97
Views
5
CrossRef citations to date
0
Altmetric
Review

Emerging drugs for chronic lymphocytic leukaemia

&
Pages 167-189 | Published online: 27 Feb 2006

Bibliography

  • DIEHL L, KAMEL L, MENCK H: The national cancer data base report of age, gender, treatment and outcomes of patients with chronic lymphocytic leukemia. Cancer (1999) 86:2684-2692.
  • US CANCER STATISTICS WORKING GROUP: United States Cancer Statistics: 2000 Incidence. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute (2003).
  • BYRD JC, STILGENBAUER S, FLINN IW: Chronic lymphocytic leukemia. Hematology (Am. Soc. Hematol. Educ. Program) (2004):163-183.
  • YEE KW, O’BRIEN SM, GILES FJ: An update on the management of chronic lymphocytic leukaemia. Expert Opin. Pharmacother. (2004) 5:1535-1554.
  • KEATING MJ, O’BRIEN S, ALBITAR M et al.: Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J. Clin. Oncol. (2005) 23:4079-4088.
  • WIERDA W, O’BRIEN S, WEN S et al.: Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J. Clin. Oncol. (2005) 23:4070-4078.
  • MORETON P, KENNEDY B, LUCAS G et al.: Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J. Clin. Oncol. (2005) 23:2971-2979.
  • KEATING MJ, O’BRIEN S, KONTOYIANNIS D et al.: Results of first salvage therapy for patients refractory to a fludarabine regimen in chronic lymphocytic leukemia. Leuk. Lymphoma (2002) 43:1755-1762.
  • KEATING MJ, FLINN I, JAIN V et al.: Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood (2002) 99:3554-3561.
  • CALIGARIS-CAPPIO F, HAMBLIN TJ: B-cell chronic lymphocytic leukemia: a bird of a different feather. J. Clin. Oncol. (1999) 17:399-408.
  • LAGNEAUX L, DELFORGE A, BRON D et al.: Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood (1998) 91:2387-2396.
  • PANAYIOTIDIS P, JONES D, GANESHAGURU K et al.: Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br. J. Haematol. (1996) 92:97-103.
  • GRANZIERO L, GHIA P, CIRCOSTA P et al.: Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood (2001) 97:2777-2783.
  • BUSCHLE M, CAMPANA D, CARDING SR, RICHARD C, HOFFBRAND AV, BRENNER MK: Interferon-γ inhibits apoptotic cell death in B-cell chronic lymphocytic leukemia. J. Exp. Med. (1993) 177:213-218.
  • DANCESCU M, RUBIO-TRUJILLO M, BIRON G, BRON D, DELESPESSE G, SARFATI M: Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J. Exp. Med. (1992) 176:1319-1326.
  • KITADA S, ANDERSEN J, AKAR S et al.: Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood (1998) 91:3379-3389.
  • KITADA S, ZAPATA JM, ANDREEFF M, REED JC: Bryostatin and CD40-ligand enhance apoptosis resistance and induce expression of cell survival genes in B-cell chronic lymphocytic leukaemia. Br. J. Haematol. (1999) 106:995-1004.
  • KIENLE DL, KORZ C, HOSCH B et al.: Evidence for distinct pathomechanisms in genetic subgroups of chronic lymphocytic leukemia revealed by quantitative expression analysis of cell cycle, activation and apoptosis-associated genes. J. Clin. Oncol. (2005) 23:3780-3792.
  • COLLINS RJ, VERSCHUER LA, HARMON BV, PRENTICE RL, POPE JH, KERR JF: Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br. J. Haematol. (1989) 71:343-350.
  • CORY S, ADAMS JM: The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer (2002) 2:647-656.
  • HARAGUCHI M, TORII S, MATSUZAWA S et al.: Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J. Exp. Med. (2000) 191:1709-1720.
  • CHANAN-KHAN A: Bcl-2 antisense therapy in B-cell malignancies. Blood Rev. (2005) 19:213-221.
  • CORY S, HUANG DCS, ADAMS JM: The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene (2003) 22:8590-8607.
  • ROBERTSON LE, PLUNKETT W, MCCONNELL K, KEATING MJ, MCDONNELL TJ: Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia (1996) 10:456-459.
  • SAXENA A, VISWANATHAN S, MOSHYNSKA O, TANDON P, SANKARAN K, SHERIDAN DP: Mcl-1 and Bcl-2/Bax ratio are associated with treatment response but not with Rai stage in B-cell chronic lymphocytic leukemia. Am. J. Hematol. (2004) 75:22-33.
  • MORALES AA, OLSSON A, CELSING F, ÖSTERBORG A, JONDAL M, OSORIO LM: High expression of bfl-1 contributes to the apoptosis resistant phenotype in B-cell chronic lymphocytic leukemia. Int. J. Cancer (2005) 113:730-737.
  • PEPPER C, THOMAS A, HOY T et al.: Antisense-mediated suppression of Bcl-2 highlights its pivotal role in failed apoptosis in B-cell chronic lymphocytic leukaemia. Br. J. Haematol. (1999) 107:611-615.
  • AUER RL, CORBO M, FEGAN CD et al.: Bcl-2 antisense (Genasense™) induces apoptosis and potentiates activity of both cytotoxic chemotherapy and rituximab in primary CLL cells. Blood (2001) 98:808a (abstract 3358).
  • PEPPER C, HOY T, BENTLEY DP: Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br. J. Cancer (1997) 76:935-938.
