304
Views
79
CrossRef citations to date
0
Altmetric
Review

Selective PPAR modulators, dual and pan PPAR agonists: multimodal drugs for the treatment of Type 2 diabetes and atherosclerosis

, , &
Pages 379-401 | Published online: 29 Aug 2006

Bibliography

  • DEFRONZO RA: Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview. Diabetologia (1992) 35(4):389-397.
  • MCGARRY JD: Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of Type 2 diabetes. Diabetes (2002) 51(1):7-18.
  • GRIFFIN ME, MARCUCCI MJ, CLINE GW et al.: Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade. Diabetes (1999) 48(6):1270-1274.
  • BELL KS, SCHMITZ-PEIFFER C, LIM-FRASER M, BIDEN TJ, COONEY GJ, KRAEGEN EW: Acute reversal of lipid-induced muscle insulin resistance is associated with rapid alteration in PKC-θ localization. Am. J. Physiol. Endocrinol. Metab. (2000) 279(5):E1196-E1201.
  • MASSILLON D, BARZILAI N, HAWKINS M, PRUS-WERTHEIMER D, ROSSETTI L: Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion. Diabetes (1997) 46(1):153-157.
  • MCGARRY JD, DOBBINS RL: Fatty acids, lipotoxicity and insulin secretion. Diabetologia (1999) 42(2):128-138.
  • RANDLE PJ, KERBEY AL, ESPINAL J: Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab. Rev. (1988) 4(7):623-638.
  • STAELS B: PPARγ and atherosclerosis. Curr. Med. Res. Opin. (2005) 21(Suppl. 1):S13-S20.
  • LUSIS AJ: Atherosclerosis. Nature (2000) 407(6801):233-241.
  • ASSMANN G, CARMENA R, CULLEN P et al.: Coronary heart disease: reducing the risk: a worldwide view. International Task Force for the Prevention of Coronary Heart Disease. Circulation (1999) 100(18):1930-1938.
  • SHIH PT, BRENNAN ML, VORA DK et al.: Blocking very late antigen-4 integrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet. Circ. Res. (1999) 84(3):345-351.
  • GU L, OKADA Y, CLINTON SK et al.: Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell (1998) 2(2):275-281.
  • BORING L, GOSLING J, CLEARY M, CHARO IF: Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature (1998) 394(6696):894-897.
  • CYRUS T, WITZTUM JL, RADER DJ et al.: Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J. Clin. Invest. (1999) 103(11):1597-1604.
  • SMITH JD, TROGAN E, GINSBERG M, GRIGAUX C, TIAN J, MIYATA M: Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl. Acad. Sci. USA (1995) 92(18):8264-8268.
  • SUZUKI H, KURIHARA Y, TAKEYA M et al.: A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature (1997) 386(6622):292-296.
  • FEBBRAIO M, PODREZ EA, SMITH JD et al.: Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J. Clin. Invest. (2000) 105(8):1049-1056.
  • LI AC, PALINSKI W: Peroxisome proliferator-activated receptors: how their effects on macrophages can lead to the development of a new drug therapy against atherosclerosis. Ann. Rev. Pharmacol. Toxicol. (2006) 46:1-39.
  • DEFRONZO RA: Pathogenesis of Type 2 diabetes mellitus. Med. Clin. North Am. (2004) 88(4):787-835.
  • BETHEL MA, FEINGLOS MN: Basal insulin therapy in Type 2 diabetes. J. Am. Board Fam. Pract. (2005) 18(3):199-204.
  • SHEEHAN MT: Current therapeutic options in Type 2 diabetes mellitus: a practical approach. Clin. Med. Res. (2003) 1(3):189-200.
  • PEDERSON RA, WHITE HA, SCHLENZIG D, PAULY RP, MCINTOSH CH, DEMUTH HU: Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes (1998) 47(8):1253-1258.
  • NIELSEN LL: Incretin mimetics and DPP-IV inhibitors for the treatment of Type 2 diabetes. Drug Discov. Today (2005) 10(10):703-710.
  • ZIMMERMAN BR: Sulfonylureas. Endocrinol. Metab. Clin. North Am. (1997) 26(3):511-522.
