190
Views
31
CrossRef citations to date
0
Altmetric
Review

Intrabody strategies for the treatment of human papillomavirus-associated disease

&
Pages 677-689 | Published online: 03 May 2007

Bibliography

  • ANTMAN KH, LIVINGSTON DM: Intracellular neutralization of SV40 tumor antigens following microinjection of specific antibody. Cell (1980) 19(3):627-635.
  • ECKERT BS, DALEY RA, PARYSEK LM: In vivo disruption of the cytokeratin cytoskeleton in cultured epithelial cells by microinjection of antikeratin: evidence for the presence of an intermediate-filament-organizing center. Cold Spring Harb. Symp. Quant. Biol. (1982) 46(Pt 1):403-1412.
  • VISINTIN M, SETTANNI G, MARITAN A et al.: The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. J. Mol. Biol. (2002) 317(1):73-83.
  • TSE E, LOBATO MN, FORSTER A et al.: Intracellular antibody capture technology: application to selection of intracellular antibodies recognising the BCR-ABL oncogenic protein. J. Mol. Biol. (2002) 317(1):85-94.
  • AUF DER MAUR A, ESCHER D, BARBERIS A: Antigen-independent selection of stable intracellular single-chain antibodies. FEBS Lett. (2001) 508(3):407-412.
  • VISINTIN M, TSE E, AXELSON H, RABBITTS TH, CATTANEO A: Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc. Natl. Acad. Sci. USA (1999) 96(21):11723-11728.
  • COLBY DW, CHU Y, CASSADY JP et al.: Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc. Natl. Acad. Sci. USA (2004) 101(51):17616-17621.
  • LECERF JM, SHIRLEY TL, ZHU Q et al.: Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington’s disease. Proc. Natl. Acad. Sci. USA (2001) 98(8):4764-4769.
  • ZHOU C, EMADI S, SIERKS MR, MESSER A: A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed alpha-synuclein. Mol. Ther. (2004) 10(6):1023-1031.
  • PAGANETTI P, CALANCA V, GALLI C, STEFANI M, MOLINARI M: Beta-site specific intrabodies to decrease and prevent generation of Alzheimer’s Abeta peptide. J. Cell Biol. (2005) 168(6):863-868.
  • MARASCO WA, CHEN S, RICHARDSON JH, RAMSTEDT U, JONES SD: Intracellular antibodies against HIV-1 envelope protein for AIDS gene therapy. Hum. Gene Ther. (1998) 9(11):1627-1642.
  • MHASHILKAR AM, BAGLEY J, CHEN SY et al.: Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies. EMBO J. (1995) 14(7):1542-1551.
  • AIRES DA SILVA F, SANTA-MARTA M, FREITAS-VIEIRA A et al.: Camelized rabbit-derived VH single-domain intrabodies against Vif strongly neutralize HIV-1 infectivity. J. Mol. Biol. (2004) 340(3):525-542.
  • ZEMEL R, BERDICHEVSKY Y, BACHMATOV L, BENHAR I, TUR-KASPA R: Inhibition of hepatitis C virus NS3-mediated cell transformation by recombinant intracellular antibodies. J. Hepatol. (2004) 40(6):1000-1007.
  • FIGINI M, FERRI R, MEZZANZANICA D et al.: Reversion of transformed phenotype in ovarian cancer cells by intracellular expression of anti folate receptor antibodies. Gene Ther. (2003) 10(12):1018-1025.
  • STRUBE RW, CHEN SY: Characterization of anti-cyclin E single-chain Fv antibodies and intrabodies in breast cancer cells: enhanced intracellular stability of novel sFv-F(c) intrabodies. J. Immunol. Methods (2002) 263(1-2):149-167.
  • CARON DE FROMENTEL C, GRUEL N, VENOT C et al.: Restoration of transcriptional activity of p53 mutants in human tumour cells by intracellular expression of anti-p53 single chain Fv fragments. Oncogene (1999) 18(2):551-557.
  • DOORBAR J: Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. (London) (2006) 110(5):525-541.
  • GIBBS S, HARVEY I, STERLING J, STARK R: Local treatments for cutaneous warts: systematic review. Br. Med. J. (2002) 325(7362):461.
  • LACEY CJ: Therapy for genital human papillomavirus-related disease. J. Clin. Virol. (2005) 32(Suppl. 1):S82-S90.
  • SONNEX C, LACEY CJ: The treatment of human papillomavirus lesions of the lower genital tract. Best Pract. Res. Clin. Obstet. Gynaecol. (2001) 15(5):801-816.
  • STAMATAKI S, NIKOLOPOULOS TP, KORRES S et al.: Juvenile recurrent respiratory papillomatosis: still a mystery disease with difficult management. Head Neck (2007) 29(2):155-162.
  • DOORBAR J, CUBIE H: Molecular basis for advances in cervical screening. Mol. Diagn. (2005) 9(3):129-142.