  • PEPPER C, THOMAS A, DE QUINTANA JH, DAVIES S, HOY T, BENTLEY P: Pleiotropic drug resistance in B-cell chronic lymphocytic leukaemia-the role of Bcl-2 family dysregulation. Leuk. Res. (1999) 23:1007-1014.
  • Bannerji R, KITADA S, FLINN IW et al.: Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J. Clin. Oncol. (2003) 21:1466-1471.
  • MCCONKEY DJ, CHANDRA J, WRIGHT S et al.: Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of BCL-2 and BAX. J. Immunol. (1996) 156:2624-2630.
  • GREWAL IS, FLAVELL RA: CD40 and CD154 in cell-mediated immunity. Ann. Rev. Immunol. (1998) 16:111-135.
  • MURPHY A, WESTWOOD JA, TENG MWL, MOELLER M, DARCY PK, KERSHAW MH: Gene modification strategies to induce tumor immunity. Immunity (2005) 22:403-414.
  • SALOMON B, BLUESTONE JA: Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Ann. Rev. Immunol. (2001) 19:225-252.
  • EGEN JG, KUHNS MS, ALLISON JP: CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. (2002) 3:611-618.
  • CANTWELL M, HUA T, PAPPAS J, KIPPS TJ: Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nat. Med. (1997) 3:984-989.
  • KAY NE, HAMBLIN TJ, JELINEK DF et al.: Chronic lymphocytic leukemia. Hematology (Am. Soc. Hematol. Educ. Program) (2002):193-213.
  • KAY NE, HAN L, BONE N, WILLIAMS G: Interleukin 4 content in chronic lymphocytic leukaemia (CLL) B cells and blood CD8+ T cells from B-CLL patients with impact on clonal B-cell apoptosis. Br. J. Haematol. (2001) 112:760-767.
  • ZANINONI A, IMPERIALI FG, PASQUINI C, ZANELLA A, BARCELLINI W: Cytokine modulation of nuclear factor-κB activity in B-chronic lymphocytic leukemia. Exp. Hematol. (2003) 31:185-190.
  • CASTEJON R, VARGAS JA, ROMERO Y, BRIZ M, MUNOZ RM, DURANTEZ A: Modulation of apoptosis by cytokines in B-cell chronic lymphocytic leukemia. Cytometry (1999) 38:224-230.
  • AGUAYO A, KANTARJIAN H, MANSHOURI T et al.: Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood (2000) 96:2240-2245.
  • FERRAJOLI A, KEATING MJ, MANSHOURI T et al.: The clinical significance of tumor necrosis factor-α plasma level in patients having chronic lymphocytic leukemia. Blood (2002) 100:1215-1219.
  • KINI AR, KAY NE, PETERSON LC: Increased bone marrow angiogenesis in B-cell chronic lymphocytic leukemia. Leukemia (2000) 14:1414-1418.
  • MOLICA S, VACCA A, RIBATTI D et al.: Prognostic value of enhanced bone marrow angiogenesis in early B-cell chronic leukemia. Blood (2002) 100:3344-3351.
  • CHEN H, TREWEEKE AT, WEST DC et al.: In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood (2000) 96:3181-3187.
  • KAY NE, BONE ND, TSCHUMPER RC et al.: B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia (2002) 16:911-919.
  • AGUAYO A, O’BRIEN S, KEATING M et al.: Clinical relevance of intracellular vascular endothelial growth factor levels in B-cell chronic lymphocytic leukemia. Blood (2000) 96:768-770.
  • MOLICA S, VITELLI G, LEVATO D, GANDOLFO GM, LISO V: Increased serum levels of vascular endothelial growth factor predict risk of progression in early B-cell chronic lymphocytic leukaemia. Br. J. Haematol. (1999) 107:605-610.
  • BAIREY O, BOYCOV O, KAGANOVSKY E, ZIMRA Y, SHAKLAI M, RABIZADEH E: All three receptors for vascular endothelial growth factor (VEGF) are expressed on B-chronic lymphocytic leukemia (CLL) cells. Leuk. Res. (2004) 28:243-248.
  • FERRAJOLI A, MANSHOURI T, ESTROV Z et al.: High levels of vascular endothelial growth factor receptor-2 correlate with shortened survival in chronic lymphocytic leukemia. Clin. Cancer Res. (2001) 7:795-799.
  • LEE YK, SHANAFELT TD, BONE ND, STREGE AK, JELINEK DF, KAY NE: VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT1 and 3: implication for apoptosis resistance. Leukemia (2005) 19:513-523.
  • FARAHANI M, TREWEEKE AT, TOH CH et al.: Autocrine VEGF mediates the antiapoptotic effect of CD154 on CLL cells. Leukemia (2005) 19:524-530.
  • JANSEN B, ZANGEMEISTER-WITTKE U: Antisense therapy for cancer – the time for truth. Lancet Oncol. (2002) 3:672-683.
  • CASTRO JE, KITADA S, AGADIR A et al.: G3139-Genasense® induces apoptosis of chronic lymphocytic leukemia cells via a mechanism dependent upon the presence of thymidine nucleotides and phosphorothioate backbone and not antisense bcl-2 sequence. Blood (2003) 102:205b (abstract 4537).
  • POWELL TJ, BEARSS DJ, VON HOFF DD: cDNA microarray evaluation of non-Hodgkin’s lymphoma cells reveals multiple changes in gene expression profiles induced by Bcl-2 antisense (Genasense™). Proc. Am. Assoc. Clin. Oncol. (2002) 21:24b (abstract 1905).
