148
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Emerging drugs for acute bacterial meningitis

, &
Pages 381-393 | Published online: 23 Jul 2009

Bibliography

  • Gray F, Alonso JM. Bacterial Infections. In: Graham DI, Lantos PL, editors, Greenfield's Neuropathology. London: Arnold Publishers; 2002. p. 151-89
  • Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967;34:207-17
  • Segreti J, Harris AA. Acute bacterial meningitis. Infect Dis Clin North Am 1996;10:797-809
  • Wenger JD, Hightower AW, Facklam RR, et al. Bacterial meningitis in the United States, 1986: report of a multistate surveillance study. The Bacterial Meningitis Study Group. J Infect Dis 1990;162:1316-23
  • Schuchat A, Robinson K, Wenger JD, et al. Bacterial meningitis in the United States in 1995. Active Surveillance Team. N Engl J Med 1997;337:970-6
  • Tikhomirov E, Santamaria M, Esteves K. Meningococcal disease: public health burden and control. World Health Stat Q 1997;50:170-7
  • Zwahlen A, Nydegger UE, Vaudaux P, et al. Complement-mediated opsonic activity in normal and infected human cerebrospinal fluid: early response during bacterial meningitis. J Infect Dis 1982;145:635-46
  • Waage A, Halstensen A, Shalaby R, et al. Local production of tumor necrosis factor alpha, interleukin 1, and interleukin 6 in meningococcal meningitis. Relation to the inflammatory response. J Exp Med 1989;170:1859-67
  • Tauber MG, Moser B. Cytokines and chemokines in meningeal inflammation: biology and clinical implications. Clin Infect Dis 1999;28:1-11; quiz 12
  • Galanos C, Freudenberg MA. Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology 1993;187:346-56
  • Kim KS, Wass CA, Cross AS, et al. Modulation of blood-brain barrier permeability by tumor necrosis factor and antibody to tumor necrosis factor in the rat. Lymphokine Cytokine Res 1992;11:293-8
  • Sharief MK, Ciardi M, Thompson EJ. Blood-brain barrier damage in patients with bacterial meningitis: association with tumor necrosis factor-alpha but not interleukin-1 beta. J Infect Dis 1992;166:350-8
  • Ramilo O, Saez-Llorens X, Mertsola J, et al. Tumor necrosis factor alpha/cachectin and interleukin 1 beta initiate meningeal inflammation. J Exp Med 1990;172:497-507
  • Kastenbauer S, Pfister HW. Pneumococcal meningitis in adults: spectrum of complications and prognostic factors in a series of 87 cases. Brain 2003;126:1015-25
  • Loeffler JM, Ringer R, Hablutzel M, et al. The free radical scavenger alpha-phenyl-tert-butyl nitrone aggravates hippocampal apoptosis and learning deficits in experimental pneumococcal meningitis. J Infect Dis 2001;183:247-52
  • Nau R, Soto A, Bruck W. Apoptosis of neurons in the dentate gyrus in humans suffering from bacterial meningitis. J Neuropathol Exp Neurol 1999;58:265-74
  • Pfister HW, Borasio GD, Dirnagl U, et al. Cerebrovascular complications of bacterial meningitis in adults. Neurology 1992;42:1497-504
  • Leib SL, Kim YS, Chow LL, et al. Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 1996;98:2632-9
  • Gerber J, Raivich G, Wellmer A, et al. A mouse model of Streptococcus pneumoniae meningitis mimicking several features of human disease. Acta Neuropathol 2001;101:499-508
  • Radi R, Beckman JS, Bush KM, et al. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991;288:481-7
  • Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992;298:431-7
  • Bolanos JP, Heales SJ, Land JM, et al. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 1995;64:1965-72
  • Szabo C. Antiperoxynitrite strategies for the experimental therapy of shock. Crit Care Med 2000;28:2156-7
  • Spranger M, Schwab S, Krempien S, et al. Excess glutamate levels in the cerebrospinal fluid predict clinical outcome of bacterial meningitis. Arch Neurol 1996;53:992-6
  • Azeh I, Mader M, Smirnov A, et al. Experimental pneumococcal meningitis in rabbits: the increase of matrix metalloproteinase-9 in cerebrospinal fluid correlates with leucocyte invasion. Neurosci Lett 1998;256:127-30
