1,042
Views
41
CrossRef citations to date
0
Altmetric
Technology Evaluation

Design of synthetic antibody libraries

Pages 763-779 | Published online: 03 May 2007

Bibliography

  • KÖHLER G, MILSTEIN C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (1975) 256(5517):495-497.
  • SKERRA A, PLÜCKTHUN A: Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science (1988) 240(4855):1038-1041.
  • ORLANDI R, GUSSOW DH, JONES PT, WINTER G: Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl Acad. Sci. USA (1989) 86(10):3833-3837.
  • WARD ES, GUSSOW D, GRIFFITHS AD, JONES PT, WINTER G: Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature (1989) 341(6242):544-546.
  • HUSE WD, SASTRY L, IVERSON SA et al.: Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science (1989) 246(4935):1275-1281.
  • HOOGENBOOM HR: Selecting and screening recombinant antibody libraries. Nat. Biotechnol. (2005) 23(9):1105-1116.
  • SERGEEVA A, KOLONIN MG, MOLLDREM JJ, PASQUALINI R, ARAP W: Display technologies: application for the discovery of drug and gene delivery agents. Adv. Drug Deliv. Rev. (2006) 58(15):1622-1654.
  • BURTON DR, BARBAS CF, PERSSON MA et al.: A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. USA (1991) 88(22):10134-10137.
  • MCCAFFERTY J, GRIFFITHS AD, WINTER G, CHISWELL DJ: Phage antibodies: filamentous phage displaying antibody variable domains. Nature (1990) 348(6301):552-554.
  • MARKS JD, HOOGENBOOM HR, BONNERT TP et al.: By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. (1991) 222(3):581-597.
  • WINTER G, GRIFFITHS AD, HAWKINS RE, HOOGENBOOM HR: Making antibodies by phage display technology. Annu. Rev. Immunol. (1994) 12:433-455.
  • CLACKSON T, HOOGENBOOM HR, GRIFFITHS AD, WINTER G: Making antibody fragments using phage display libraries. Nature (1991) 352(6336):624-628.
  • VAUGHAN TJ, WILLIAMS AJ, PRITCHARD K et al.: Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. (1996) 14(3):309-314.
  • GRIFFITHS AD: Production of human antibodies using bacteriophage. Curr. Opin. Immunol. (1993) 5(2):263-267.
  • HOOGENBOOM HR, WINTER G: By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. (1992) 227(2):381-388.
  • BARBAS CF 3RD, BAIN JD, HOEKSTRA DM, LERNER RA: Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA (1992) 89:4457-4461.
  • NEMAZEE D, HOGQUIST KA: Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr. Opin. Immunol. (2003) 15(2):182-189.
  • HOLLIGER P, HUDSON PJ: Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. (2005) 23(9):1126-1136.
  • HOLT LJ, HERRING C, JESPERS LS, WOOLVEN BP, TOMLINSON IM: Domain antibodies: proteins for therapy. Trends Biotechnol. (2003) 21(11):484-490.
  • DE GENST E, SAERENS D, MUYLDERMANS S, CONRATH K: Antibody repertoire development in camelids. Dev. Comp. Immunol. (2006) 30(1-2):187-198.
  • REVETS H, DE BAETSELIER P, MUYLDERMANS S: Nanobodies as novel agents for cancer therapy. Expert Opin. Biol. Ther. (2005) 5(1):111-124.
  • ROTHE A, HOSSE RJ, POWER BE: In vitro display technologies reveal novel biopharmaceutics. FASEB J. (2006) 20(10):1599-1610.
  • TANHA J, DUBUC G, HIRAMA T, NARANG SA, MACKENZIE CR: Selection by phage display of llama conventional V(H) fragments with heavy chain antibody V(H)H properties. J. Immunol. Methods (2002) 263(1-2):97-109.
  • SCHOONBROODT S, FRANS N, DESOUZA M et al.: Oligonucleotide-assisted cleavage and ligation: a novel directional DNA cloning technology to capture cDNAs. Application in the construction of a human immune antibody phage-display library. Nucleic Acids Res. (2005) 33(9):e81.
  • GONCALVEZ AP, MEN R, WERNLY C, PURCELL RH, LAI CJ: Chimpanzee Fab fragments and a derived humanized immunoglobulin G1 antibody that efficiently cross-neutralize dengue type 1 and type 2 viruses. J. Virol. (2004) 78(23):12910-12918.