  • O’BRIEN SM, CUNNINGHAM CC, GOLENKOV AK, TURKINA AG, NOVICK SC, RAI KR: Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J. Clin. Oncol. (2005) 23:7697-7702.
  • VU UE, PAVLETIC ZS, WANG X, JOSHI SS: Increased cytotoxicity against B-chronic lymphocytic leukemia by cellular manipulations: potentials for therapeutic use. Leuk. Lymphoma (2000) 39:573-582.
  • RAMANARAYANAN J, HERNANDEZ-ILIZALITURRI FJ, CHANAN-KHAN A, CZUCZMAN M: Pro-apoptotic therapy with the oligonucleotide Genasense™ (oblimersen sodium) targeting Bcl-2 protein expression enhances the biological anti-tumor activity of rituximab. Br. J. Haematol. (2004) 127:519-530.
  • CHANAN-KHAN AA, MAVROMATIS B, RAI KR, CASEY P, NOVICK S, ITRI LM: A pilot study of Genasense® (oblimersen sodium, bcl-2 antisense oligonucleotide), fludarabine and rituximab in previously treated and untreated subjects with chronic lymphocytic leukemia. Blood (2004) 104:289b (abstract 4927).
  • RAI KR, MOORE JO, BOYD TE et al.: Phase III randomized trial of fludarabine/cyclophosphamide chemotherapy with or without oblimersen sodium (bcl-2 antisense; Genasense; G3139) for patients with relapsed or refractory chronic lymphocytic leukemia (CLL). Blood (2004) 104:100a (abstract 338).
  • KITADA S, MONOSOV E, CHANDLER S et al.: Pro-apoptotic effects on CLL (chronic lymphocytic leukemia) of ABT-737, a novel fully synthetic Bcl-2/Bcl-XL antagonist. Blood (2004) 104:272a (abstract 952).
  • OLTERSDORF T, ELMORE SW, SHOEMAKER AR et al.: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature (2005) 435:677-681.
  • EL-DEIRY WS: Meeting report: The international conference on tumor progression and therapeutic resistance. Cancer Res. (2005) 65:4475-4484.
  • MITTEN MJ, OLEKSIJEW A, POWLAS J et al.: The Bcl-2 inhibitor ABT-737 shows significant anti-tumor efficacy in a model of non-Hodgkin’s B cell lymphoma. Proc. Am. Assoc. Cancer Res. (2005) 46 (abstract 1695).
  • MCGREIVY JS, MARSHALL J, CHESON BD et al.: Initial results from ongoing Phase I trials of a novel pan bcl-2 family small molecule inhibitor. J. Clin. Oncol. (2005) 23:236s (abstract 3180).
  • CASTRO JE, PRADA CE, KITADA S et al.: GX15-070MS induces apoptosis in CLL. J. Clin. Oncol. (2005) 23:233s (abstract 3167).
  • OLNEY HJ, WENG X, WATSON M et al.: Preclinical evaluation of apoptosis induction by the novel samll molceule BCL-2 inhibitor, GX015-070, in ex vivo chronic lymphoid leukemia (CLL) cells. J. Clin. Oncol. (2005) 23:228s (abstract 3149).
  • TEDDER TF, TUSCANO J, SATO S, KEHRL JH: CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Ann. Rev. Immunol. (1997) 15:481-504.
  • SATO S, TUSCANO JM, INAOKI M, TEDDER TF: CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin. Immunol. (1998) 10:287-297.
  • HAN K, KIM Y, LEE J et al.: Human basophils express CD22 without expression of CD19. Cytometry (1999) 37:178-183.
  • LEWIS RE, CRUSE JM, PIERCE S, LAM J, TADROS Y: Surface and cytoplasmic immunoglobulin expression in B-cell chronic lymphocytic leukemia (CLL). Exp. Mol. Pathol. (2005) 79:146-150.
  • DAMLE RN, GHIOTTO F, VALETTO A et al.: B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood (2002) 99:4087-4093.
  • BELOV L, DE LA VEGA O, DOS REMEDIOS CG, MULLIGAN SP, CHRISTOPHERSON RI: Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res. (2001) 61:4483-4489.
  • GEISLER CH, LARSEN JK, HANSEN NE et al.: Prognostic importance of flow cytometric immunophenotyping of 540 consecutive patients with B-cell chronic lymphocytic leukemia. Blood (1991) 78:1795-1802.
  • CESANO A, GAYKO U, BRANNAN C, KAPUSHOC H, FIELDS SZ, PERKINS SL: Differential expression of CD22 in indolent and aggressive non-Hodgkin’s lymphoma (NHL): implications for targeted immunotherapy. Blood (2002) 100:350a (abstract 1358).
  • SHAN D, PRESS OW: Constitutive endocytosis and degradation of CD22 by human B cells. J. Immunol. (1995) 154:4466-4475.
  • TUSCANO JM, RIVA A, TOSCANO SN, TEDDER TF, KEHRL JH: CD22 cross-linking generates B-cell antigen receptor-independent signals that activate the JNK/SAPK signaling cascade. Blood (1999) 94:1382-1392.
  • LEUNG SO, GOLDENBERG DM, DION AS et al.: Construction and characterization of a humanized, internalizing, B-cell (CD22)-specific, leukemia/lymphoma antibody, LL2. Mol. Immunol. (1995) 32:1413-1427.
  • GADA P, HERNANDEZ-ILIZALITURRI FJ, REPASKY EA, CZUCZMAN MS: Epratuzumab’s predmoninant antitumor activity in vitro/in vivo against non-Hodgkin’s lymphoma (NHL) is via antibody-dependent cellular cytotoxicity (ADCC). Blood (2002) 100:353a (abstract 1367).