  • FRANCO EL, HARPER DM: Vaccination against human papillomavirus infection: a new paradigm in cervical cancer control. Vaccine (2005) 23(17-18):2388-2394.
  • WRIGHT TC, BOSCH FX, FRANCO EL et al.: Chapter 30: HPV vaccines and screening in the prevention of cervical cancer; conclusions from a 2006 workshop of international experts. Vaccine (2006) 24(Suppl. 3):S251-S261.
  • WANG-JOHANNING F, GILLESPIE GY, GRIM J et al.: Intracellular expression of a single-chain antibody directed against human papillomavirus type 16 E7 oncoprotein achieves targeted antineoplastic effects. Cancer Res. (1998) 58(9):1893-1900.
  • ACCARDI L, DONA MG, DI BONITO P, GIORGI C: Intracellular anti-E7 human antibodies in single-chain format inhibit proliferation of HPV16-positive cervical carcinoma cells. Int. J. Cancer (2005) 116(4):564-570.
  • GRIFFIN H, ELSTON R, JACKSON D et al.: Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting. J. Mol. Biol. (2006) 355(3):360-378.
  • WILSON VG, ROSAS-ACOSTA G: Molecular targets for papillomavirus therapy. Curr. Drug Targets Infect. Disord. (2003) 3(3):221-239.
  • DOORBAR J: The papillomavirus life cycle. J. Clin. Virol. (2005) 32(Suppl.):7-15.
  • WILSON VG, WEST M, WOYTEK K, RANGASAMY D: Papillomavirus E1 proteins: form, function, and features. Virus Genes (2002) 24(3):275-290.
  • ANGELETTI PC, KIM K, FERNANDES FJ, LAMBERT PF: Stable replication of papillomavirus genomes in Saccharomyces cerevisiae. J. Virol. (2002) 76(7):3350-3358.
  • KIM K, ANGELETTI PC, HASSEBROEK EC, LAMBERT PF: Identification of cis-acting elements that mediate the replication and maintenance of human papillomavirus type 16 genomes in Saccharomyces cerevisiae. J. Virol. (2005) 79(10):5933-5942.
  • KIM K, LAMBERT PF: E1 protein of bovine papillomavirus 1 is not required for the maintenance of viral plasmid DNA replication. Virology (2002) 293(1):10-14.
  • CATTANEO A, BIOCCA S: The selection of intracellular antibodies. Trends Biotechnol. (1999) 17(3):115-121.
  • ZHOU P, BOGACKI R, MCREYNOLDS L, HOWLEY PM: Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell (2000) 6(3):751-756.
  • ASHRAFI GH, HAGHSHENAS M, MARCHETTI B, CAMPO MS: E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int. J. Cancer (2006) 119(9):2105-2112.
  • NAKAHARA T, PEH WL, DOORBAR J, LEE D, LAMBERT PF: Human papillomavirus type 16 E1^E4 contributes to multiple facets of the papillomavirus life cycle. J. Virol. (2005) 79(20):13150-13165.
  • WILSON R, FEHRMANN F, LAIMINS LA: Role of the E1^E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J. Virol. (2005) 79(11):6732-6740.
  • FEHRMANN F, KLUMPP DJ, LAIMINS LA: Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J. Virol. (2003) 77(5):2819-2831.
  • GENTHER SM, STERLING S, DUENSING S et al.: Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J. Virol. (2003) 77(5):2832-2842.
  • DOORBAR J, GALLIMORE PH: Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus type 1a. J. Virol. (1987) 61:2793-2799.
  • KIRNBAUER R, TAUB J, GREENSTONE H et al.: Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus like particles. J. Virol. (1993) 67:6929-6936.
  • CROSBIE EJ, KITCHENER HC: Human papillomavirus in cervical screening and vaccination. Clin. Sci. (London) (2006) 110(5):543-552.
  • ZHAO KN, HENGST K, LIU WJ et al.: BPV1 E2 protein enhances packaging of full-length plasmid DNA in BPV1 pseudovirions. Virology (2000) 272(2):382-393.
  • YOU J, SCHWEIGER MR, HOWLEY PM: Inhibition of E2 binding to brd4 enhances viral genome loss and phenotypic reversion of bovine papillomavirus-transformed cells. J. Virol. (2005) 79(23):14956-14961.
  • PETT MR, HERDMAN MT, PALMER RD et al.: Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response. Proc. Natl. Acad. Sci. USA (2006) 103(10):3822-3827.
  • HERDMAN MT, PETT MR, ROBERTS I et al.: Interferon-{beta} treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes promotes rapid reduction in episome numbers and emergence of latent integrants. Carcinogenesis (2006) 27(11):2341-2353.
  • HEBNER CM, LAIMINS LA: Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev. Med. Virol. (2006) 16(2):83-97.
  • ZHANG B, CHEN W, ROMAN A: The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc. Natl. Acad. Sci. USA (2006) 103(2):437-442.
  • SCHEFFNER M, WERNESS BA, HUIBREGTSE JM, LEVINE AJ, HOWLEY PM: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell (1990) 63(6):1129-1136.