  • NO AUTHORS LISTED: United Kingdom Prospective Diabetes Study (UKPDS). 13: Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. BMJ (1995) 310(6972):83-88.
  • SHAW RJ, LAMIA KA, VASQUEZ D et al.: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science (2005) 310(5754):1642-1646.
  • ABBASI F, CARANTONI M, CHEN YD, REAVEN GM: Further evidence for a central role of adipose tissue in the antihyperglycemic effect of metformin. Diabetes Care (1998) 21(8):1301-1305.
  • NO AUTHORS LISTED: Effect of intensive blood-glucose control with metformin on complications in overweight patients with Type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet (1998) 352(9131):854-865.
  • DRUCKER DJ: The biology of incretin hormones. Cell Metab. (2006) 3(3):153-165.
  • TOFT-NIELSEN MB, DAMHOLT MB, MADSBAD S et al.: Determinants of the impaired secretion of glucagon-like peptide-1 in Type 2 diabetic patients. J. Clin. Endocrinol. Metab. (2001) 86(8):3717-3723.
  • KNUDSEN LB, NIELSEN PF, HUUSFELDT PO et al.: Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J. Med. Chem. (2000) 43(9):1664-1669.
  • KIM JG, BAGGIO LL, BRIDON DP et al.: Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes (2003) 52(3):751-759.
  • PARKES DG, PITTNER R, JODKA C, SMITH P, YOUNG A: Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism (2001) 50(5):583-589.
  • AHREN B: Vildagliptin: an inhibitor of dipeptidyl peptidase-4 with antidiabetic properties. Expert Opin. Investig. Drugs (2006) 15(4):431-442.
  • AUGERI DJ, ROBL JA, BETEBENNER DA et al.: Discovery and preclinical profile of saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of Type 2 diabetes. J. Med. Chem. (2005) 48(15):5025-5037.
  • BERGMAN AJ, STEVENS C, ZHOU Y et al.: Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: a double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin. Ther. (2006) 28(1):55-72.
  • DUMASIA R, EAGLE KA, KLINE-ROGERS E, MAY N, CHO L, MUKHERJEE D: Role of PPAR-γ agonist thiazolidinediones in treatment of pre-diabetic and diabetic individuals: a cardiovascular perspective. Curr. Drug Targets Cardiovasc. Haematol. Disord. (2005) 5(5):377-386.
  • SALTIEL AR, OLEFSKY JM: Thiazolidinediones in the treatment of insulin resistance and Type II diabetes. Diabetes (1996) 45(12):1661-1669.
  • DORMANDY JA, CHARBONNEL B, ECKLAND DJ et al.: Secondary prevention of macrovascular events in patients with Type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet (2005) 366(9493):1279-1289.
  • NESTO RW, BELL D, BONOW RO et al.: Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation (2003) 108(23):2941-2948.
  • STONE NJ, BILEK S, ROSENBAUM S: Recent National Cholesterol Education Program Adult Treatment Panel III update: adjustments and options. Am. J. Cardiol. (2005) 96(4A):53E-59E.
  • BROWN MS, GOLDSTEIN JL: A receptor-mediated pathway for cholesterol homeostasis. Science (1986) 232(4746):34-47.
  • MYERSON M, NGAI C, JONES J et al.: Treatment with high-dose simvastatin reduces secretion of apolipoprotein B-lipoproteins in patients with diabetic dyslipidemia. J. Lipid Res. (2005) 46(12):2735-2744.
  • DAVIS HR, JR., ZHU LJ, HOOS LM et al.: Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. (2004) 279(32):33586-33592.
  • ASSMANN G, SCHULTE H, VON ECKARDSTEIN A, HUANG Y: High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis (1996) 124(Suppl.):S11-S20.
  • CLARK RW: Raising high-density lipoprotein with cholesteryl ester transfer protein inhibitors. Curr. Opin. Pharmacol. (2006) 6(2):162-168.
  • BROUSSEAU ME, SCHAEFER EJ, WOLFE ML et al.: Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. (2004) 350(15):1505-1515.
  • KARPE F, FRAYN KN: The nicotinic acid receptor – a new mechanism for an old drug. Lancet (2004) 363(9424):1892-1894.
  • WISE A, FOORD SM, FRASER NJ et al.: Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. (2003) 278(11):9869-9874.
