158
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Advancing age and immune cell dysfunction: is it reversible or not?

Pages 657-668 | Published online: 13 Apr 2008

Bibliography

  • Makinodan T, Kay MM. Age influence on the immune system. Adv Immunol 1980;29:287-330
  • Wick G, Jansen-Durr P, Berger P, et al. Diseases of aging. Vaccine 2000;18:1567-83
  • Miller RA. The aging immune system: primer and prospectus. Science 1996;273:70-4
  • Thompson WW, Shay DK, Weintraub E, et al. Influenza-associated hospitalizations in the United States. JAMA 2004;292:1333-40
  • Pawelec G, Barnett Y, Forsey R, et al. T cells and aging, January 2002 update. Front Biosci 2002;7:d1056-183
  • Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 2005;560:11-8
  • DeVeale B, Brummel T, Seroude L. Immunity and aging: the enemy within? Aging Cell 2004;3:195-208
  • Plowden J, Renshaw-Hoelscher M, Engleman C, et al. Innate immunity in aging: impact on macrophage function. Aging Cell 2004;3:161-7
  • Solana R, Pawelec G, Tarazona R. Aging and innate immunity. Immunity 2006;24:491-4
  • Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ. Aging and innate immune cells. J Leukoc Biol 2004;76:291-9
  • Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med 2000;343:338-44
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124:783-801
  • Boehmer ED, Meehan MJ, Cutro BT, Kovacs EJ. Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Ageing Dev 2005;126:1305-13
  • Fulop T, Larbi A, Douziech N, et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell 2004;3:217-26
  • Chelvarajan RL, Collins SM, Van Willigen JM, Bondada S. The unresponsiveness of aged mice to polysaccharide antigens is a result of a defect in macrophage function. J Leukoc Biol 2005;77:503-12
  • Boehmer ED, Goral J, Faunce DE, Kovacs EJ. Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol 2004;75:342-9
  • De Martinis M, Franceschi C, Monti D, Ginaldi L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett 2005;579:2035-9
  • Franceschi C, Bonafe M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 2000;908:244-54
  • Caruso C, Candore G, Colonna-Romano G, et al. Inflammation and life-span. Science 2005;307:208-9; author reply 208-9
  • Lehrer RI, Ganz T, Selsted ME, et al. Neutrophils and host defense. Ann Intern Med 1988;109:127-42
  • Biasi D, Carletto A, Dell'Agnola C, et al. Neutrophil migration, oxidative metabolism, and adhesion in elderly and young subjects. Inflammation 1996;20:673-81
  • Corberand J, Ngyen F, Laharrague P, et al. Polymorphonuclear functions and aging in humans. J Am Geriatr Soc 1981;29:391-7
  • Niwa Y, Kasama T, Miyachi Y, Kanoh T. Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci 1989;44:1655-64
  • Damtew B, Spagnuolo PJ, Goldsmith GG, Marino JA. Neutrophil adhesion in the elderly: inhibitory effects of plasma from elderly patients. Clin Immunol Immunopathol 1990;54:247-55
  • Fortun A, Khalil A, Gagne D, et al. Monocytes influence the fate of T cells challenged with oxidised low density lipoproteins towards apoptosis or MHC-restricted proliferation. Atherosclerosis 2001;156:11-21
  • Seres I, Csongor J, Mohacsi A, et al. Age-dependent alterations of human recombinant GM-CSF effects on human granulocytes. Mech Ageing Dev 1993;71:143-54
  • Piazzolla G, Tortorella C, Serrone M, et al. Modulation of cytoskeleton assembly capacity and oxidative response in aged neutrophils. Immunopharmacol Immunotoxicol 1998;20:251-66
  • Fulop T Jr, Varga Z, Jacob MP, Robert L. Effect of lithium on superoxide production and intracellular free calcium mobilization in elastin peptide (kappa-elastin) and FMLP stimulated human PMNS. Effect of age. Life Sci 1997;60:PL 325-32