  • HAWLISCH H, MEYER ZU VILSENDORF A, BAUTSCH W, KLOS A, KOHL J: Guinea pig C3 specific rabbit single chain Fv antibodies from bone marrow, spleen and blood derived phage libraries. J. Immunol. Methods (2000) 236(1-2):117-131.
  • O’BRIEN PM, AITKEN R, O’NEIL BW, CAMPO MS: Generation of native bovine mAbs by phage display. Proc. Natl. Acad. Sci. USA (1999) 96(2):640-645.
  • ARBABI GHAHROUDI M, DESMYTER A, WYNS L, HAMERS R, MUYLDERMANS S: Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. (1997) 414:521-526.
  • LI Y, KILPATRICK J, WHITELAM GC: Sheep monoclonal antibody fragments generated using a phage display system. J. Immunol. Methods (2000) 236(1-2):133-146.
  • YAMANAKA HI, INOUE T, IKEDA-TANAKA O: Chicken monoclonal antibody isolated by a phage display system. J. Immunol. (1996) 157(3):1156-1162.
  • SHAO CY, SECOMBES CJ, PORTER AJ: Rapid isolation of IgNAR variable single-domain antibody fragments from a shark synthetic library. Mol. Immunol. (2007) 44(4):656-665.
  • CHAPAL N, BOUANANI M, EMBLETON MJ et al.: In-cell assembly of scFv from human thyroid-infiltrating B cells. Biotechniques (1997) 23(3):518-524.
  • DENKBERG G, LEV A, EISENBACH L, BENHAR I, REITER Y: Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J. Immunol. (2003) 171(5):2197-2207.
  • EDWARDS BM, BARASH SC, MAIN SH et al.: The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J. Mol. Biol. (2003) 334(1):103-118.
  • MOULARD M, PHOGAT SK, SHU Y et al.: Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes. Proc. Natl. Acad. Sci. USA (2002) 99(10):6913-6918.
  • KRAMER RA, MARISSEN WE, GOUDSMIT J et al.: The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries. Eur. J. Immunol. (2005) 35(7):2131-2145.
  • MARZARI R, SBLATTERO D, FLORIAN F et al.: Molecular dissection of the tissue transglutaminase autoantibody response in celiac disease. J. Immunol. (2001) 166(6):4170-4176.
  • WINTER G, MILSTEIN C: Man-made antibodies. Nature (1991) 349(6307):293-299.
  • NISSIM A, HOOGENBOOM HR, TOMLINSON IM et al.: Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents. EMBO J. (1994) 13(3):692-698.
  • DE KRUIF J, BOEL E, LOGTENBERG T: Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. J. Mol. Biol. (1995) 248(1):97-105.
  • KNAPPIK A, PLÜCKTHUN A: Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. (1995) 8(1):81-89.
  • KNAPPIK A, GE L, HONEGGER A et al.: Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. (2000) 296(1):57-86.
  • PINI A, VITI F, SANTUCCI A et al.: Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J. Biol. Chem. (1998) 273(34):21769-21776.
  • JIRHOLT P, OHLIN M, BORREBAECK CA, SODERLIND E: Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene (1998) 215(2):471-476.
  • SODERLIND E, STRANDBERG L, JIRHOLT P et al.: Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat. Biotechnol. (2000) 18(8):852-856.
  • AZRIEL-ROSENFELD R, VALENSI M, BENHAR I: A human synthetic combinatorial library of arrayable single-chain antibodies based on shuffling in vivo formed CDRs into general framework regions. J. Mol. Biol. (2004) 335:177-192.
  • ROTHLISBERGER D, POS KM, PLÜCKTHUN A: An antibody library for stabilizing and crystallizing membrane proteins – selecting binders to the citrate carrier CitS. FEBS Lett. (2004) 564(3):340-348.
  • ROTHE A, HOSSE RJ, POWER BE: Ribosome display for improved biotherapeutic molecules. Expert Opin. Biol. Ther. (2006) 6(2):177-187.
  • LOWE D, JERMUTUS L: Combinatorial protein biochemistry for therapeutics and proteomics. Curr. Pharm. Biotechnol. (2004) 5(1):17-27.