  • Kieseier BC, Paul R, Koedel U, et al. Differential expression of matrix metalloproteinases in bacterial meningitis. Brain 1999;122(Pt 8):1579-87
  • Kolb SA, Lahrtz F, Paul R, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in viral meningitis: upregulation of MMP-9 and TIMP-1 in cerebrospinal fluid. J Neuroimmunol 1998;84:143-50
  • Leib SL, Clements JM, Lindberg RL, et al. Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain 2001;124:1734-42
  • Leib SL, Leppert D, Clements J, et al. Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun 2000;68:615-20
  • Leppert D, Lindberg RL, Kappos L, et al. Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Brain Res Rev 2001;36:249-57
  • Yong VW, Power C, Forsyth P, et al. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2001;2:502-11
  • Braun JS, Novak R, Herzog KH, et al. Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat Med 1999;5:298-302
  • Leib SL, Kim YS, Ferriero DM, et al. Neuroprotective effect of excitatory amino acid antagonist kynurenic acid in experimental bacterial meningitis. J Infect Dis 1996;173:166-71
  • Tauber MG, Sachdeva M, Kennedy SL, et al. Toxicity in neuronal cells caused by cerebrospinal fluid from pneumococcal and gram-negative meningitis. J Infect Dis 1992;166:1045-50
  • van Rossum AM, Wulkan RW, Oudesluys-Murphy AM. Procalcitonin as an early marker of infection in neonates and children. Lancet Infect Dis 2004;4:620-30
  • Schwarz S, Bertram M, Schwab S, et al. Serum procalcitonin levels in bacterial and abacterial meningitis. Crit Care Med 2000;28:1828-32
  • Carrol ED, Newland P, Thomson AP, et al. Prognostic value of procalcitonin in children with meningococcal sepsis. Crit Care Med 2005;33:224-5
  • van Deuren M, van Dijke BJ, Koopman RJ, et al. Rapid diagnosis of acute meningococcal infections by needle aspiration or biopsy of skin lesions. BMJ 1993;306:1229-32
  • Taha MK, Olcén P. Molecular genetic methods in diagnosis and direct characterization of acute bacterial central nervous system infections. APMIS 2004;112:753-70
  • Sande MA. Factors influencing the penetration and activity of antibiotics in experimental meningitis. J Infect 1981;3:33-8
  • Tauber MG, Sande MA. General principles of therapy of pyogenic meningitis. Infect Dis Clin North Am 1990;4:661-76
  • Tunkel AR. Clinical trials report. Curr Infect Dis Rep 2001;3:347-51
  • Sinner SW, Tunkel AR. Antimicrobial agents in the treatment of bacterial meningitis. Infect Dis Clin North Am 2004;18:581-602, ix
  • Tauber MG, Doroshow CA, Hackbarth CJ, et al. Antibacterial activity of beta-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae. J Infect Dis 1984;149:568-74
  • Strausbaugh LJ, Sande MA. Factors influencing the therapy of experimental Proteus mirabilis meningitis in rabbits. J Infect Dis 1978;137:251-60
  • Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med 1997;336:708-16
  • Anonymous Therapy for children with invasive pneumococcal infections. American Academy of Pediatrics Committee on Infectious Diseases. Pediatrics 1997;99:289-99
  • Whitney CG, Farley MM, Hadler J, et al. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med 2000;343:1917-24
  • Stanhope MJ, Lefebure T, Walsh SL, et al. Positive selection in penicillin-binding proteins 1a, 2b, and 2x from Streptococcus pneumoniae and its correlation with amoxicillin resistance development. Infect Genet Evol 2008;8:331-9
  • Klugman KP. Pneumococcal resistance to antibiotics. Clin Microbiol Rev 1990;3:171-96
  • van de Beek D, de Gans J, Tunkel AR, et al. Community-acquired bacterial meningitis in adults. N Engl J Med 2006;354:44-53
  • Fitch MT, van de Beek D. Emergency diagnosis and treatment of adult meningitis. Lancet Infect Dis 2007;7:191-200
  • Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 2004;39:1267-84
