239
Views
18
CrossRef citations to date
0
Altmetric
Reviews

A two-stage perfusion fibrous bed bioreactor system for mass production of embryonic stem cells

&
Pages 895-909 | Published online: 12 Jun 2008

Bibliography

  • Langer R. Tissue engineering. Mol Ther 2000;1:12-5
  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707-10
  • Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001;7:259-64
  • Alison MR. Liver stem cells: a two compartment system. Curr Opin Cell Biol 1998;10:710-5
  • Bonner-Weir S, Sharma A. Pancreatic stem cells. J Pathol 2002;197:519-26
  • Bellantuono I, Elabd C, Amri E-Z, et al. Haemopoietic stem cells. Int J Biochem Cell Biol 2004;36:607-20
  • Rodriguez AM, Elabd C, Amri EZ, et al. The human adipose tissue is a source of multipotent stem cells. Biochemie 2005;87:125-8
  • Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001;98:2396-402
  • De Coppi P, Bartsch G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25:100-6
  • Martin GR. Isolation of a pluripotential cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634-8
  • Guan K, Rohwedel J, Wobus AM. Embryonic stem cell differentiation models: cardiogenesis, myogenesis, epithelia and vascular smooth muscle cell differentiation in vitro. Cytotechnology 1999;30:211-26
  • Kaufman DS, Hanson ET, Lewis RL, et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2001;98:10716-21
  • Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 2005;105:617-26
  • Pick M, Azzola L, Mossman A, et al. Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 2007;25:2206-14
  • Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007;25:1015-24
  • Joannides AJ, Fiore-Heriche C, Battersby AA, et al. A scalable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 2007;25:731-7
  • Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2004;101:12543-8
  • D'Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006;24:1392-401
  • Gorta T, Allsopp TE. Pharmacological potential of embryonic stem cells. Pharmacol Res 2003;47:269-78
  • Cui L, Jiang J, Wei L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats FASEB J 2007;21:2633
  • Pouton CW, Haynes JM. Pharmaceutical applications of embryonic stem cells. Adv Drug Deliv Rev 2005;57:1918-34
  • Mitjavila-Garcia MT, Simonin C, Peschanski M. Embryonic stem cells: meeting the needs for cell therapy. Adv Drug Deliv Rev 2005;57:1935-43
  • Brederlau A, Correia AS, Anisimov SV, et al. Transplantation of human embryonic stem cell -derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 2006;24:1433-40
  • Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS Rats. Cloning Stem Cells 2006;8:189-99
  • Yates F, Daley GQ. Progress and prospects: gene transfer into embryonic stem cells. Gene Ther 2006;13:1431-9
  • Sartipy P, Bjoerquist P, Strehl R, Hyllner J. Pluripotent human stem cells as novel tools in drug discovery and toxicity testing. IDrugs 2006;9:702-5
  • Spielmann H, Seiler A, Bremer S, et al. The practical application of three validated in vitro embryo toxicity tests. Altern Lab Anim 2006;34:527-38
  • Fluckiger A-C, Marcy G, Marchand M, et al. Cell cycle features of primate embryonic stem cells. Stem Cells 2006;24:547-56
  • Zhang J, Tam W-L, Tong GQ, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 2006;10:1114-23
  • Zhang W, Walker E, Tamplin OJ, et al. Zfp206 regulates ES cell gene expression and differentiation. Nucleic Acids Res 2006;34:4780-90
  • Van Hoof D, Mummery CL, Heck JR, Krijgsveld J. Embryonic stem cell proteomics. Expert Rev Proteomics 2006;3:427-37
  • Friel R, Fisher D, Hook L. Embryonic stem cell technology: applications and uses in functional genomic studies. Stem Cell Rev 2006;2(1):31-5
  • Pritsker M, Ford NR, Jenq Ht, Lemischka IR. Genomewide gain-of-function genetic screen identifies functionally active genes in mouse embryonic stem cells. Proc Nat Acad Sci USA 2006;103:6946-51