  • HERNANDEZ-ILIZALITURRI F, GADA P, REPASKY EA, CZUCZMAN MS: Enhancement in antitumor activity of rituximab when combined with epratuzumab or apolizumab (Hu1D10) in a B-cell lymphoma severe combined immunodeficiency (SCID) mouse model. Blood (2002) 100:158a (abstract 591).
  • CARNAHAN J, WANG P, KENDALL R et al.: Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin. Cancer Res. (2003) 9(10 Pt 2):3982S-3990S.
  • LEONARD JP, COLEMAN M, KETAS J et al.: Combination antibody therapy with epratuzumab and rituximab in relapsed/refractory non-Hodgkin’s lymphoma. J. Clin. Oncol. (2005) 23:5044-5051.
  • LEONARD JP, COLEMAN M, KETAS JC et al.: Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: Phase I/II clinical trial results. Clin. Cancer Res. (2004) 10:5327-5334.
  • LEONARD JP, COLEMAN M, KETAS JC et al.: Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J. Clin. Oncol. (2003) 21:3051-3059.
  • LEONARD JP, KU GY, ASHE M et al.: Retreatment of NHL with epratuzumab (humanized anti-CD22) can result in second responses and is well tolerated. Blood (2003) 102:643a (abstract 2375).
  • HORNING SJ: Future directions in radioimmunotherapy for B-cell lymphoma. Semin. Oncol. (2003) 30(6 Suppl. 17):29-34.
  • STRAUSS SJ, LISTER TA, MORSCHAUSER F et al.: Multi-centre, Phase II study of combination antibody therapy with epratuzumab plus rituximab in relapsed/refractory indolent and aggressive NHL: promising preliminary results. Proc. Am. Soc. Clin. Oncol. (2004) 23:575 (abstract 6579).
  • EMMANOUILIDES C, LEONARD JP, SCHUSTER SJ et al.: Multi-center, Phase II study of combination antibody therapy with epratuzumab plus rituximab in recurring low-grade NHL. Blood (2003) 102:69a (abstract 233).
  • PEROTTI B, DOSHI S, CHEN D et al.: Pharmacokinetics of epratuzumab administered as a single agent or in combination with rituximab in patients with B-cell NHL. Proc. Am. Soc. Clin. Oncol. (2003) 22:575 (abstract 2311).
  • JILANI I, O’BRIEN S, MANSHURI T et al.: Transient down-modulation of CD20 by rituximab in patients with chronic lymphocytic leukemia. Blood (2003) 102:3514-3520.
  • DELESPESSE G, SUTER U, MOSSALAYI D et al.: Expression, structure and function of the CD23 antigen. Adv. Immunol. (1991) 49:149-191.
  • FOURNIER S, RUBIO M, DELESPESSE G, SARFATI M: Role for low-affinity receptor for IgE (CD23) in normal and leukemic B-cell proliferation. Blood (1994) 84:1881-1886.
  • ARMANT M, ISHIHARA H, RUBIO M, DELESPESSE G, SARFATI M: Regulation of cytokine production by soluble CD23: costimulation of interferon-γ secretion and triggering of tumor necrosis factor-α release. J. Exp. Med. (1994) 180:1005-1011.
  • MOSSALAYI D, DALLOUL A, AROCK M, DEBRE P: Effect of CD23 on purified human hematopoietic cells. Bone Marrow Transplant. (1992) 9(Suppl. 1):50-53.
  • SARFATI M, BRON D, LAGNEAUX L, FONTEYN C, FROST H, DELESPESSE G: Elevation of IgE-binding factors in serum of patients with B cell-derived chronic lymphocytic leukemia. Blood (1988) 71:94-98.
  • SARFATI M, FOURNIER S, CHRISTOFFERSEN M, BIRON G: Expression of CD23 antigen and its regulation by IL-4 in chronic lymphocytic leukemia. Leuk. Res. (1990) 14:47-55.
  • LAMPERT IA, WOTHERSPOON A, VAN NOORDEN S, HASSERJIAN RP: High expression of CD23 in the proliferation centers of chronic lymphocytic leukemia in lymph nodes and spleen. Human Pathol. (1999) 30:648-654.
  • REINISCH W, WILHEIM M, HILGARTH M et al.: Soluble CD23 reliably reflects disease activity in B-cell chronic lymphocytic leukemia. J. Clin. Oncol. (1994) 12:2146-2152.
  • SARFATI M, CHEVRET S, CHASTANG C et al.: Prognostic importance of serum soluble CD23 level in chronic lymphocytic leukemia. Blood (1996) 88:4259-4264.
  • MOLICA S, LEVATO D, DELL’OLIO M et al.: Cellular expression and serum circulating levels of CD23 in B-cell chronic lymphocytic leukemia. Implications for prognosis. Haematologica (1996) 81:428-433.
  • SCHWARZMEIER JD, SHEHATA M, HILGARTH M et al.: The role of soluble CD23 in distinguishing stable and progressive forms of B-chronic lymphocytic leukemia. Leuk. Lymphoma (2002) 43:549-554.
  • FOURNIER S, YANG LP, DELESPESSE G, RUBIO M, BIRON G, SARFATI M: The two CD23 isoforms display differential regulation in chronic lymphocytic leukaemia. Br. J. Haematol. (1995) 89:373-379.
  • HUBMANN R, SCHWARZMEIER JD, SHEHATA M et al.: Notch2 is involved in the overexpression of CD23 in B-cell chronic lymphocytic leukemia. Blood (2002) 99:3742-3747.