  • Rao KM, Currie MS, Padmanabhan J, Cohen HJ. Age-related alterations in actin cytoskeleton and receptor expression in human leukocytes. J Gerontol 1992;47:B37-44
  • Akgul C, Moulding DA, Edwards SW. Molecular control of neutrophil apoptosis. FEBS Lett 2001;487:318-22
  • Fulop T Jr, Fouquet C, Allaire P, et al. Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech Ageing Dev 1997;96:15-34
  • Thomas J, Gangappa S, Kanangat S, Rouse BT. On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis. J Immunol 1997;158:1383-91
  • Bottino C, Moretta L, Moretta A. NK cell activating receptors and tumor recognition in humans. Curr Top Microbiol Immunol 2006;298:175-82
  • Vitale M, Zamai L, Neri LM, et al. The impairment of natural killer function in the healthy aged is due to a postbinding deficient mechanism. Cell Immunol 1992;145:1-10
  • Lutz CT, Moore MB, Bradley S, et al. Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev 2005;126:722-31
  • Ogata K, Yokose N, Tamura H, et al. Natural killer cells in the late decades of human life. Clin Immunol Immunopathol 1997;84:269-75
  • Mariani E, Monaco MC, Cattini L, et al. Distribution and lytic activity of NK cell subsets in the elderly. Mech Ageing Dev 1994;76:177-87
  • Borrego F, Alonso MC, Galiani MD, et al. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 1999;34:253-65
  • Murasko DM, Jiang J. Response of aged mice to primary virus infections. Immunol Rev 2005;205:285-96
  • Solana R, Mariani E. NK and NK/T cells in human senescence. Vaccine 2000;18:1613-20
  • Renshaw M, Rockwell J, Engleman C, et al. Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 2002;169:4697-701
  • Ogawa T, Kitagawa M, Hirokawa K. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev 2000;117:57-68
  • Gomez CR, Boehmer ED, Kovacs EJ. The aging innate immune system. Curr Opin Immunol 2005;17:457-62
  • Khare V, Sodhi A, Singh SM. Effect of aging on the tumoricidal functions of murine peritoneal macrophages. Nat Immun 1996;15:285-94
  • Kissin E, Tomasi M, McCartney-Francis N, et al. Age-related decline in murine macrophage production of nitric oxide. J Infect Dis 1997;175:1004-7
  • Chen LC, Pace JL, Russell SW, Morrison DC. Altered regulation of inducible nitric oxide synthase expression in macrophages from senescent mice. Infect Immun 1996;64:4288-98
  • Cella M, Jarrossay D, Facchetti F, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999;5:919-23
  • Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002;2:151-61
  • Grolleau-Julius A, Garg MR, Mo R, et al. Effect of aging on bone marrow-derived murine CD11c+CD4-CD8α- dendritic cell function. J Gerontol A Biol Sci Med Sci 2006;61:1039-47
  • Tesar BM, Walker WE, Unternaehrer J, et al. Murine [corrected] myeloid dendritic cell-dependent toll-like receptor immunity is preserved with aging. Aging Cell 2006;5:473-86
  • Della Bella S, Bierti L, Presicce P, et al. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 2007;122:220-8
  • Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Ann Rev Immunol 2000;18:767-811
  • Agrawal A, Agrawal S, Tay J, Gupta S. Biology of Dendritic Cells in Aging. J Clin Immunol 2007
  • Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunol Rev 2005;205:72-93
  • Tyan ML. Age-related decrease in mouse T cell progenitors. J Immunol 1977;118:846-51
  • Sudo K, Ema H, Morita Y, Nakauchi H. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 2000;192:1273-80
  • Mackall CL, Punt JA, Morgan P, et al. Thymic function in young/old chimeras: substantial thymic T cell regenerative capacity despite irreversible age-associated thymic involution. Eur J Immunol 1998;28:1886-93
  • Muegge K, Vila MP, Durum SK. Interleukin-7: a cofactor for V(D)J rearrangement of the T cell receptor beta gene. Science 1993;261:93-5