  • Burns CJ, Persaud SJ, Jones PM. Stem cell therapy for diabetes: Do we need to make beta cells? J Endocrinol 2004;183:437-43
  • Blyszczuk P, Asbrand C, Rozzo A, et al. Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Deve Biol 2004;48:1095-104
  • Thomson JA, Marshall VS. Primate embryonic stem cells. Curr Top Dev Biol 1998;38:133-65
  • Martin GR, Evans MJ. The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell 1974;2:163-72
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-47
  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154-6
  • Shushan E, Tannenbaum S, Itsykson P, et al. Stem cells culture systems. WO2006070370; 2006
  • Cheng L, Hammond H, Ye Z, et al. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem cells 2003;21:131-42
  • Smith AG, Heath JK, Donaldson DD, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988;336:684-7
  • Zandstra PW, Le HV, Daley GQ, et al. Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation. Biotechnol Bioeng 2000;69:607-17
  • Schoonjans L, Moreadith R. Conditioned culture media. US20030124720; 2003
  • Xu C, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001;19:971-4
  • Xu C, Gold J. Conditioned medium for propagating human pluripotent stem cell. US6642048; 2003
  • Ouyang A, Ng R, Yang S-T. Long-term culturing of undifferentiated embryonic stem cells in conditioned media and three-dimensional fibrous matrices without ECM coating. Stem Cells 2007;25:447-54
  • Li Y, Powell S, Brunette E, et al. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 2005;91:688-98
  • Levenstein ME, Ludwig TE, Xu RH, et al. Basic FGF support of human embryonic stem cell self-renewal. Stem Cells 2006;24:568-74
  • Beattie GM, Lopez AD, Bucay N, et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 2005;23:489-95
  • Rao BM, Zandrstra PW. Culture development for human embryonic stem cell propagation: molecular aspects and challenges. Curr Opin Biotechnol 2005;16:568-76
  • Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer and serum free culture of human embryonic stem cells. Biol Reprod 2004;70:837-45
  • Mandalam R, Xu C, Gold J, Carpenter MS. System for expanding and differentiating human embryonic stem cells. US20050153445; 2005
  • Liu Y, Song Z, Zhao Y, et al. novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun 2006;346:131-9
  • Ludwig TE, Bergendahl V, Levenstein ME, et al. Feeder-independent culture of human embryonic stem cells. Nat Methods 2006;3:637-46
  • Wang L, Schulz TC, Sherrer ES, et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 2007;110:4111-9
  • Yao S, Chen S, Clark J, et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 2006;103:6907-12
  • Huang P, Snyder EY. Defined medium for pluripotent stem cell culture. WO2005/065354; 2005
  • Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000;227:218-78
  • Pulloa-Montoya F, Verfaillie CM, Hu W-S. Culture systems for pluripotent stem cells. J Biosci Bioeng 2005;100:12-27
  • Dang SM, Gerecht-Nir S, Chen J, et al. Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 2004;22:275-82
  • Gerecht-Nir S, Cohen S, Itskovitz-Eldor J. Bioreactor cultivation enhances the efficiency of human embryonic body (hEB) formation and differentiation. Biotechnol Bioeng 2004;86:493-502
  • Mantalaris S, Randle W. Method for embryonic stem cell culture. WO2006079854; 2006
  • Gerecht-Nia S, Itskovitz-Eldor J. Method of dynamically culturing embryonic stem cells. US20060148078; 2006
  • Bauwens C, Yin T, Dang S, et al. Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol Bioeng 2005;90:452-61
  • Fok, Elaine YL, Zandstra, Peter W. Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells 2005;23:1333-42
  • Abranches E, Bekman E, Henrique D, Cabral JM. Expansion of mouse embryonic stem cells on microcarriers. Biotechnol Bioeng 2007;96:1211-21
  • Fernandes AM, Fernandes TG, Diogo MM, et al. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol 2007;132:227-36