  • BEVERLY LJ, CAPOBIANCO AJ: Targeting promiscuous signaling pathways in cancer: another Notch in the bedpost. Trends Mol. Med. (2004) 10:591-598.
  • FOURNIER S, DELESPESSE G, RUBIO M, BIRON G, SARFATI M: CD23 antigen regulation and signaling in chronic lymphocytic leukemia. J. Clin. Invest. (1992) 89:1312-1321.
  • LUO HY, HOFSTETTER H, BANCHEREAU J, DELESPESSE G: Cross-linking of CD23 antigen by its natural ligand (IgE) or by anti-CD23 antibody prevents B lymphocyte proliferation and differentiation. J. Immunol. (1991) 146:2122-2129.
  • PATHAN N, ZOU A, WYNNE D et al.: Lumiliximab (IDEC-152), an anti-CD23 antibody, induces apoptosis in vitro and in vivo in CLL cells. Blood (2003) 102:438a (abstract 1596).
  • CHU P, SCALES L, ZOU A et al.: Mechanism of IDEC-152-induced apoptosis in chronic lymphocytic leukemia B cells. Proc. Am. Assoc. Cancer Res. (2003) 44:126 (abstract 661).
  • REICHERT JM: Technology evaluation: lumiliximab, Biogen Idec. Curr. Opin. Mol. Ther. (2004) 6:675-683.
  • PATHAN N, CHU P, SCALES L et al.: IDEC-152 (anti-CD23)-induced apoptosis in CLL cells is mediated by caspase activation and downmodulation of anti-apoptotic proteins. Blood (2002) 100:803a (abstract 3170).
  • HOPKINS MT, PATHAN N, CHU P, CRINT P, SAVEN A: IDEC-152 (anti-CD23) triggers apoptosis of chronic lymphocytic leukemia (CLL) cells in vitro. Blood (2002) 100:597a (abstract 2346).
  • MANGIOLA M, WELSH K, KITADA S et al.: Anti-CD20 antibody rituximab and anti-CD23 antibody IDEC-152 induce apoptosis of malignant B-cells in combination with chemical antagonists of XIAP. Blood (2004) 104:393a (abstract 1401).
  • REFF ME, HARIHARAN K, BRASLAWSKY G: Future of monoclonal antibodies in the treatment of hematologic malignancies. Cancer Control (2002) 9:152-166.
  • ZOU A, HARIHARAN K, MURPHY T et al.: Lumiliximab (IDEC-152), an anti-CD23 antibody induces apoptosis in drug-resistant lymphoma cells. Proc. Am. Assoc. Cancer Res. (2004) 45: (abstract 2131).
  • BYRD JC, O’BRIEN S, FLINN I et al.: Safety and efficacy results from a Phase I trial of single-agent lumiliximab (anti-CD23 antibody) for chronic lymphocytic leukemia. Blood (2004) 104:686a (abstract 2503).
  • WOODWORTH J, LEIGH BR, O’BRIEN S et al.: Pharmacokinetics of single-agent lumiliximab (anti-CD23 antibody) in patients with chronic lymphocytic leukemia. Blood (2004) 104:290b (abstract 4831).
  • JILANI I, O’BRIEN S, KANTARJIAN H et al.: CD23 quantification in chronic lymphocytic leukemia and the effects of anti-CD23 therapy on its levels. Blood (2003) 102:361b (abstract 5170).
  • BOURGET I, DI BERARDINO W, BREITTMAYER JP et al.: CD20 monoclonal antibodies stimulate extracellular cleavage of the low-affinity receptor for IgE (FcεRII/CD23) in Epstein–Barr-transformed B cells. J. Biol. Chem. (1994) 269:6927-6930.
  • TRENTIN L, ZAMBELLO R, SANCETTA R et al.: B lymphocytes from patients with chronic lymphoproliferative disorders are equipped with different costimulatory molecules. Cancer Res. (1997) 57:4940-4947.
  • LAYTRAGOON-LEWIN N, DUHONY E, BAI XF, MELLSTEDT H: Downregulation of the CD95 receptor and defect CD40-mediated signal transduction in B-chronic lymphocytic leukemia cells. Eur. J. Haematol. (1998) 61:266-271.
  • BRUGNONI D, ROSSI G, TUCCI A et al.: Study of CD40 ligand expression in B-cell chronic lymphocytic leukemia. Haematologica (1995) 80:440-442.
  • SCHATTNER EJ, MASCARENHAS J, REYFMAN I et al.: Chronic lymphocytic leukemia B cells can express CD40 ligand and demonstrate T-cell type costimulatory capacity. Blood (1998) 91:2689-2697.
  • YOUNES A, SNELL V, CONSOLI U et al.: Elevated levels of biologically active soluble CD40 ligand in the serum of patients with chronic lymphocytic leukaemia. Br. J. Haematol. (1998) 100:135-141.
  • BANCHEREAU J, DE PAOLI P, VALLÉ A, GARCIA E, ROUSSETT F: Long term human B cell lines dependent on interleukin 4 and anti-CD40. Science (1991) 251:70-72.
  • FLUCKIGER AC, ROSSI JF, BUSSEL A, BRYON P, BANCHEREAU J, DEFRANCE T: Responsiveness of chronic lymphocytic leukemia B cells activated via surface Igs or CD40 to B-cell tropic factors. Blood (1992) 80:3173-3181.