  • Andrew D, Aspinall R. Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 2002;37:455-63
  • Henson SM, Pido-Lopez J, Aspinall R. Reversal of thymic atrophy. Exp Gerontol 2004;39:673-8
  • Phillips JA, Brondstetter TI, English CA, et al. IL-7 gene therapy in aging restores early thymopoiesis without reversing involution. J Immunol 2004;173:4867-74
  • Virts EL, Phillips JA, Thoman ML. A novel approach to thymic rejuvenation in the aged. Rejuvenation Res 2006;9:134-42
  • Aspinall R. T cell development, ageing and Interleukin-7. Mech Ageing Dev 2006;127:572-8
  • Sempowski GD, Hale LP, Sundy JS, et al. Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 2000;164:2180-7
  • Murphy WJ, Durum SK, Longo DL. Role of neuroendocrine hormones in murine T cell development. Growth hormone exerts thymopoietic effects in vivo. J Immunol 1992;149:3851-7
  • Dorshkind K, Horseman ND. The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr Rev 2000;21:292-312
  • Dixit VD, Yang H, Sun Y, et al. Ghrelin promotes thymopoiesis during aging. J Clin Invest 2007;117:2778-90
  • Montecino-Rodriguez E, Clark R, Dorshkind K. Effects of insulin-like growth factor administration and bone marrow transplantation on thymopoiesis in aged mice. Endocrinology 1998;139:4120-6
  • Min H, Montecino-Rodriguez E, Dorshkind K. Reassessing the role of growth hormone and sex steroids in thymic involution. Clin Immunol 2006;118:117-23
  • Haynes BF, Markert ML, Sempowski GD, et al. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Ann Rev Immunol 2000;18:529-60
  • Hale JS, Boursalian TE, Turk GL, Fink PJ. Thymic output in aged mice. Proc Natl Acad Sci USA 2006;103:8447-52
  • Kong FK, Chen CL, Six A, et al. T cell receptor gene deletion circles identify recent thymic emigrants in the peripheral T cell pool. Proc Natl Acad Sci USA 1999;96:1536-40
  • Douek DC, McFarland RD, Keiser PH, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998;396:690-5
  • Goronzy JJ, Weyand CM. T cell development and receptor diversity during aging. Curr Opin Immunol 2005;17:468-75
  • Macallan DC, Asquith B, Irvine AJ, et al. Measurement and modeling of human T cell kinetics. Eur J Immunol 2003;33:2316-26
  • Wallace DL, Zhang Y, Ghattas H, et al. Direct measurement of T cell subset kinetics in vivo in elderly men and women. J Immunol 2004;173:1787-94
  • Lerner A, Yamada T, Miller RA. Pgp-1hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A. Eur J Immunol 1989;19:977-82
  • Ernst DN, Hobbs MV, Torbett BE, et al. Differences in the expression profiles of CD45RB, Pgp-1, and 3G11 membrane antigens and in the patterns of lymphokine secretion by splenic CD4+ T cells from young and aged mice. J Immunol 1990;145:1295-302
  • Woodland DL, Blackman MA. Immunity and age: living in the past? Trends Immunol 2006;27:303-7
  • Haynes L, Eaton SM, Burns EM, et al. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci USA 2003;100:15053-8
  • Nishioka T, Shimizu J, Iida R, et al. CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice. J Immunol 2006;176:6586-93
  • Rosenkranz D, Weyer S, Tolosa E, et al. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 2007;188:117-27
  • Suvas S, Rouse BT. Treg control of antimicrobial T cell responses. Curr Opin Immunol 2006;18:344-8
  • Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 2007;204:1775-85
  • Vukmanovic-Stejic M, Zhang Y, Cook JE, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 2006;116:2423-33
  • Haynes L, Linton PJ, Eaton SM, et al. Interleukin 2, but not other common γ chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J Exp Med 1999;190:1013-24
  • Garcia GG, Miller RA. Differential tyrosine phosphorylation of zeta chain dimers in mouse CD4 T lymphocytes: effect of age. Cell Immunol 1997;175:51-7