  • Antignac A, Boneca IG, Rousselle JC, et al. Correlation between alterations of the penicillin-binding protein 2 and modifications of the peptidoglycan structure in Neisseria meningitidis with reduced susceptibility to penicillin G. J Biol Chem 2003;278:31529-35
  • Taha MK, Vazquez JA, Hong E, et al. Target gene sequencing to characterize the penicillin G susceptibility of Neisseria meningitidis. Antimicrob Agents Chemother 2007;51:2784-92
  • Hieber JP, Nelson JD. A pharmacologic evaluation of penicillin in children with purulent meningitis. N Engl J Med 1977;297:410-3
  • Antignac A, Ducos-Galand M, Guiyoule A, et al. Neisseria meningitidis strains isolated from invasive infections in France (1999-2002): phenotypes and antibiotic susceptibility patterns. Clin Infect Dis 2003;37:912-20
  • Aronin SI, Peduzzi P, Quagliarello VJ. Community-acquired bacterial meningitis: risk stratification for adverse clinical outcome and effect of antibiotic timing. Ann Intern Med 1998;129:862-9
  • Lu CH, Chang WN, Chang HW, et al. The prognostic factors of cryptococcal meningitis in HIV-negative patients. J Hosp Infect 1999;42:313-20
  • Lepur D, Barsic B. Community-acquired bacterial meningitis in adults: antibiotic timing in disease course and outcome. Infection 2007;35:225-31
  • Proulx N, Frechette D, Toye B, et al. Delays in the administration of antibiotics are associated with mortality from adult acute bacterial meningitis. QJM 2005;98:291-8
  • Koomen I, Grobbee DE, Roord JJ, et al. Prediction of academic and behavioural limitations in school-age survivors of bacterial meningitis. Acta Paediatr 2004;93:1378-85
  • Cartwright KA. Early management of meningococcal disease. Infect Dis Clin North Am 1999;13:661-84, viii
  • Cartwright KA, Reilly S, White D, et al. Early treatment with parenteral penicillin in meningococcal disease. Br Med J 1992;305:143-7
  • Hahne SJ, Charlett A, Purcell B, et al. Effectiveness of antibiotics given before admission in reducing mortality from meningococcal disease: systematic review. BMJ 2006;332:1299-303
  • Sudarsanam T, Rupali P, Tharyan P, et al. Pre-admission antibiotics for suspected cases of meningococcal disease. Cochrane Database Syst Rev 2008:CD005437
  • Nadel S, Kroll JS. Diagnosis and management of meningococcal disease: the need for centralized care. FEMS Microbiol Rev 2007;31:71-83
  • Vicente MF, Perez-Daz JC, Baquero F, et al. Penicillin-binding protein 3 of Listeria monocytogenes as the primary lethal target for beta-lactams. Antimicrob Agents Chemother 1990;34:539-42
  • Safdar A, Armstrong D. Antimicrobial activities against 84 Listeria monocytogenes isolates from patients with systemic listeriosis at a comprehensive cancer center (1955-1997). J Clin Microbiol 2003;41:483-5
  • Merle-Melet M, Dossou-Gbete L, Maurer P, et al. Is amoxicillin-cotrimoxazole the most appropriate antibiotic regimen for listeria meningoencephalitis? Review of 22 cases and the literature. J Infect 1996;33:79-85
  • Parent du Chatelet I, Traore Y, Gessner BD, et al. Bacterial meningitis in Burkina Faso: surveillance using field-based polymerase chain reaction testing. Clin Infect Dis 2005;40:17-25
  • Klugman KP, Friedland IR, Bradley JS. Bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in cerebrospinal fluid of children with acute bacterial meningitis. Antimicrob Agents Chemother 1995;39:1988-92
  • Nau R, Wellmer A, Soto A, et al. Rifampin reduces early mortality in experimental Streptococcus pneumoniae meningitis. J Infect Dis 1999;179:1557-60
  • Lewis RF, Dorlencourt F, Pinel J. Long-acting oily chloramphenicol for meningococcal meningitis. Lancet 1998;352:823
  • WHO. Standardized treatment of bacterial meningitis in Africa in epidemic and non-epidemic situations. Geneva: World Health Organisation; 2007
  • Tondella ML, Rosenstein NE, Mayer LW, et al. Lack of evidence for chloramphenicol resistance in Neisseria meningitidis, Africa. Emerg Infect Dis 2001;7:163-4
  • Galimand M, Gerbaud G, Guibourdenche M, et al. High-level chloramphenicol resistance in Neisseria meningitidis. N Engl J Med 1998;339:868-74