  • CARLSON LA, ORO L, OSTMAN J: Effect of a single dose of nicotinic acid on plasma lipids in patients with hyperlipoproteinemia. Acta Med. Scand. (1968) 183(5):457-465.
  • AKTORIES K, SCHULTZ G, JAKOBS KH: Regulation of adenylate cyclase activity in hamster adipocytes. Inhibition by prostaglandins, α-adrenergic agonists and nicotinic acid. Naunyn Schmiedebergs Arch. Pharmacol. (1980) 312(2):167-173.
  • LACASA D, AGLI B, GIUDICELLI Y: Increased sensitivity of fat cell adenylate cyclase to stimulatory agonists during fasting is not related to impaired inhibitory coupling system. FEBS Lett. (1986) 202(2):260-266.
  • KUVIN JT, RAMET ME, PATEL AR, PANDIAN NG, MENDELSOHN ME, KARAS RH: A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am. Heart J. (2002) 144(1):165-172.
  • FRUCHART JC, STAELS B, DURIEZ P: The role of fibric acids in atherosclerosis. Curr. Atheroscler. Rep. (2001) 3(1):83-92.
  • STAELS B, FRUCHART JC: Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes (2005) 54(8):2460-2470.
  • NO AUTHORS LISTED: Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation (2000) 102(1):21-27.
  • KEECH A, SIMES RJ, BARTER P et al.: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with Type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet (2005) 366(9500):1849-1861.
  • MIKHAILIDIS DP, WIERZBICKI AS, DASKALOPOULOU SS et al.: The use of ezetimibe in achieving low density lipoprotein lowering goals in clinical practice: position statement of a United Kingdom consensus panel. Curr. Med. Res. Opin. (2005) 21(6):959-969.
  • SEBER S, UCAK S, BASAT O, ALTUNTAS Y: The effect of dual PPAR α/γ stimulation with combination of rosiglitazone and fenofibrate on metabolic parameters in Type 2 diabetic patients. Diabetes Res. Clin. Pract. (2006) 71(1):52-58.
  • MALMBERG K, YUSUF S, GERSTEIN HC et al.: Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation (2000) 102(9):1014-1019.
  • SCHOONJANS K, STAELS B, AUWERX J: Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. (1996) 37(5):907-925.
  • SORENSEN HN, TREUTER E, GUSTAFSSON JA: Regulation of peroxisome proliferator-activated receptors. Vitam. Horm. (1998) 54:121-166.
  • DESVERGNE B, WAHLI W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. (1999) 20(5):649-688.
  • BARISH GD, NARKAR VA, EVANS RM: PPAR δ: a dagger in the heart of the metabolic syndrome. J. Clin. Invest. (2006) 116(3):590-597.
  • GUERRE-MILLO M, ROUAULT C, POULAIN P et al.: PPAR-α-null mice are protected from high-fat diet-induced insulin resistance. Diabetes (2001) 50(12):2809-2814.
  • GREMLICH S, NOLAN C, RODUIT R et al.: Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor α transcriptional up-regulation of fatty acid oxidation. Endocrinology (2005) 146(1):375-382.
  • BIHAN H, ROUAULT C, REACH G, POITOUT V, STAELS B, GUERRE-MILLO M: Pancreatic islet response to hyperglycemia is dependent on peroxisome proliferator-activated receptor α (PPARα). FEBS Lett. (2005) 579(11):2284-2288.
  • HOSOKAWA H, CORKEY BE, LEAHY JL: Χ-cell hypersensitivity to glucose following 24-h exposure of rat islets to fatty acids. Diabetologia (1997) 40(4):392-397.
  • RODUIT R, MORIN J, MASSE F et al.: Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-α gene in the pancreatic β-cell. J. Biol. Chem. (2000) 275(46):35799-35806.
  • KOH EH, KIM MS, PARK JY et al.: Peroxisome proliferator-activated receptor (PPAR)-α activation prevents diabetes in OLETF rats: comparison with PPAR-γ activation. Diabetes (2003) 52(9):2331-2337.
  • LALLOYER F, VANDEWALLE B, PERCEVAULT F et al.: PPAR{α} improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes (2006) 55(6):1605-1613.