  • THOMAS M, PIM D, BANKS L: The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene (1999) 18(53):7690-7700.
  • GOODWIN EC, DIMAIO D: Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl. Acad. Sci. USA (2000) 97(23):12513-12518.
  • BUTZ K, DENK C, ULLMANN A, SCHEFFNER M, HOPPE-SEYLER F: Induction of apoptosis in human papillomaviruspositive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc. Natl. Acad. Sci. USA (2000) 97(12):6693-6697.
  • DIPAOLO JA, ALVAREZ-SALAS LM: Advances in the development of therapeutic nucleic acids against cervical cancer. Expert Opin. Biol. Ther. (2004) 4(8):1251-1264.
  • ALVAREZ-SALAS LM, ARPAWONG TE, DIPAOLO JA: Growth inhibition of cervical tumor cells by antisense oligodeoxynucleotides directed to the human papillomavirus type 16 E6 gene. Antisense Nucleic Acid Drug Dev. (1999) 9(5):441-450.
  • ALVAREZ-SALAS LM, CULLINAN AE, SIWKOWSKI A, HAMPEL A, DIPAOLO JA: Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. Proc. Natl. Acad. Sci. USA (1998) 95(3):1189-1194.
  • NIU XY, PENG ZL, DUAN WQ, WANG H, WANG P: Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int. J. Gynecol. Cancer (2006) 16(2):743-751.
  • JIANG M, MILNER J: Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene (2002) 21(39):6041-6048.
  • WELLS SI, FRANCIS DA, KARPOVA AY et al.: Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. EMBO J. (2000) 19(21):5762-5771.
  • ACCARDI L, DONA MG, DI BONITO P, GIORGI C: Intracellular anti-E7 human antibodies in single-chain format inhibit proliferation of HPV16-positive cervical carcinoma cells. Int. J. Cancer (2005) 116:564-570.
  • MILNER J: RNA interference for treating cancers caused by viral infection. Expert Opin. Biol. Ther. (2003) 3(3):459-467.
  • DOBBELSTEIN M: Viruses in therapy-royal road or dead end? Virus Res. (2003) 92(2):219-221.
  • LAVIGNE MD, GORECKI DC: Emerging vectors and targeting methods for nonviral gene therapy. Expert Opin. Emerg. Drugs (2006) 11(3):541-557.
  • CROSS D, BURMESTER JK: Gene therapy for cancer treatment: past, present and future. Clin. Med. Res. (2006) 4(3):218-227.
  • YIH TC, AL-FANDI M: Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. (2006) 97(6):1184-1190.
  • MASTROBATTISTA E, VAN DER AA MA, HENNINK WE, CROMMELIN DJ: Artificial viruses: a nanotechnological approach to gene delivery. Nat. Rev. Drug Discov. (2006) 5(2):115-121.
  • DYKXHOORN DM, LIEBERMAN J: Knocking down disease with siRNAs. Cell (2006) 126(2):231-235.
  • WAGSTAFF KM, JANS DA: Protein transduction: cell penetrating peptides and their therapeutic applications. Curr. Med. Chem. (2006) 13(12):1371-1387.
  • LAMBERT PF, OZBUN MA, COLLINS A et al.: Using an immortalized cell line to study the HPV life cycle in organotypic ‘raft’ cultures. Methods Mol. Med. (2005) 119:141-155.
  • WILSON R, LAIMINS LA: Differentiation of HPV-containing cells using organotypic ‘raft’ culture or methylcellulose. Methods Mol. Med. (2005) 119:157-169.
  • MCLAUGHLIN-DRUBIN ME, MEYERS C: Propagation of infectious, high-risk HPV in organotypic ‘raft’ culture. Methods Mol. Med. (2005) 119:171-186.
  • FANG L, MEYERS C, BUDGEON LR, HOWETT MK: Induction of productive human papillomavirus type 11 life cycle in epithelial cells grown in organotypic raft cultures. Virology (2006) 347(1):28-35.
  • BONNEZ W: The HPV xenograft severe combined immunodeficiency mouse model. Methods Mol. Med. (2005) 119:203-216.
  • BONNEZ W, DARIN C, BORKHUIS C et al.: Isolation and propogation of human papillomavirus type 16 in human xenografts implanted in the severe combined immunodeficiency mouse. J. Virol. (1998) 72(6):5256-5261.
  • PEH WL, MIDDLETON K, CHRISTENSEN N et al.: Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J. Virol. (2002) 76(20):10401-10416.
  • BRANDSMA JL: The cottontail rabbit papillomavirus model of high-risk HPV-induced disease. Methods Mol. Med. (2005) 119:217-235.
  • HARVEY SB, CLADEL NM, BUDGEON LR et al.: Rabbit genital tissue is susceptible to infection by rabbit oral papillomavirus: an animal model for a genital tissue targeting papillomavirus. J. Virol. (1998) 72(6):5239-5244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.