  • FOOTE J, EISEN HN: Breaking the affinity ceiling for antibodies and T cell receptors. Proc. Natl. Acad. Sci. USA (2000) 97(20):10679-10681.
  • BARBAS CF 3RD, HU D, DUNLOP N et al.: In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc. Natl. Acad. Sci. USA (1994) 91:3809-3813.
  • WARK KL, HUDSON PJ: Latest technologies for the enhancement of antibody affinity. Adv. Drug Deliv. Rev. (2006) 58(5-6):657-670.
  • BLAISE L, WEHNERT A, STEUKERS MP et al.: Construction and diversification of yeast cell surface displayed libraries by yeast mating: application to the affinity maturation of Fab antibody fragments. Gene (2004) 342(2):211-218.
  • HO M, KREITMAN RJ, ONDA M, PASTAN I: In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin. J. Biol. Chem. (2005) 280(1):607-617.
  • CHOWDHURY PS, PASTAN I: Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat. Biotechnol. (1999) 17(6):568-572.
  • ROSOK MJ, EGHTEDARZADEH-KONDRI M, YOUNG K et al.: Analysis of BR96 binding sites for antigen and anti-idiotype by codon-based scanning mutagenesis. J. Immunol. (1998) 160(5):2353-2359.
  • BURKS EA, CHEN G, GEORGIOU G, IVERSON BL: In vitro scanning saturation mutagenesis of an antibody binding pocket. Proc. Natl. Acad. Sci. USA (1997) 94(2):412-417.
  • CHAMES P, COULON S, BATY D: Improving the affinity and the fine specificity of an anti-cortisol antibody by parsimonious mutagenesis and phage display. J. Immunol. (1998) 161(10):5421-5429.
  • BALINT RF, LARRICK JW: Antibody engineering by parsimonious mutagenesis. Gene (1993) 137:109-118.
  • FELLOUSE FA, WIESMANN C, SIDHU SS: Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc. Natl. Acad. Sci. USA (2004) 101(34):12467-12472.
  • HARVEY BR, GEORGIOU G, HAYHURST A et al.: Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc. Natl. Acad. Sci. USA (2004) 101(25):9193-9198.
  • LU D, SHEN J, VIL MD et al.: Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J. Biol. Chem. (2003) 278(44):43496-43507.
  • BODER ET, MIDELFORT KS, WITTRUP KD: Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. USA (2000) 97(20):10701-10705.
  • LOW NM, HOLLIGER PH, WINTER G: Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. (1996) 260(3):359-368.
  • COIA G, HUDSON PJ, IRVING RA: Protein affinity maturation in vivo using E. coli mutator cells. J. Immunol. Methods (2001) 251(1-2):187-193.
  • YANG WP, GREEN K, PINZ-SWEENEY S et al.: CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. (1995) 254(3):392-403.
  • YELTON DE, ROSOK MJ, CRUZ G et al.: Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis. J. Immunol. (1995) 155(4):1994-2004.
  • SCHIER R, BALINT R, MCCALL A et al.: Identification of functional and structural amino-acid residues by parsimonious mutagenesis. Gene (1996) 169(2):147-155.
  • SCHIER R, MCCALL A, ADAMS GP et al.: Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. (1996) 263(4):551-567.
  • WU H, BEUERLEIN G, NIE Y et al.: Stepwise in vitro affinity maturation of Vitaxin, an alphav beta3-specific humanized mAb. Proc. Natl. Acad. Sci. USA (1998) 95(11):6037-6042.
  • BACA M, PRESTA LG, O’CONNOR SJ, WELLS JA: Antibody humanization using monovalent phage display. J. Biol. Chem. (1997) 272:10678-10684.
  • CHEN Y, WIESMANN C, FUH G et al.: Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol. (1999) 293(4):865-881.
  • WU H, PFARR DS, TANG Y et al.: Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization. J. Mol. Biol. (2005) 350(1):126-144.
  • GRAM H, MARCONI LA, BARBAS CF 3RD et al.: In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA (1992) 89(8):3576-3580.
  • HAWKINS RE, RUSSELL SJ, WINTER G: Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. (1992) 226(3):889-896.
  • IRVING RA, KORTT AA, HUDSON PJ: Affinity maturation of recombinant antibodies using E. coli mutator cells. Immunotechnology (1996) 2(2):127-143.
