89
Views
118
CrossRef citations to date
0
Altmetric
Review

Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics – an update

&
Pages 137-149 | Published online: 22 Apr 2005

Bibliography

  • STOLER DL, CHEN N, BASIK M et al: The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Nail. Acad. Sci. USA (1999) 96(20 :15121–15126.
  • HAHN WC, WEINBERG RA: Modelling the molecular circuitry of cancer. Nat. Rev. Cancer (2002) 2(5):331–341.
  • LA ROSEE P, O'DWYER ME, DRUKER BJ: Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective. Leukemia (2002) 16(7):1213–1219.
  • KITANO H: Cancer robustness: tumourtactics. Nature (2003) 426(6963):125.
  • HANAHAN D, EINBERG RA: The hallmarks of cancer. Cell (2000) 100(1):57–70.
  • CHIOSIS G, VILENCHIK M, KIM J, SOLIT D: Hsp90: the vulnerable chaperone. Drug Discov. Today (2004) 9(20):881–888.
  • WORKMAN P: Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. (2004) 206(2):149–157.
  • BAGATELL R, WHITESELL L: Altered Hsp90 function in cancer: a unique therapeutic opportunity. MoL Cancer Ther. (2004) 3(8):1021–1030.
  • ZHANG, BURROWS F: Targeting multiple signal transduction pathways through inhibition of Hsp90.1 Md. Med. (2004) 82(8):488–499.
  • GOETZ MP, TOFT DO, AMES MM, ERLICHMAN C: The Hsp90 chaperone complex as a novel target for cancer therapy. Ann. Oncol (2003) 14(8):1169–1176.
  • ISAACS JS, ISAACS JS, XU W, NECKERS L: Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell (2003) 3(3):213–217.
  • RUTHERFORD SL, LINDQUIST S: Hsp90 as a capacitor for morphological evolution. Nature (1998) 396(6709):336–342.
  • QUEITSCH C, SANGSTER TA, LINDQUIST S: Hsp90 as a capacitor of phenotypic variation. Nature (2002) 417(6889):618–624.
  • NECKERS L, IVY SP: Heat shock protein 90. Curr. Opin. Oncol (2003) 15: 419–424.
  • MUNSTER PN et al.: Phase I trial of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in patients with advanced solid malignancies. Proc. Am. Soc. Clin. Oncol (2001) 20:Abstract 326.
  • BANERJI U et al.: A pharmacokinetically (Pk) - pharmacodynamically (Pd) driven Phase I trial of the Hsp90 molecular chaperone inhibitor 17-allyamino 17-demethoxygeldanamycin (17AAG). Proceedings from the 93rd Annual Meeting of the American Association for Cancer Research. (2002) 43:Abstract 1352.
  • AGNEW EB et al.: Clinical pharmacokinetics of 17-(allylamino)-17-demethoxygeldanamycin and the active metabolite 17-(amino)-17-demethoxygeldanamycin given as a one-hour infusion daily for 5 days. Proceedings from the 93rd Annual Meeting of the American Association for Cancer Research. (2002) 43:Abstract 1349.
  • IVY PS, SCHOENFELDT M: Clinical trials referral resource. Current clinical trials of 17-AG and 17-DMAG. Oncology (Huntingt) (2004) 18(5):619–620.
  • MARCU MG, SCHULTE TW, NECKERS L: Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J. Natl Cancer Inst. (2000) 92(3):242–248.
  • MARCU MG, CHADLI A. BOUHOUCHE I, CATELLI M, NECKERS LM: The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J. Biol. Chem. (2000) 275(47):37181–37186.
  • SOTI C, RACZ A, CSERMELY P: A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. j Biol. Chem. (2002) 277(9):7066–7075.
  • MARCU MG, NECKERS LM: The C-terminal half of heat shock protein 90 represents a second site for pharmacologic intervention in chaperone function. Curr. Cancer Drug Targets (2003) 3(5):343–347.