  • RAVNSKJAER K, BOERGESEN M, RUBI B et al.: Peroxisome proliferator-activated receptor α (PPARα) potentiates, whereas PPARγ attenuates, glucose-stimulated insulin secretion in pancreatic β-cells. Endocrinology (2005) 146(8):3266-3276.
  • KIM H, HALUZIK M, ASGHAR Z et al.: Peroxisome proliferator-activated receptor-α agonist treatment in a transgenic model of Type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. Diabetes (2003) 52(7):1770-1778.
  • GUERRE-MILLO M, GERVOIS P, RASPE E et al.: Peroxisome proliferator-activated receptor α activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. (2000) 275(22):16638-16642.
  • SCHUIT FC, HUYPENS P, HEIMBERG H, PIPELEERS DG: Glucose sensing in pancreatic β-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes (2001) 50(1):1-11.
  • KIM HI, KIM JW, KIM SH, CHA JY, KIM KS, AHN YH: Identification and functional characterization of the peroxisomal proliferator response element in rat GLUT2 promoter. Diabetes (2000) 49(9):1517-1524.
  • KIM JW, AHN YH: C/EBP binding activity to site F of the rat GLUT2 glucose transporter gene promoter is attenuated by c-Jun in vitro. Exp. Mol. Med. (2002) 34(5):379-384.
  • HIGA M, ZHOU YT, RAVAZZOLA M, BAETENS D, ORCI L, UNGER RH: Troglitazone prevents mitochondrial alterations, β cell destruction, and diabetes in obese prediabetic rats. Proc. Natl. Acad. Sci. USA (1999) 96(20):11513-11518.
  • KAHN SE, ANDRIKOPOULOS S, VERCHERE CB: Islet amyloid: a long-recognized but underappreciated pathological feature of Type 2 diabetes. Diabetes (1999) 48(2):241-253.
  • LIN CY, GURLO T, HAATAJA L, HSUEH WA, BUTLER PC: Activation of peroxisome proliferator-activated receptor-γ by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3′-kinase-dependent pathway. J. Clin. Endocrinol. Metab. (2005) 90(12):6678-6686.
  • CUSI K, MAEZONO K, OSMAN A et al.: Insulin resistance differentially affects the PI3-kinase- and MAP kinase-mediated signaling in human muscle. J. Clin. Invest. (2000) 105(3):311-320.
  • PRATIPANAWATR W, PRATIPANAWATR T, CUSI K et al.: Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of Type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes (2001) 50(11):2572-2578.
  • TONTONOZ P, NAGY L, ALVAREZ JG, THOMAZY VA, EVANS RM: PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell (1998) 93(2):241-252.
  • CHAWLA A, BOISVERT WA, LEE CH et al.: A PPAR γ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell (2001) 7(1):161-171.
  • GREGOIRE FM, SMAS CM, SUL HS: Understanding adipocyte differentiation. Physiol. Rev. (1998) 78(3):783-809.
  • OKUNO A, TAMEMOTO H, TOBE K et al.: Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J. Clin. Invest. (1998) 101(6):1354-1361.
  • OAKES ND, KENNEDY CJ, JENKINS AB, LAYBUTT DR, CHISHOLM DJ, KRAEGEN EW: A new antidiabetic agent, BRL-49653, reduces lipid availability and improves insulin action and glucoregulation in the rat. Diabetes (1994) 43(10):1203-1210.
  • BERGER J, MOLLER DE: The mechanisms of action of PPARs. Ann. Rev. Med. (2002) 53:409-435.
  • WU Z, XIE Y, MORRISON RF, BUCHER NL, FARMER SR: PPARγ induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPα during the conversion of 3T3 fibroblasts into adipocytes. J. Clin. Invest. (1998) 101(1):22-32.
  • BOGACKA I, XIE H, BRAY GA, SMITH SR: The effect of pioglitazone on peroxisome proliferator-activated receptor-γ target genes related to lipid storage in vivo. Diabetes Care (2004) 27(7):1660-1667.
  • BAUMANN CA, CHOKSHI N, SALTIEL AR, RIBON V: Cloning and characterization of a functional peroxisome proliferator activator receptor-γ-responsive element in the promoter of the CAP gene. J. Biol. Chem. (2000) 275(13):9131-9135.