  • Shultz TR, Tapsall JW, White PA, et al. Chloramphenicol-resistant Neisseria meningitidis containing catP isolated in Australia. J Antimicrob Chemother 2003;52:856-9
  • Nathan N, Borel T, Djibo A, et al. Ceftriaxone as effective as long-acting chloramphenicol in short-course treatment of meningococcal meningitis during epidemics: a randomised non-inferiority study. Lancet 2005;366:308-13
  • Peltola H, Anttila M, Renkonen OV. Randomised comparison of chloramphenicol, ampicillin, cefotaxime, and ceftriaxone for childhood bacterial meningitis. Finnish Study Group. Lancet 1989;1:1281-7
  • Henriques Normark B, Novak R, Ortqvist A, et al. Clinical isolates of Streptococcus pneumoniae that exhibit tolerance of vancomycin. Clin Infect Dis 2001;32:552-8
  • Novak R, Henriques B, Charpentier E, et al. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature 1999;399:590-3
  • Tomasz A, Albino A, Zanati E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 1970;227:138-40
  • Kaplan SL. Management of pneumococcal meningitis. Pediatr Infect Dis J 2002;21:589-91; discussion 613-4
  • Kosowska-Shick K, McGhee P, Appelbaum PC. Binding of faropenem and other {beta} -lactam agents to penicillin-binding proteins of pneumococci with varying {beta} -lactam susceptibilities. Antimicrob Agents Chemother 2009;53:2176-80
  • Kim BN, Woo JH, Kim YS, et al. Time-kill studies of antimicrobial combinations including cefotaxime, ceftriaxone, vancomycin and meropenem against cephalosporin-resistant Streptococcus pneumoniae. Chemotherapy 2000;46:303-8
  • Baldwin CM, Lyseng-Williamson KA, Keam SJ. Meropenem: a review of its use in the treatment of serious bacterial infections. Drugs 2008;68:803-38
  • Force E, Taberner F, Cabellos C, et al. Evaluation of meropenem alone and combined with rifampin in the guinea pig model of pneumococcal meningitis. Eur J Clin Microbiol Infect Dis 2009;28:807-11
  • Barradell LB, Bryson HM. Cefepime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1994;47:471-505
  • Lodise TP Jr, Nau R, Kinzig M, et al. Comparison of the probability of target attainment between ceftriaxone and cefepime in the cerebrospinal fluid and serum against Streptococcus pneumoniae. Diagn Microbiol Infect Dis 2007;58:445-52
  • Rodriguez-Cerrato V, Ghaffar F, Saavedra J, et al. BMS-284756 in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 2001;45:3098-103
  • Lutsar I, Friedland IR, Wubbel L, et al. Pharmacodynamics of gatifloxacin in cerebrospinal fluid in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 1998;42:2650-5
  • Rodriguez-Cerrato V, McCoig CC, Saavedra J, et al. Garenoxacin (BMS-284756) and moxifloxacin in experimental meningitis caused by vancomycin-tolerant pneumococci. Antimicrob Agents Chemother 2003;47:211-5
  • Lutsar I, McCracken GH Jr, Friedland IR. Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis 1998;27:1117-27, quiz 1128-9
  • Suntur BM, Yurtseven T, Sipahi OR, et al. Rifampicin+ceftriaxone versus vancomycin+ceftriaxone in the treatment of penicillin- and cephalosporin-resistant pneumococcal meningitis in an experimental rabbit model. Int J Antimicrob Agents 2005;26:258-60
  • Faella F, Pagliano P, Fusco U, et al. Combined treatment with ceftriaxone and linezolid of pneumococcal meningitis: a case series including penicillin-resistant strains. Clin Microbiol Infect 2006;12:391-4
  • Shinabarger DL, Marotti KR, Murray RW, et al. Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob Agents Chemother 1997;41:2132-6
  • Manfredi R, Sabbatani S, Marinacci G, et al. Listeria monocytogenes meningitis and multiple brain abscesses in an immunocompetent host. Favorable response to combination linezolid-meropenem treatment. J Chemother 2006;18:331-3
  • Finberg RW, Moellering RC, Tally FP, et al. The importance of bactericidal drugs: future directions in infectious disease. Clin Infect Dis 2004;39:1314-20