  • YU X, GUO ZS, MARCU MG et al.: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228.1 Natl Cancer Inst. (2002) 94(7):504–513.
  • FUINO L, BALI P, WITTMANN S et al.: Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther. (2003) 2(10971–984.
  • NECKERS L, NECKERS K: Heat-shock protein 90 inhibitors as novel cancer chemotherapeutic agents. Expert Opin. Emerging Drugs (2002) 7:277–288.
  • SILIGARDI G et al.: Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J. Biol. Chem. (2004).
  • WEGELE H, MULLER L, BUCHNER J et al.: Hsp70 and Hsp90-a relay team for protein folding. Rev. PhysioL Biochem. Pharmacol (2004) 151:1–44.
  • PRODROMOU C, PEARL LH: Structure and functional relationships of Hsp90. Curr. Cancer Drug Targets (2003) 3(5):301–323.
  • SILIGARDI G, PANARETOU B, MEYER P et al.: Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37.1 Biol. Chem. (2002) 277(23):20151–20159.
  • SCHEIBEL T, BUCHNER J: The Hsp90 complex-a super-chaperone machine as a novel drug target. Biochem. Pharmacol (1998) 56(61:675–682.
  • NECKERS L: Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med. (2002) 8(4 Suppl.):555–561.
  • AN WG, SCHULTE TW, NECKERS LM et al.: The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. (2000) 11(7):355–360.
  • XU Y, SINGER MA, LINDQUIST S: Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc. Natl Acad. ScLUSA (1999) 96(1):109–114.
  • EISEMAN JL et al.: Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2 dimethylamino)ethyll amino] geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother. Pharmacol (2004).
  • CHIOSIS G, HUEZO H, ROSEN N, MIMNAUGH E, WHITESELL L, NECKERS L: 17AAG: Low target binding affinity and potent cell activity-finding an explanation. Mol Cancer Ther. (2003) 2(2):123–129.
  • KAMAL A, THAO L, SENSINTAFFAR J et al.: A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature (2003) 425(6956):407–410.
  • VILENCHIK M, SOLIT D, BASSO A et al.: Targeting wide-range oncogenic transformation via PU24FC1, a specific inhibitor of tumor Hsp90. Chem. Biol. (2004) 11:787–797.
  • FUJIMOTO J, SHIOTA M, IWAHARA T et al.: Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc. Natl Acad. Sci. USA (1996) 93(9):4181–4186.
  • BONVINI P, GASTALDI T, FALINI B, ROSOLEN A: Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90- client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res. (2002) 62(5):1559–1566.
  • NAOE T, KIYOE H, YAMAMOTO Y et al.: FLT3 tyrosine kinase as a target molecule for selective antileukemia therapy. Cancer Chemother. Pharmacol. (2001) 48\(Suppl. 1):S27–S30.
  • MINAMI Y, KIYOI H, YAMAMOTO Y et al.: Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia (2002) 16(8):1535–1540.
  • SHIOTSU Y, NECKERS LM, WORTMAN I et al.: Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood (2000) 96(6):2284–2291.
  • DRUKER BJ, TAMURA S, BUCHDUNGER E et al.: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. (1996) 2(5):561–566.
  • SAWYERS CL, HOCHHAUS A. FELDMAN E et al: Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a Phase II study. Blood (2002) 99(10):3530–3539.
  • SHAH NP, NICOLL JM, NAGAR B et al: Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (5TI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell (2002) 2(2):117–125.
  • GORRE ME, ELLWOOD-YEN K, CHIOSIS G, ROSEN N, SAWYERS CL: BCR-ABL point mutants isolated from patients with 5TI571-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood (2002) 100:3041–3044.
  • NIMMANAPALLI R, O'BRYAN E, HUANG M et al: Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res. (2002) 62(20):5761–5769.
  • FUMO G, AKIN C, METCALFE DD, NECKERS L: 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood (2004) 103:1078–1084.