  • Zur Nieden N, Cormier JT, Rancourt DE, Kallos MS. Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J Biotechnol 2007;129:421-32
  • Lipscomb ML, Mowry MC, Kompala DS. Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor. Biotechnol Prog 2004;20:1402-7
  • Oh SKW, Choo ABH. Materials and methods to produce stem cells. US20050032208; 2005
  • Chen SS, Revoltella RP, Papini S, et al. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems. Stem Cells 2003;21:291-5
  • Levenberg S, Huang NF, Lavik E, et al. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Nat Acad Sci USA 2003;100:12741-6
  • Ma W, Chen S, Fitzgerald W, et al. Three-dimensional collagen gel networks for neural stem cell-based neural tissue engineering. Macromol Symp 2005;227:327-34
  • Zhao F, Grayson WL, Ma T, et al. Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 2006;27:1859-67
  • Wang Y, Kim U-J, Blasioli DJ, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005;26:7082-94
  • Ng KW, Hutmacher DW. Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials 2006;26:4591-8
  • Takahashi T, Ogasawara T, Asawa Y, et al. Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Eng 2007;13:1583-92
  • Moroni L, Hendriks JA, Schotel R, et al. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. Tissue Eng 2007;13:361-71
  • Ma T, Li Y, Yang ST, Kniss DA. Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development. Biotechnol Bioeng 2000;70:606-18
  • Chen C, Huang YL, Yang ST. A fibrous-bed bioreactor for continuous production of developmental endothelial locus-1 by osteosarcoma cells. J Biotechnol 2000;97:23-39
  • Luo J. Animal cells in a fibrous bed bioreactor. PhD dissertation, Ohio State University; 2002
  • Li Y, Kniss DA, Lasky LC, Yang ST. Culturing and differentiation of murine embryonic stem cells in a three-dimensional fibrous matrix. Cytotechnology 2003;41:23-35
  • Li Y, Ma T, Yang ST, Kniss DA. Thermal compression and characterization of 3-D non-woven PET matrices as tissue engineering scaffolds. Biomaterials 2001;22:609-18
  • Ma Z, Kotaki M, Yong T, et al. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 2005;26:2527-36
  • Mayer J, Karamuk E, Akaike T, Wintermantel E. Matrices for tissue engineering-scaffold structure for a bioartificial liver support system. J Control Release 2000;64:81-90
  • Gerecht S, Burdick JA, Ferreira LS, et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 2007;104:11298-303
  • Ouyang A. Embryonic stem cell culture in fibrous bed bioreactor. PhD thesis, Ohio State University, Columbus, Ohio, USA; 2006
  • Ellerström C, Strehl R, Moya K, et al. Derivation of a xeno-free human embryonic stem cell line. Stem Cells 2006;24:2170-6
  • Inanc B, Elcin AE, Elcin YM. Effect of osteogenic induction on the in vitro differentiation of human embryonic stem cells cocultured with periodontal ligament fibroblasts. Artif Organs 2007;31:792-800
  • Vodyanik MA, Slukvin II. Hematoendothelial differentiation of human embryonic stem cells. Current protools in cell biology (2007). Chapter 23. Unit 23.6. Published September 2007, doi:10.1002/0471143030.CB2306S36. Available from: http://www.mrw.interscience.wiley.com/emrw/9780471143031/cp/cpcb/article/cb2306/current/abstract
  • Mukhopadhyay A, Madhusudhan T, Kumar R. Hematopoietic stem cells: clinical requirements and developments in ex vivo culture. Adv Biochem Eng Biotechnol 2004;86:215-53
  • Honig GR, Li F, Lu S-J, Vida L. Hematopoietic differentiation of rhesus monkey embryonic stem cells. Blood Cells Mol Dis 2004;32:5-10
  • Levy YS, Stroomza M, Melamed E, Offen D. Embryonic and adult stem cells as a source for cell therapy in parkinson's disease. J Mol Neurosci 2004;24:353-86
  • Carpenter MK, Inokuma MS, Denham J, et al. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 2001;172:383-97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.