  • Garcia GG, Berger SB, Sadighi Akha AA, Miller RA. Age-associated changes in glycosylation of CD43 and CD45 on mouse CD4 T cells. Eur J Immunol 2005;35:622-31
  • Sadighi Akha AA, Miller RA. Signal transduction in the aging immune system. Curr Opin Immunol 2005;17:486-91
  • Swain S, Clise-Dwyer K, Haynes L. Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol 2005;17:370-7
  • Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887-95
  • Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007;8:239-45
  • Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006;439:682-7
  • Haynes L, Eaton SM, Burns EM, et al. Inflammatory cytokines overcome age-related defects in CD4 T cell responses in vivo. J Immunol 2004;172:5194-9
  • Foy TM, Aruffo A, Bajorath J, et al. Immune regulation by CD40 and its ligand GP39. Ann Rev Immunol 1996;14:591-617
  • Eaton SM, Burns EM, Kusser K, et al. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J Exp Med 2004;200:1613-22
  • Tsiagbe VK, Inghirami G, Thorbecke GJ. The physiology of germinal centers. Crit Rev Immunol 1996;16:381-421
  • Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 2003;300:339-42
  • Janssen EM, Lemmens EE, Wolfe T, et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003;421:852-6
  • Callahan JE, Kappler JW, Marrack P. Unexpected expansions of CD8-bearing cells in old mice. J Immunol 1993;151:6657-69
  • Posnett DN, Sinha R, Kabak S, Russo C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J Exp Med 1994;179:609-18
  • Clambey ET, van Dyk LF, Kappler JW, Marrack P. Non-malignant clonal expansions of CD8+ memory T cells in aged individuals. Immunol Rev 2005;205:170-89
  • Fitzgerald JE, Ricalton NS, Meyer AC, et al. Analysis of clonal CD8+ T cell expansions in normal individuals and patients with rheumatoid arthritis. J Immunol 1995;154:3538-47
  • Chamberlain WD, Falta MT, Kotzin BL. Functional subsets within clonally expanded CD8(+) memory T cells in elderly humans. Clin Immunol 2000;94:160-72
  • Khan N, Shariff N, Cobbold M, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 2002;169:1984-92
  • Ouyang Q, Wagner WM, Wikby A, et al. Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 2003;23:247-57
  • Morley JK, Batliwalla FM, Hingorani R, Gregersen PK. Oligoclonal CD8+ T cells are preferentially expanded in the CD57+ subset. J Immunol 1995;154:6182-90
  • Saurwein-Teissl M, Lung TL, Marx F, et al. Lack of antibody production following immunization in old age: association with CD8(+)CD28(-) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 2002;168:5893-9
  • Ferguson FG, Wikby A, Maxson P, et al. Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A Biol Sci Med Sci 1995;50:B378-82
  • Hadrup SR, Strindhall J, Kollgaard T, et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 2006;176:2645-53
  • Messaoudi I, Lemaoult J, Guevara-Patino JA, et al. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med 2004;200:1347-58
  • Miller JP, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol 2003;171:2326-30
  • Kline GH, Hayden TA, Klinman NR. B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J Immunol 1999;162:3342-9
  • Zheng B, Han S, Takahashi Y, Kelsoe G. Immunosenescence and germinal center reaction. Immunol Rev 1997;160:63-77
  • Whisler RL, Grants IS. Age-related alterations in the activation and expression of phosphotyrosine kinases and protein kinase C (PKC) among human B cells. Mech Ageing Dev 1993;71:31-46
  • Frasca D, Nguyen D, Riley RL, Blomberg BB. Decreased E12 and/or E47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J Immunol 2003;170:719-26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.