  • FLUCKIGER A-C, DURAND I, BANCHEREAU J: Interleukin 10 induces apoptotic cell death of B-chronic lymphocytic leukemia cells. J. Exp. Med. (1994) 179:91-99.
  • LOTZ M, RANHEIM E, KIPPS TJ: Transforming growth factor-β as endogenous growth inhibitor of chronic lymphocytic leukemia B cells. J. Exp. Med. (1994) 179:999-1004.
  • PLANKEN EV, DIJKSTRA NH, WILLEMZE R, KLUIN-NELEMANS JC: Proliferation of B-cell malignancies in all stages of differentiation upon stimulation in the ‘CD40 system’. Leukemia (1996) 10:488-493.
  • KATER AP, EVERS LM, REMMERSWAAL EBM et al.: CD40 stimulation of B-cell chronic lymphocytic leukaemia cells enhances the antiapoptotic profile, but also Bid expression and cells remain susceptible to autologous cytotoxic T-lymphocyte attack. Br. J. Haematol. (2004) 127:404-415.
  • WANG D, FREEMAN GJ, LEVINE H, RITZ J, ROBERTSON MJ: Role of the CD40 and CD95 (APO-1/Fas) antigens in the apoptosis of human B-cell malignancies. Br. J. Haematol. (1997) 97:409-417.
  • FURMAN RR, ASGARY Z, MASCARENHAS JO, LIOU H-C, SCHATTNER EJ: Modulation of NF-κB activity and apoptosis in chronic lymphocytic leukemia B cells. J. Immunol. (2000) 164:2200-2206.
  • GRICKS CS, ZAHRIEH D, ZAULS AJ et al.: Differential regulation of gene expression following CD40 activation of leukemic compared to healthy B cells. Blood (2004) 104:4002-4009.
  • ROMANO MF, LAMBERTI A, TASSONE P et al.: Triggering of CD40 antigen inhibits fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood (1998) 92:990-995.
  • GRDISA M: Influence of CD40 ligation on survival and apoptosis of B-CLL cells in vitro. Leuk. Res. (2003) 27:951-956.
  • DE TOTERO D, TAZZARI PL, CAPAIA M et al.: CD40 triggering enhances fludarabine-induced apoptosis of chronic lymphocytic leukemia B-cells through autocrine release of tumor necrosis factor-α and interferon-γ and tumor necrosis factor receptor-I-II upregulation. Haematologica (2003) 88:148-158.
  • GHIA P, SCIELZO C, GUIDA G, STROLA G, GRANZIERO L, CALIGARIS-CAPPIO F: The functional response to CD40 ligation reveals two subsets of CLL patients with different clinical prognosis. Blood (2002) 100:356b (abstract 4979).
  • TONG X, GEORGAKIS GV, LI L, O’BRIEN S, YOUNES A, LUQMAN M: In vitro activity of a novel fully human anti-CD40 antibody CHIR-12.12 in chronic lymphocytic leukemia: blockade of CD40 activation and induction of ADCC. Blood (2004) 104:686a (abstract 2504).
  • WENG W-K, TONG X, LUQMAN M, LEVY R: A fully human anti-CD40 antagonist antibody, CHIR-12.12, inhibit the proliferation of human B-cell non-Hodgkin’s lymphoma. Blood (2004) 104:896a (abstract 3279).
  • LONG L, TONG X, PATAWARAN M et al.: Antagonist anti-CD40 monoclonal antibody, CHIR-12.12, inhibits growth of a rituximab-resistant NHL xenograft model and achieves synergistic activity when combined with ineffective rituximab. Blood (2004) 104:896a (abstract 3281).
  • JEFFRY UB, HUH K, TONG X et al.: Safety evaluation of a[n] fully human antagonist anti-CD40 antibody, CHIR-12.12, in a dose range-finding study in cynomolgus monkeys. Blood (2004) 104:897a (abstract 3282).
  • HATHCOCK KS, LASZLO G, PUCILLO C, LINSLEY P, HODES RJ: Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J. Exp. Med. (1994) 180:631-640.
  • COLLINS AV, BRODIE DW, GILBERT RJ et al.: The interaction properties of costimulatory molecules revisited. Immunity (2002) 17:201-210.
  • FREEMAN GJ, FREEDMAN AS, SEGIL JM, LEE G, WHITMAN JF, NADLER LM: B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J. Immunol. (1989) 143:2714-2722.
  • DAZZI F, D’ANDREA E, BIASI G et al.: Failure of B cells of chronic lymphocytic leukemia in presenting soluble and alloantigens. Clin. Immunol. Immunopathol. (1995) 75:26-32.
  • KIVEKÄS I, HULKKONEN J, HURME M, VILPO L, VILPO J: CD80 antigen expression as a predictor of ex vivo chemosensitivity in chronic lymphocytic leukemia. Leuk. Res. (2002) 26:443-446.
  • HOCK BD, STARLING GC, PATTON WN et al.: Identification of a circulating soluble form of CD80: levels in patients with hematological malignancies. Leuk. Lymphoma (2004) 45:2111-2118.
  • HEANEY ML, GOLDE DW: Soluble cytokine receptors. Blood (1996) 87:847-857.
  • FAAS SJ, GIANNONI MA, MICKLE AP et al.: Primary structure and functional characterization of a soluble, alternatively spliced form of B7-1. J. Immunol. (2000) 164:6340-6348.
  • SUVAS S, SINGH V, SAHDEV S, VOHRA H, AGREWALA JN: Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B-cell lymphoma. J. Biol. Chem. (2002) 277:7766-7775.