  • Cottagnoud P, Pfister M, Acosta F, et al. Daptomycin is highly efficacious against penicillin-resistant and penicillin- and quinolone-resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother 2004;48:3928-33
  • Allen NE, Alborn WE Jr, Hobbs JN Jr. Inhibition of membrane potential-dependent amino acid transport by daptomycin. Antimicrob Agents Chemother 1991;35:2639-42
  • Stucki A, Cottagnoud M, Winkelmann V, et al. Daptomycin produces an enhanced bactericidal activity compared to ceftriaxone, measured by [3H]choline release in the cerebrospinal fluid, in experimental meningitis due to a penicillin-resistant pneumococcal strain without lysing its cell wall. Antimicrob Agents Chemother 2007;51:2249-52
  • Grandgirard D, Schurch C, Cottagnoud P, et al. Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother 2007;51:2173-8
  • Cilli F, Aydemir S, Tunger A. In vitro activity of daptomycin alone and in combination with various antimicrobials against Gram-positive cocci. J Chemother 2006;18:27-32
  • Nau R, Lassek C, Kinzig-Schippers M, et al. Disposition and elimination of meropenem in cerebrospinal fluid of hydrocephalic patients with external ventriculostomy. Antimicrob Agents Chemother 1998;42:2012-6
  • Scheld WM, Koedel U, Nathan B, et al. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 2002;186(Suppl 2):S225-33
  • Kastenbauer S, Koedel U, Becker BF, et al. Oxidative stress in bacterial meningitis in humans. Neurology 2002;58:186-91
  • Koedel U, Angele B, Rupprecht T, et al. Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 2003;170:438-44
  • Chamaillard M, Hashimoto M, Horie Y, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003;4:702-7
  • Malley R, Henneke P, Morse SC, et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 2003;100:1966-71
  • de Gans J, van de Beek D. Dexamethasone in adults with bacterial meningitis. N Engl J Med 2002;347:1549-56
  • McIntyre PB, Berkey CS, King SM, et al. Dexamethasone as adjunctive therapy in bacterial meningitis. A meta-analysis of randomized clinical trials since 1988. JAMA 1997;278:925-31
  • Scarborough M, Gordon SB, Whitty CJ, et al. Corticosteroids for bacterial meningitis in adults in sub-Saharan Africa. N Engl J Med 2007;357:2441-50
  • Taha MK, Alonso JM. Corticosteroids for bacterial meningitis. N Engl J Med 2008;358:1400; author reply 1400-1
  • Sjostrom K, Spindler C, Ortqvist A, et al. Clonal and capsular types decide whether pneumococci will act as a primary or opportunistic pathogen. Clin Infect Dis 2006;42:451-9
  • Zarantonelli ML, Lancellotti M, Deghmane AE, et al. Hyperinvasive genotypes of Neisseria meningitidis in France. Clin Microbiol Infect 2008;14:467-72
  • Ashwal S, Stringer W, Tomasi L, et al. Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis. J Pediatr 1990;117:523-30
  • Kilpi T, Peltola H, Jauhiainen T, et al. Oral glycerol and intravenous dexamethasone in preventing neurologic and audiologic sequelae of childhood bacterial meningitis. The Finnish Study Group. Pediatr Infect Dis J 1995;14:270-8
  • Peltola H, Roine I, Fernandez J, et al. Adjuvant glycerol and/or dexamethasone to improve the outcomes of childhood bacterial meningitis: a prospective, randomized, double-blind, placebo-controlled trial. Clin Infect Dis 2007;45:1277-86
  • Peltola H, Roine I. Improving the outcomes in children with bacterial meningitis. Curr Opin Infect Dis 2009;22:250-5
  • McCurdy DK, Schneider B, Scheie HG. Oral glycerol: the mechanism of intraocular hypotension. Am J Ophthalmol 1966;61:1244-9
  • Zoghbi HY, Okumura S, Laurent JP, et al. Acute effect of glycerol on net cerebrospinal fluid production in dogs. J Neurosurg 1985;63:759-62
  • Kadurugamuwa JL, Beveridge TJ. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 1995;177:3998-4008
  • Rappaport JM, Bhatt SM, Burkard RF, et al. Prevention of hearing loss in experimental pneumococcal meningitis by administration of dexamethasone and ketorolac. J Infect Dis 1999;179:264-8