  • VANAJA DK, MITCHELL SH, TOFT DO, YOUNG CY: Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones (2002) 7:55–64.
  • GEORGET V TEROUANNE B, NICOLAS JC, SULTAN C: Mechanism of antiandrogen action: Key role of Hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry (2002) 41:11824–11831.
  • SOLIT D, ZHENG FF, DROBNJAK M et al: 17-allylamino-17-demthoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res. (2002):986–993.
  • HARRIS AL: Hypoxia- a key regulatory factor in tumor growth. Nat. Rev. Cancer (2002) 2:38–47.
  • MAXWELL PH, WIESENER MS, CHANG GW et al.: The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature (1999) 399:271–275.
  • SEIZINGER BR, ROULEAU GA, OZELIUS LJ et al: Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature (1988) 332(6161):268–269.
  • GRADIN K, MCGUIRE J, WENGER RH et al: Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. MoL Cell. BioL (1996) 16(10):5221–5231.
  • HUR E, KIM HH, CHOI SM et al: Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-lalpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-1cDa heat-shock protein inhibitor radicicol. Mol. PharmacoL (2002) 62(5):975–982.
  • ISAACS JS, JUNG YJ, MIMNAUGH EG, MARTINEZ A, CUTTITTA F, NECKERS LM: Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J. BioL Chem. (2002) 277(33):29936–29944.
  • MABJEESH NJ, POST DE, WILLARD MT et al.: Geldanamycin induces degradation of hypoxia-inducible factor la protein via the proteasome pathway in prostate cancer cells. Cancer Res. (2002) 62:2478–2482.
  • ZAGZAG D, NOMURA M, FRIEDLANDER DR et al.: Geldanamycin inhibits migration of glioma cells in vitro: a potential role for hypoxia-inducible factor (HIF-lalpha) in glioma cell invasion. J. Cell. Physiol. (2003) 196(2):394–402.
  • DIAS S, SHMELKOV SV, LAM G, RAFII S: VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bc1-2 expression and apoptosis inhibition. Blood (2002) 99(7):2532–2540.
  • MAULIK G, KIJIMA T, MA PC et al: Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin. Cancer Res. (2002) 8(2):620–627.
  • PENNACCHIETTI S, MICHIELI P, GALLUZZO M et al: Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell (2003) 3(4):347–361.
  • TACCHINI L, DANSI P, MATTEUCCI E, DESIDERIO MA: Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells. Carcinogenesis (2001) 22(9):1363–1371.
  • BOTTARO DP, LIOTTA LA: Out of air is not out of action. Nature (2003) 423:593–595.
  • MIMNAUGH EG, CHAVANY C, NECKERS L: Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. j BioL Chem. (1996) 271(37):22796–22801.
  • SCHNEIDER C, SEPP-LORENZINO L, NIMMESGERN E et al.: Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. NatL Acad. Sci. USA (1996) 93(25):14536–14541.
  • BASSO AD, SOLIT DB, CHIOSIS G, GIRT B, TSICHLIS P, ROSEN N: Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function./ BioL Chem. (2002) 277(42):39858–39866.
  • FRENCH BA, VAN LEEUWEN F, RILEY NE et al: Aggresome formation in liver cells in response to different toxic mechanisms: role of the ubiquitin-proteasome pathway and the frameshift mutant of ubiquitin. Exp. MoL PathoL (2001) 71(3):241–246.
  • WAELTER S, BOEDDRICH A. LURZ R et al.: Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. MoL Biol. Cell (2001) 12(5):1393–1407.
  • AGHAJANIAN C, SOIGNET S, DIZON DS et al.: A Phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin. Cancer Res. (2002) 8(8):2505–2511.
  • EALLEMAIN G: [Update on. the proteasome inhibitor PS341]. Bull. Cancer (2002) 89(1):29–30.
  • MITSIADES N, MITSIADES CS, POULAKI V et al.: Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc. NatL Acad. Sci. USA (2002) 99(22):14374–14379.