  • HARIHARAN K, ANDERSON D, LEIGH B et al.: Therapeutic activity of IDEC-114 (anti-CD80) and rituximab (Rituxan®) in B-cell lymphoma. Blood (2001) 98:608a (abstract 2549).
  • YOUNES A, HARIHARAN K, ALLEN RS, LEIGH BR: Initial trials of anti-CD80 monoclonal antibody (galiximab) therapy for patients with relapsed or refractory follicular lymphoma. Clin. Immunol. (2003) 3:257-259.
  • CZUCZMAN M, THALL A, WITZIG TE et al.: Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J. Clin. Oncol. (2005) 23:4390-4398.
  • CZUCZMAN M, LEIGH BR, WITZIG TE et al.: Fc-γ receptor IIIa and interferon-γ SNPs do not predict responsiveness of follicular lymphoma to galiximab (anti-CD80 antibody). Blood (2004) 104:899a (abstract 3292).
  • GORDON LI, MOORE JO, CHESON BD et al.: Phase I results from a multi-center trial of galiximab (anti-CD80 antibody, IDEC-114) in combination with rituximab for the treatment of follicular lymphoma. Blood (2003) 102:307b (abstract 4951).
  • KLEIN J, SATO A: The HLA system. First of two parts. N. Engl. J. Med. (2000) 343:702-709.
  • DECHANT M, BRUENKE J, VALERIUS T: HLA class II antibodies in the treatment of hematologic malignancies. Semin. Oncol. (2003) 30:465-475.
  • NEWELL MK, VANDERWALL J, BEARD KS, FREED JH: Ligation of major histocompatibility complex class II molecules mediates apoptotic cell death in resting B lymphocytes. Proc. Natl. Acad. Sci. USA (1993) 90:10459-10463.
  • TRUMAN JP, CHOQUEUX C, TSCHOPP J et al.: HLA class II-mediated death is induced via Fas/Fas ligand interactions in human splenic B lymphocytes. Blood (1997) 89:1996-2007.
  • TRUMAN JP, ERICSON ML, CHOQUEUX-SEEBOLD CJ, CHARRON DJ, MOONEY NA: Lymphocyte programmed cell death is mediated via HLA class II DR. Int. Immunol. (1994) 6:887-896.
  • VIDOVIC D, TORAL JI: Selective apoptosis of neoplastic cells by the HLA-DR-specific monoclonal antibody. Cancer Lett. (1998) 128:127-135.
  • BLANCHETEAU V, CHARRON D, MOONEY N: HLA class II signals sensitize B lymphocytes to apoptosis via Fas/CD95 by increasing FADD recruitment to activated Fas and activation of caspases. Hum. Immunol. (2002) 63:375-383.
  • NAGY ZA, HUBNER B, LOHNING C et al.: Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat. Med. (2002) 8:801-807.
  • DRÉNOU B, BLANCHETEAU V, BURGESS DH, FAUCHET R, CHARRON DJ, MOONEY NA: A caspase-independent pathway of MHC class II antigen-mediated apoptosis of human B lymphocytes. J. Immunol. (1999) 163:4115-4124.
  • KOSTELNY SA, LINK BK, TSO JY et al.: Humanization and characterization of the anti-HLA-DR antibody 1D10. Int. J. Cancer (2001) 93:556-565.
  • GINGRICH RD, DAHLE CE, HOSKINS KF, SENNEFF MJ: Identification and characterization of a new surface membrane antigen found predominantly on malignant B lymphocytes. Blood (1990) 75:2375-2387.
  • MONE AP, HUANG P, PELICANO H et al.: Hu1D10 induces apoptosis concurrent with activation of the AKT survival pathway in human chronic lymphocytic leukemia cells. Blood (2004) 103:1846-1854.
  • DUNLEAVY K, WHITE T, GRANT N et al.: Phase I study of combination rituximab with apolizumab in relapsed/refractory B-cell lymphoma and chronic lymphocytic leukemia. J. Clin. Oncol. (2005) 23:586s (abstract 6607).
  • HERNANDEZ-ILIZALITURRI FJ, CONNOLLY G, CIPOLLA D et al.: Correlation of HLA-DRβ antigen density to in vitro Hu-1D10 biological activity against malignant B-cells. Blood (2001) 98:337a (abstract 1425).
  • BYRD JC, SHINN CA, PEARSON MD et al.: Hu1D10 induces apoptosis in vitro in human chronic lymphocytic leukemia cells (CLL) independent of compliment mediated lysis but requires Fcγ receptor ligation. Blood (1999) 94:314a (abstract 1403).
  • STOCKMEYER B, SCHILLER M, REPP R et al.: Enhanced killing of B lymphoma cells by granulocyte colony-stimulating factor-primed effector cells and Hu1D10-a humanized human leucocyte antigen DR antibody. Br. J. Haematol. (2002) 118:959-967.
  • BAINS SK, MONE A, TSO JY et al.: Mitochondria control of cell death induced by anti-HLA-DR antibodies. Leukemia (2003) 17:1357-1365.
  • LINK BK, KAHL B, CZUCZMAN M et al.: A Phase II study of Remitogen™ (Hu1D10), a humanized monoclonal antibody in patients with relapsed or refractory follicular, small lymphocytic, or marginal zone/MALT B-cell lymphoma. Blood (2001) 98:606a (abstract 2540).
  • LINK BK, WANG H, BYRD JC et al.: Phase I study of Hu1D10 monoclonal antibody (Remitogen) in patients with B-cell lymphoma. Proc. Am. Soc. Clin. Oncol. (2001) 20:284a (abstract 1135).