  • Lorenzl S, Koedel U, Pfister HW. Mannitol, but not allopurinol, modulates changes in cerebral blood flow, intracranial pressure, and brain water content during pneumococcal meningitis in the rat. Crit Care Med 1996;24:1874-80
  • Minns RA, Engleman HM, Stirling H. Cerebrospinal fluid pressure in pyogenic meningitis. Arch Dis Child 1989;64:814-20
  • Syrogiannopoulos GA, Olsen KD, McCracken GH Jr. Mannitol treatment in experimental Haemophilus influenzae type b meningitis. Pediatr Res 1987;22:118-22
  • Hartwell RC, Sutton LN. Mannitol, intracranial pressure, and vasogenic edema. Neurosurgery 1993;32:444-50; discussion 450
  • Kaufmann AM, Cardoso ER. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg 1992;77:584-9
  • Ashwal S, Tomasi L, Schneider S, et al. Bacterial meningitis in children: pathophysiology and treatment. Neurology 1992;42:739-48
  • van der Flier M, Geelen SP, Kimpen JL, et al. Reprogramming the host response in bacterial meningitis: how best to improve outcome? Clin Microbiol Rev 2003;16:415-29
  • Levin M, Quint PA, Goldstein B, et al. Recombinant bactericidal/ permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet 2000;356:961-7
  • Greenman RL, Schein RM, Martin MA, et al. A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. The XOMA Sepsis Study Group. JAMA 1991;266:1097-102
  • Glimaker M, Olcén P, Andersson B. Interferon-gamma in cerebrospinal fluid from patients with viral and bacterial meningitis. Scand J Infect Dis 1994;26:141-7
  • Cole AM, Ganz T, Liese AM, et al. Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J Immunol 2001;167:623-7
  • Zysk G, Bruck W, Fischer FR, et al. Limited efficacy of pentoxifylline as anti-inflammatory agent in experimental pneumococcal meningitis. Clin Exp Immunol 1997;107:458-61
  • Paris MM, Hickey SM, Trujillo M, et al. The effect of interleukin-10 on meningeal inflammation in experimental bacterial meningitis. J Infect Dis 1997;176:1239-46
  • Echchannaoui H, Leib SL, Neumann U, et al. Adjuvant TACE inhibitor treatment improves the outcome of TLR2-/- mice with experimental pneumococcal meningitis. BMC Infect Dis 2007;7:25
  • Koedel U, Bayerlein I, Paul R, et al. Pharmacologic interference with NF-kappaB activation attenuates central nervous system complications in experimental Pneumococcal meningitis. J Infect Dis 2000;182:1437-45
  • Kastenbauer S, Koedel U, Weih F, et al. Protective role of NF-kappaB1 (p50) in experimental pneumococcal meningitis. Eur J Pharmacol 2004;498:315-8
  • Weinrauch Y, Zychlinsky A. The induction of apoptosis by bacterial pathogens. Annu Rev Microbiol 1999;53:155-87
  • Gao LY, Kwaik YA. The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol 2000;8:306-13
  • Bermpohl D, Halle A, Freyer D, et al. Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J Clin Invest 2005;115:1607-15
  • Koedel U, Winkler F, Angele B, et al. Role of Caspase-1 in experimental pneumococcal meningitis: evidence from pharmacologic Caspase inhibition and Caspase-1-deficient mice. Ann Neurol 2002;51:319-29
  • Ray G, Aneja S, Jain M, et al. Evaluation of free radical status in CSF in childhood meningitis. Ann Trop Paediatr 2000;20:115-20
  • Auer M, Pfister LA, Leppert D, et al. Effects of clinically used antioxidants in experimental pneumococcal meningitis. J Infect Dis 2000;182:347-50
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669-76
  • van der Flier M, Stockhammer G, Vonk GJ, et al. Vascular endothelial growth factor in bacterial meningitis: detection in cerebrospinal fluid and localization in postmortem brain. J Infect Dis 2001;183:149-53
  • van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 1999;104:1613-20
  • Granert C, Raud J, Xie X, et al. Inhibition of leukocyte rolling with polysaccharide fucoidin prevents pleocytosis in experimental meningitis in the rabbit. J Clin Invest 1994;93:929-36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.