  • MIMNAUGH EG, XU W, VOS M et al.: Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol. Cancer Ther. (2004) 3(5):551–566.
  • BISHT KS, BRADBURY CM, MATTSON D et al.: Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res. (2003) 63(24):8984–8995.
  • MACHIDA H, MATSUMOTO Y, SHIRAI M, KUBOTA N: Geldanamycin, an inhibitor of Hsp90, sensitizes human tumour cells to radiation. Int. J. Radiat. Biol. (2003) 79(12):973–980.
  • BECKER B, MULTHOFF G, FARKAS B et al.: Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. DermatoL (2004) 13(1):27–32.
  • EUSTACE BK, SAKURAI T, STEWART JK et al.: Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat. Cell Biol. (2004) 6(6):507–514.
  • EUSTACE BK, JAY DG: Extracellular roles for the molecular chaperone, hsp90. Cell Cycle (2004) 3(9):1098–1100.
  • WRIGHT L, BARRIL X, DYMOCK B et al.: Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem. Biol. (2004) 11(6):775–785.
  • SCHULTE TW, AKINAGA S, SOGA S et al.: Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones (1998) 3(2):100–108.
  • SHARMA SV, AGATSUMA T, NAKANO H: Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. Oncogene (1998) 16(20):2639–2645.
  • CHIOSIS G, LUCAS B, HUEZO H, SOLIT D, BASSO A, ROSEN N: Development of purine-scaffold small molecule inhibitors of Hsp90. Curr. Cancer Drug Targets (2003) 3(5):371–376.
  • MATTHEWS RC, RIGG G, HODGETTS S et al.: Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob. Agents Chemother. (2003) 47(7):2208–2216.
  • MATTHEWS R, BURNIE J: Recombinantantibodies: a natural partner in combinatorial antifungal therapy. Vaccine (2004) 22:865–871.
  • KELLAND LR, SHARP SY, ROGERS PM, MYERS TG, WORKMAN P: DT-diaphorase expression and tumor cell sensitivity to 17-allylamino-17-demethoxygeldanamycin, an inhibitor of heat shock protein 90.1 Natl. Cancer Inst. (1999) 91:1940–1949.
  • ALI A, BHARADWAJ S, O'CARROLL R, OVSENEK N: HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. MoL Cell. Biol. (1998) 18(9):4949–4960.
  • KIM HR, KANG HS, KIM HD: Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB Life (1999) 48(4):429–433.
  • XIAO N, CALLAWAY CW, LIPINSKI CA, HICKS SD, DEFRANCO DB: Geldanamycin provides posttreatment protection against glutamate- induced oxidative toxicity in a mouse hippocampal cell line. J. Neurochem. (1999) 72(1):95–101.
  • GUO Y, GUETTOUCHE T, FENNA M et al.: Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. 1 Biol. Chem. (2001) 276(49):45791–45799.
  • LU A, RAN R, PARMENTIER-BATTEUR S, NEE A, SHARP FR: Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. j Neurochem. (2002) 81(2):355–364.
  • BAGATELL R, PAINE-MURRIETA GD, TAYLOR CW et al.: Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin. Cancer Res. (2000) 6(8):3312–3318.
  • MIMNAUGH EG, WORLAND PJ, WHITESELL L, NECKERS LM: Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60v-src tyrosine kinase. j Biol. Chem. (1995) 270(48):28654–28659.
  • ZHAO YG, GILMORE R, LEONE G, COFFEY MC, WEBER B, LEE PW: Hsp90 phosphorylation is linked to its chaperoning function. Assembly of the reovirus cell attachment protein. J. Biol. Chem. (2001) 276(35):32822–32827.
  • SMITH-JONES PM, SOLIT DB, AKHURST T, AFROZE F, ROSEN N, LARSON SM: Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat. Biotechnol. (2004) 22(6):701–706.

Website

  • http://www.picard.ch/DP/downloads/ Hsp9Ointeractors.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.