  • PARK SG, LEE JS, JE EY et al.: Affinity maturation of natural antibody using a chain shuffling technique and the expression of recombinant antibodies in Escherichia coli. Biochem. Biophys. Res. Commun. (2000) 275(2):553-557.
  • DAUGHERTY PS, CHEN G, IVERSON BL, GEORGIOU G: Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. Proc. Natl. Acad. Sci. USA (2000) 97(5):2029-2034.
  • HANES J, SCHAFFITZEL C, KNAPPIK A, PLÜCKTHUN A: Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. (2000) 18(12):1287-1292.
  • GRAFF CP, CHESTER K, BEGENT R, WITTRUP KD: Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37 degrees C. Protein Eng. Des. Sel. (2004) 17(4):293-304.
  • ZAHND C, SPINELLI S, LUGINBUHL B et al.: Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. J. Biol. Chem. (2004) 279(18):18870-18877.
  • KOTZ JD, BOND CJ, COCHRAN AG: Phage-display as a tool for quantifying protein stability determinants. Eur. J. Biochem. (2004) 271(9):1623-1629.
  • JESPERS L, SCHON O, FAMM K, WINTER G: Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat. Biotechnol. (2004) 22(9):1161-1165.
  • JUNG S, HONEGGER A, PLÜCKTHUN A: Selection for improved protein stability by phage display. J. Mol. Biol. (1999) 294(1):163-180.
  • JUNG S, PLÜCKTHUN A: Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Eng. (1997) 10(8):959-966.
  • JERMUTUS L, HONEGGER A, SCHWESINGER F, HANES J, PLÜCKTHUN A: Tailoring in vitro evolution for protein affinity or stability. Proc. Natl. Acad. Sci. USA (2001) 98(1):75-80.
  • TO R, HIRAMA T, ARBABI-GHAHROUDI M et al.: Isolation of monomeric human V(H)s by a phage selection. J. Biol. Chem. (2005) 280(50):41395-41403.
  • RADER C, CHERESH DA, BARBAS CF 3RD: A phage display approach for rapid antibody humanization: designed combinatorial V gene libraries. Proc. Natl. Acad. Sci. USA (1998) 95(15):8910-8915.
  • KRAUSS J, ARNDT MA, MARTIN AC, LIU H, RYBAK SM: Specificity grafting of human antibody frameworks selected from a phage display library: generation of a highly stable humanized anti-CD22 single-chain Fv fragment. Protein Eng. (2003) 16(10):753-759.
  • HUST M, DUBEL S: Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol. Biol. (2005) 295:71-96.
  • SIDHU SS: Phage display in pharmaceutical biotechnology. Curr. Opin. Biotechnol. (2000) 11(6):610-616.
  • BENHAR I: Biotechnological applications of phage and cell display. Biotechnol. Adv. (2001) 19(1):1-33.
  • HOOGENBOOM HR: Overview of antibody phage-display technology and its applications. Methods Mol. Biol. (2002) 178:1-37.
  • BARBAS CF, KANG AS, LERNER RA, BENKOVIC SJ: Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA (1991) 88:7978-7982.
  • O’CONNELL D, BECERRIL B, ROY-BURMAN A, DAWS M, MARKS JD: Phage versus phagemid libraries for generation of human monoclonal antibodies. J. Mol. Biol. (2002) 321(1):49-56.
  • POUL MA, BECERRIL B, NIELSEN UB, MORISSON P, MARKS JD: Selection of tumor-specific internalizing human antibodies from phage libraries. J. Mol. Biol. (2000) 301(5):1149-1161.
  • POUL MA, MARKS JD: Targeted gene delivery to mammalian cells by filamentous bacteriophage. J. Mol. Biol. (1999) 288(2):203-211.
  • MCGUINNESS BT, WALTER G, FITZGERALD K et al.: Phage diabody repertoires for selection of large numbers of bispecific antibody fragments. Nat. Biotechnol. (1996) 14(9):1149-1154.
  • DE WILDT RM, TOMLINSON IM, ONG JL, HOLLIGER P: Isolation of receptor-ligand pairs by capture of long-lived multivalent interaction complexes. Proc. Natl. Acad. Sci. USA (2002) 99(13):8530-8535.
  • KREBBER C, SPADA S, DESPLANCQ D et al.: Selectively-infective phage (SIP): a mechanistic dissection of a novel in vivo selection for protein-ligand interactions. J. Mol. Biol. (1997) 268(3):607-618.