  • LIN TS, STOCK W, LUCAS MS et al.: A Phase I dose escalation study of apolizumab (Hu1D10) using a stepped up dosing schedule in patients with chronic lymphocytic leukemia (CLL) and acute lymphocytic leukemia (ALL). Blood (2002) 100:802a (abstract 3167).
  • LINK BK, WANG H, BYRD JC et al.: Prolonged clinical responses in patients with follicular lymphoma treated on a Phase I trial of the anti-HLA-DR monoclonal antibody Remitogen™ (Hu1D10). Blood (2001) 98:244b (abstract 4703).
  • BISWAS S, MONE AP, SEN CK, MUTHUSAMY N, BYRD JC: Arsenic trioxide and ascorbic acid enhances the cytotoxicity of Hu1D10 towards CLL cells. Blood (2004) 104:948a (abstract 3479).
  • CARLO-STELLA C, DI NICOLA M, CLERIS L et al.: The HLA-DR-specific monoclonal antibody 1D09C3 exerts a potent antitumor activity on malignant lymphoid cells both in vitro and in vivo. Blood (2003) 102:898a (abstract 2396).
  • CARLO-STELLA C, DI NICOLA M, TURCO C et al.: In vitro and in vivo anti-lymphoma activity of the anti-HLA-DR monoclonal antibody 1D09C3. Blood (2004) 104:898a (abstract 3285).
  • HOLZ J-B, NAGY Z, RATTEL B et al.: 1D09C3, a human, HLA-DR-specific monoclonal antibody efficiently induces programmed cell death in lymphoid tumors. Eur. J. Cancer (2004) 2:90 (abstract 294).
  • NAGY ZA, RATTEL B: Pharmacological activity of the fully human anti-HLA-DR antibody, 1D09C3. Proc. Am. Assoc. Cancer Res. (2004) 45:163 (abstract 704).
  • NAGY ZA, LEYER S, VLOCK D: 1D09C3, a novel apoptotic human monoclonal antibody: mode of action affects dosing schedules. Ann. Oncol. (2005) 16:v134 (abstract 328).
  • BARTLETT JB, DREDGE K, DALGLEISH AG: The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer (2004) 4:314-322.
  • MULLER GW, CHEN R, HUANG SY et al.: Amino-substituted thalidomide analogs: potent inhibitors of TNF-α production. Bioorg. Med. Chem. Lett. (1999) 9:1625-1630.
  • DREDGE K, MARRIOTT JB, MACDONALD C et al.: Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br. J. Cancer (2002) 87:1166-1172.
  • LENTZSCH S, ROGERS MS, LEBLANC R et al.: S-3-amino-phthalimido-glutarimide inhibits angiogenesis and growth of B-cell neoplasias in mice. Cancer Res. (2002) 62:2300-2305.
  • HASLETT PA, CORRAL LG, ALBERT M, KAPLAN G: Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J. Exp. Med. (1998) 187:1885-1892.
  • DAVIES FE, RAJE N, HIDESHIMA T et al.: Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood (2001) 98:210-216.
  • TEO SK, STIRLING DI, ZELDIS JB: Thalidomide as a novel therapeutic agent: new uses for an old product. Drug Discov. Today (2005) 10:107-114.
  • LEBLANC R, HIDESHIMA T, CATLEY LP et al.: Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood (2004) 103:1787-1790.
  • DREDGE K, HORSFALL R, ROBINSON SP et al.: Orally administered lenalidomide (CC-5013) is antiangiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc. Res. (2005) 69:56-63.
  • D’AMATO RJ, LOUGHNAN MS, FLYNN E, FOLKMAN J: Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci.USA (1994) 91:4082-4085.
  • KENYON BM, BROWNE F, D’AMATO RJ: Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp. Eye Res. (1997) 64:971-978.
  • KEIFER JA, GUTTRIDGE DC, ASHBURNER BP, BALDWIN AS Jr: Inhibition of NF-κB activity by thalidomide through suppression of IκB kinase activity. J. Biol. Chem. (2001) 276:22382-22387.
  • MAJUMBAR S, LAMOTHE B, AGGARWAL BB: Thalidomide suppresses NF-κB activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides or phorbol ester. J. Immunol. (2002) 168:2644-2651.
  • KAY N, GEYER S, YAQOOB I, PHYLIKY R, KUTTEH L, LI C-Y: Thalidomide(Td) treatment in chronic lymphocytic leukemia (CLL): a North Central Cancer Treatment Group (NCCTG) study. Blood (2003) 102:359b (abstract 5162).
  • FURMAN RR, LEONARD JP, ALLEN SL, COLEMAN M, ROSENTHAL T, GABRILOVE JL: Thalidomide alone or in combination with fludarabine are effective treatments for patients with fludarabine-relapsed and refractory CLL. J. Clin. Oncol. (2005) 23:595s (abstract 6640).
  • CHANAN-KHAN A, MILLER KC, TAKESHITA K et al.: Results of a Phase I clinical trial of thalidomide in combination with fludarabine as initial therapy for patients with treatment-requiring chronic lymphocytic leukemia (CLL). Blood (2005) 106:3348-3352.
  • CHANAN-KHAN AA, MILLER KC, DIMICELI L et al.: Clinical activity of lenalidomide (L) {Revlimid™} in patients (pts) with relapsed (rel) or refractory (ref) chronic lymphocytic leukemia (CLL). Haematologica (2005) 90(Suppl. 2):160 (abstract 97).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.