ALLING DW, GALLIN JI: Trimethoprim-sulfamethoxazole prophylaxis in the management of chronic granulomatous disease. J. Infect. Dis. (1990) 162:723-726.
  • HORWITZ ME, BARRETT AJ, BROWN MR et al.: Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T-cell-depleted hematopoietic allograft. N. Engl. J. Med. (2001) 344:881-888.
  • SCHUETZ C, HOENIG M, SCHULZ A et al.: Successful unrelated bone marrow transplantation in a child with chronic granulomatous disease complicated by pulmonary and cerebral granuloma formation. Eur. J. Pediatr. (2007) 166:785-788.
  • SEGER RA, GUNGOR T, BELOHRADSKY BH et al.: Treatment of chronic granulomatous disease with myeloablative conditioning and an unmodified hemopoietic allograft: a survey of the European experience, 1985 – 2000. Blood (2002) 100:4344-4350.
  • DE MATTIA D, BALSASSARRE M, RONDELLI R et al.: Long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: updating of Italian multicenter study. XII Meeting of the European Society for Immunodeficiencies (ESID) (2006):D14 (Abstract).
  • WINKELSTEIN JA, MARINO MC, JOHNSTON RB Jr et al.: Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) (2000) 79:155-169.
  • MALECH HL: Progress in gene therapy for chronic granulomatous disease. J. Infect. Dis. (1999) 179(Suppl. 2):S318-S325.
  • DINAUER MC, GIFFORD MA, PECH N, LI LL, EMSHWILLER P: Variable correction of host defense following gene transfer and bone marrow transplantation in murine X-linked chronic granulomatous disease. Blood (2001) 97:3738-3745.
  • MAUCH L, LUN A, O'GORMAN MR et al.: Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Clin. Chem. (2007) 53:890-896.
  • THRASHER A, CHETTY M, CASIMIR C, SEGAL AW: Restoration of superoxide generation to a chronic granulomatous disease-derived B-cell line by retrovirus mediated gene transfer. Blood (1992) 80:1125-1129.
  • ZHEN L, KING AA, XIAO Y et al.: Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc. Natl. Acad. Sci. USA (1993) 90:9832-9836.
  • DE MI, ADAMS AG, SOKOLIC RA, MALECH HL, LETO TL: Multiple SH3 domain interactions regulate NADPH oxidase assembly in whole cells. EMBO J. (1996) 15:1211-1220.
  • WEIL WM, LINTON GF, WHITING-THEOBALD N et al.: Genetic correction of p67phox deficient chronic granulomatous disease using peripheral blood progenitor cells as a target for retrovirus mediated gene transfer. Blood (1997) 89:1754-1761.
  • DINAUER MC, LI LL, BJORGVINSDOTTIR H, DING C, PECH N: Long-term correction of phagocyte NADPH oxidase activity by retroviral-mediated gene transfer in murine X-linked chronic granulomatous disease. Blood (1999) 94:914-922.
  • MARDINEY M III, JACKSON SH, SPRATT SK et al.: Enhanced host defense after gene transfer in the murine p47phox-deficient model of chronic granulomatous disease. Blood (1997) 89:2268-2275.
  • GOEBEL WS, PECH NK, DINAUER MC: Stable long-term gene correction with low-dose radiation conditioning in murine X-linked chronic granulomatous disease. Blood Cells Mol. Dis. (2004) 33:365-371.
  • BJORGVINSDOTTIR H, DING C, PECH N et al.: Retroviral-mediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood (1997) 89:41-48.
  • BRENNER S, WHITING-THEOBALD NL, LINTON GF et al.: Concentrated RD114-pseudotyped MFGS-gp91phox vector achieves high levels of functional correction of the chronic granulomatous disease oxidase defect in NOD/SCID/ β-microglobulin-/- repopulating mobilized human peripheral blood CD34+ cells. Blood (2003) 102:2789-2797.
  • TING-DE RAVIN SS, KENNEDY DR, NAUMANN N et al.: Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy. Blood (2006) 107:3091-3097.
  • BAUER TR Jr, HAI M, TUSCHONG LM et al.: Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood (2006) 108:3313-3320.
  • BRENNER S, RYSER MF, CHOI U et al.: Polyclonal long-term MFGS-gp91phox marking in rhesus macaques after nonmyeloablative transplantation with transduced autologous peripheral blood progenitor cells. Mol. Ther. (2006) 14:202-211.
  • MALECH HL, MAPLES PB, WHITING-THEOBALD N et al.: Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl. Acad. Sci. USA (1997) 94:12133-12138.
  • MALECH HL, CHOI U, BRENNER S: Progress toward effective gene therapy for chronic granulomatous disease. Jpn J. Infect. Dis. (2004) 57:S27-S28.