  • JUNG S, ARNDT KM, MULLER KM, PLÜCKTHUN A: Selectively infective phage (SIP) technology: scope and limitations. J. Immunol. Methods (1999) 231(1-2):93-104.
  • BRADBURY AR, MARKS JD: Antibodies from phage antibody libraries. J. Immunol. Methods (2004) 290(1-2):29-49.
  • FRANCISCO JA, CAMPBELL R, IVERSON BL, GEORGIOU G: Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Natl. Acad. Sci. USA (1993) 90(22):10444-10448.
  • DAUGHERTY PS, CHEN G, OLSON MJ, IVERSON BL, GEORGIOU G: Antibody affinity maturation using bacterial surface display. Protein Eng. (1998) 11(9):825-832.
  • DAUGHERTY PS, OLSEN MJ, IVERSON BL, GEORGIOU G: Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Eng. (1999) 12(7):613-621.
  • BENHAR I, AZRIEL R, NAHARY L et al.: Highly efficient selection of phage antibodies mediated by display of antigen as Lpp-OmpA’ fusions on live bacteria. J. Mol. Biol. (2000) 301(4):893-904.
  • MALMBORG AC, SODERLIND E, FROST L, BORREBAECK CA: Selective phage infection mediated by epitope expression on F pilus. J. Mol. Biol. (1997) 273(3):544-551.
  • MAZOR Y, KEYDAR I, BENHAR I: Humanization and epitope mapping of the H23 anti-MUC1 monoclonal antibody reveals a dual epitope specificity. Mol. Immunol. (2005) 42(1):55-69.
  • SAMUELSON P, GUNNERIUSSON E, NYGREN PA, STAHL S: Display of proteins on bacteria. J. Biotechnol. (2002) 96(2):129-154.
  • WERNERUS H, STAHL S: Biotechnological applications for surface-engineered bacteria. Biotechnol. Appl. Biochem. (2004) 40(Pt 3):209-228.
  • GUNNERIUSSON E, SAMUELSON P, UHLEN M, NYGREN PA, STAHL S: Surface display of a functional single-chain Fv antibody on staphylococci. J. Bacteriol. (1996) 178(5):1341-1346.
  • CHEN G, HAYHURST A, THOMAS JG et al.: Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nat. Biotechnol. (2001) 19(6):537-542.
  • HARVEY BR, SHANAFELT AB, BABURINA I et al.: Engineering of recombinant antibody fragments to methamphetamine by anchored periplasmic expression. J. Immunol. Methods (2006) 308(1-2):43-52.
  • KIEKE MC, CHO BK, BODER ET, KRANZ DM, WITTRUP KD: Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng. (1997) 10(11):1303-1310.
  • SHUSTA EV, KIEKE MC, PARKE E, KRANZ DM, WITTRUP KD: Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J. Mol. Biol. (1999) 292(5):949-956.
  • FELDHAUS MJ, SIEGEL RW, OPRESKO LK et al.: Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat. Biotechnol. (2003) 21(2):163-170.
  • WEAVER-FELDHAUS JM, LOU J, COLEMAN JR et al.: Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett. (2004) 564(1-2):24-34.
  • SWERS JS, KELLOGG BA, WITTRUP KD: Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res. (2004) 32(3):e36.
  • SBLATTERO D, BRADBURY A: Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotechnol. (2000) 18(1):75-80.
  • VAN DEN BEUCKEN T, PIETERS H, STEUKERS M et al.: Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett. (2003) 546(2-3):288-294.
  • HOOGENBOOM HR: Designing and optimizing library selection strategies for generating high-affinity antibodies. Trends Biotechnol. (1997) 15(2):62-70.
  • MATTHEAKIS LC, BHATT RR, DOWER WJ: An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA (1994) 91(19):9022-9026.
  • HANES J, JERMUTUS L, SCHAFFITZEL C, PLÜCKTHUN A: Comparison of Escherichia coli and rabbit reticulocyte ribosome display systems. FEBS Lett. (1999) 450(1-2):105-110.
  • HE M, KHAN F: Ribosome display: next-generation display technologies for production of antibodies in vitro. Expert Rev. Proteomics (2005) 2(3):421-430.
  • HE M, TAUSSIG MJ: Ribosome display of antibodies: expression, specificity and recovery in a eukaryotic system. J. Immunol. Methods (2005) 297(1-2):73-82.
  • ROBERTS RW, SZOSTAK JW: RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA (1997) 94(23):12297-12302.
  • LIPOVSEK D, PLÜCKTHUN A: In-vitro protein evolution by ribosome display and mRNA display. J. Immunol. Methods (2004) 290(1-2):51-67.
  • TAWFIK DS, GRIFFITHS AD: Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. (1998) 16(7):652-656.
  • LEE YF, TAWFIK DS, GRIFFITHS AD: Investigating the target recognition of DNA cytosine-5 methyltransferase HhaI by library selection using in vitro compartmentalisation. Nucleic Acids Res. (2002) 30(22):4937-4944.
  • BERTSCHINGER J, NERI D: Covalent DNA display as a novel tool for directed evolution of proteins in vitro. Protein Eng. Des. Sel. (2004) 17(9):699-707.
  • YONEZAWA M, DOI N, HIGASHINAKAGAWA T, YANAGAWA H: DNA display of biologically active proteins for in vitro protein selection. J. Biochem. (Tokyo) (2004) 135(3):285-288.
  • HOLT LJ, BUSSOW K, WALTER G, TOMLINSON IM: By-passing selection: direct screening for antibody-antigen interactions using protein arrays. Nucleic Acids Res. (2000) 28(15):E72.
  • HAAB BB: Antibody arrays in cancer research. Mol. Cell. Proteomics (2005) 4(4):377-383.
  • HAAB BB: Applications of antibody array platforms. Curr. Opin. Biotechnol. (2006) 17(4):415-421.
  • CHRISTOPHERSON RI, LYONS SD, WILSON PK: Inhibitors of de novo nucleotide biosynthesis as drugs. Acc. Chem. Res. (2002) 35(11):961-971.
  • ANGENENDT P, GLOKLER J, MURPHY D, LEHRACH H, CAHILL DJ: Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal. Biochem. (2002) 309:253-260.
  • KUSNEZOW W, JACOB A, WALIJEW A, DIEHL F, HOHEISEL JD: Antibody microarrays: an evaluation of production parameters. Proteomics (2003) 3(3):254-264.
  • WINGREN C, BORREBAECK CA: Antibody microarrays: current status and key technological advances. Omics (2006) 10(3):411-427.
  • DE WILDT RM, MUNDY CR, GORICK BD, TOMLINSON IM: Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. (2000) 18(9):989-994.
  • BORREBAECK CA, EKSTROM S, HAGER AC et al.: Protein chips based on recombinant antibody fragments: a highly sensitive approach as detected by mass spectrometry. Biotechniques (2001) 30(5):1126-1130, 1132.
  • STEINHAUER C, WINGREN C, HAGER AC, BORREBAECK CA: Single framework recombinant antibody fragments designed for protein chip applications. Biotechniques (2002) (Suppl.):38-45.
  • WINGREN C, STEINHAUER C, INGVARSSON J et al.: Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes. Proteomics (2005) 5(5):1281-1291.
  • BERDICHEVSKY Y, BEN-ZEEV E, LAMED R, BENHAR I: Phage display of a cellulose binding domain from Clostridium thermocellum and its application as a tool for antibody engineering. J. Immunol. Methods (1999) 228(1-2):151-162.
  • OFIR K, BERDICHEVSKY Y, BENHAR I et al.: Versatile protein microarray based on carbohydrate-binding modules. Proteomics (2005) 5(7):1806-1814.
  • HE M, TAUSSIG MJ: DiscernArray technology: a cell-free method for the generation of protein arrays from PCR DNA. J. Immunol. Methods (2003) 274(1-2):265-270.
  • TAUSSIG MJ, STOEVESANDT O, BORREBAECK CA et al.: ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat. Methods (2007) 4(1):13-17.
  • ALBRECHT H, DENARDO SJ: Recombinant antibodies: from the laboratory to the clinic. Cancer Biother. Radiopharm. (2006) 21(4):285-304.
  • LONBERG N: Human antibodies from transgenic animals. Nat. Biotechnol. (2005) 23(9):1117-1125.
  • NGUNDI MM, KULAGINA NV, ANDERSON GP, TAITT CR: Nonantibody-based recognition: alternative molecules for detection of pathogens. Expert Rev. Proteomics (2006) 3(5):511-524.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.