  • BARESE CN, GOEBEL WS, DINAUER MC: Gene therapy for chronic granulomatous disease. Expert Opin. Biol. Ther. (2004) 4:1423-1434.
  • BORDIGNON C, NOTARANGELO LD, NOBILI N et al.: Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science (1995) 270:470-475.
  • AIUTI A, VAI S, MORTELLARO A et al.: Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat. Med. (2002) 8:423-425.
  • AIUTI A, SLAVIN S, AKER M et al.: Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science (2002) 296:2410-2413.
  • AIUTI A, CASSANI B, ANDOLFI G et al.: Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J. Clin. Invest. (2007) 117:2233-2240.
  • GASPAR HB, BJORKEGREN E, PARSLEY K et al.: Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol. Ther. (2006) 14:505-513.
  • OTT MG, SEGER R, STEIN S et al.: Advances in the treatment of chronic granulomatous disease by gene therapy. Curr. Gene Ther. (2007) 7:155-161.
  • OTT MG, SCHMIDT M, SCHWARZWAELDER K et al.: Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat. Med. (2006) 12:401-409.
  • NOTHEIS G, TARANI L, COSTANTINO F et al.: Posaconazole for treatment of refractory invasive fungal disease. Mycoses (2006) 49(Suppl. 1):37-41.
  • KANG EM, LINTON G, THEOBALD N et al.: Transplantation of genetically modified cells for treatment of infection in patients with X-linked chronic granulomatous disease (X-CGD). Mol. Ther. (2007) 15:S295.
  • ZHANG F, THORNHILL SI, HOWE SJ et al.: Lentiviral vectors containing an enhancer-less ubiquitously-acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in haematopoietic cells. Blood (2007) 110:1448-1457.
  • ZYCHLINSKI D, SCHAMBACH A, MODLICH U et al.: Self-inactivating retroviral vectors harboring cellular promoters reduce the risk of insertional transactivation and transformation. Mol. Ther. (2007) 15:S404-S405.
  • MONTINI E, CESANA D, SCHMIDT M et al.: Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol. (2006) 24:687-696.
  • AKER M, TUBB J, GROTH AC et al.: Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum. Gene Ther. (2007) 18:333-343.
  • CAMPBELL TB, HANGOC G, LIU Y, POLLOK K, BROXMEYER HE: Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Dev. (2007) 16:347-354.
  • KAWAI T, CHOI U, LIU PC et al.: Diprotin A infusion into nonobese diabetic/severe combined immunodeficiency mice markedly enhances engraftment of human mobilized CD34+ peripheral blood cells. Stem Cells Dev. (2007) 16:361-370.
  • CHRISTOPHERSON KW, PAGANESSI LA, NAPIER S, PORECHA NK: CD26 inhibition on CD34+ or lineage-human umbilical cord blood donor hematopoietic stem cells/hematopoietic progenitor cells improves long-term engraftment into NOD/SCID/β2null immunodeficient mice. Stem Cells Dev. (2007) 16:355-360.
  • MitchelL RS, BEITZEL BF, SCHRODER AR et al.: Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. (2004) 2:E234.
  • SCHRODER AR, SHINN P, CHEN H et al.: HIV-1 integration in the human genome favors active genes and local hotspots. Cell (2002) 110:521-529.
  • ZABOIKIN M, SRINIVASAKUMAR N, SCHUENING F: Gene therapy with drug resistance genes. Cancer Gene Ther. (2006) 13:335-345.
  • NEFF T, BEARD BC, KIEM HP: Survival of the fittest: in vivo selection and stem cell gene therapy. Blood (2006) 107:1751-1760.
  • DAVIS BM, KOC ON, GERSON SL: Limiting numbers of G156A O(6)-methylguanine-DNA methyltransferase-transduced marrow progenitors repopulate nonmyeloablated mice after drug selection. Blood (2000) 95:3078-3084.
  • SAWAI N, ZHOU S, VANIN EF et al.: Protection and in vivo selection of hematopoietic stem cells using temozolomide, O6-benzylguanine, and an alkyltransferase-expressing retroviral vector. Mol. Ther. (2001) 3:78-87.
  • GERULL S, BEARD BC, PETERSON LJ, NEFF T, KIEM HP: In vivo selection and chemoprotection after drug resistance gene therapy in a nonmyeloablative allogeneic transplantation setting in dogs. Hum. Gene Ther. (2007) 18:451-456.
  • NEFF T, HORN PA, PETERSON LJ et al.: Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. J. Clin. Invest. (2003) 112:1581-1588.
  • NEFF T, BEARD BC, PETERSON LJ et al.: Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy 2. Blood (2005) 105:997-1002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.