  • THIRONE AC, CARVALHEIRA JB, HIRATA AE, VELLOSO LA, SAAD MJ: Regulation of Cbl-associated protein/Cbl pathway in muscle and adipose tissues of two animal models of insulin resistance. Endocrinology (2004) 145(1):281-293.
  • STEPHENS JM, LEE J, PILCH PF: Tumor necrosis factor-α-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J. Biol. Chem. (1997) 272(2):971-976.
  • RAGOLIA L, BEGUM N: Protein phosphatase-1 and insulin action. Mol. Cell. Biochem. (1998) 182(1-2):49-58.
  • RYDEN M, DICKER A, VAN HARMELEN V et al.: Mapping of early signaling events in tumor necrosis factor-α-mediated lipolysis in human fat cells. J. Biol. Chem. (2002) 277(2):1085-1091.
  • BASTARD JP, JARDEL C, BRUCKERT E et al.: Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J. Clin. Endocrinol. Metab. (2000) 85(9):3338-3342.
  • SENN JJ, KLOVER PJ, NOWAK IA, MOONEY RA: Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes (2002) 51(12):3391-3399.
  • LIU E, KITAJIMA S, HIGAKI Y et al.: High lipoprotein lipase activity increases insulin sensitivity in transgenic rabbits. Metabolism (2005) 54(1):132-138.
  • LIU HB, HU YS, MEDCALF RL, SIMPSON RW, DEAR AE: Thiazolidinediones inhibit TNFα induction of PAI-1 independent of PPARγ activation. Biochem. Biophys. Res. Commun. (2005) 334(1):30-37.
  • ZINGARELLI B, SHEEHAN M, HAKE PW, O’CONNOR M, DENENBERG A, COOK JA: Peroxisome proliferator activator receptor-γ ligands, 15-deoxy-Δ(12,14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. J. Immunol. (2003) 171(12):6827-6837.
  • MA LJ, MAO SL, TAYLOR KL et al.: Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes (2004) 53(2):336-346.
  • RAJALA MW, OBICI S, SCHERER PE, ROSSETTI L: Adipose-derived resistin and gut-derived resistin-like molecule-β selectively impair insulin action on glucose production. J. Clin. Invest. (2003) 111(2):225-230.
  • BAJAJ M, SURAAMORNKUL S, HARDIES LJ, PRATIPANAWATR T, DEFRONZO RA: Plasma resistin concentration, hepatic fat content, and hepatic and peripheral insulin resistance in pioglitazone-treated Type II diabetic patients. Int. J. Obes. Relat. Metab. Disord. (2004) 28(6):783-789.
  • MCTERNAN PG, FISHER FM, VALSAMAKIS G et al.: Resistin and Type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J. Clin. Endocrinol. Metab. (2003) 88(12):6098-6106.
  • PATEL L, BUCKELS AC, KINGHORN IJ et al.: Resistin is expressed in human macrophages and directly regulated by PPAR γ activators. Biochem. Biophys. Res. Commun. (2003) 300(2):472-476.
  • OUCHI N, KIHARA S, ARITA Y et al.: Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation (1999) 100(25):2473-2476.
  • HOTTA K, FUNAHASHI T, ARITA Y et al.: Plasma concentrations of a novel, adipose-specific protein, adiponectin, in Type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. (2000) 20(6):1595-1599.
  • COMBS TP, PAJVANI UB, BERG AH et al.: A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology (2004) 145(1):367-383.
  • YAMAUCHI T, KAMON J, MINOKOSHI Y et al.: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. (2002) 8(11):1288-1295.
  • TSUCHIDA A, YAMAUCHI T, TAKEKAWA S et al.: Peroxisome proliferator-activated receptor (PPAR){α} activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPAR{α}, PPAR{γ}, and their combination. Diabetes (2005) 54(12):3358-3370.
  • GAEDE P, VEDEL P, LARSEN N, JENSEN GV, PARVING HH, PEDERSEN O: Multifactorial intervention and cardiovascular disease in patients with Type 2 diabetes. N. Engl. J. Med. (2003) 348(5):383-393.
  • FORST T, LUBBEN G, HOHBERG C et al.: Influence of glucose control and improvement of insulin resistance on microvascular blood flow and endothelial function in patients with diabetes mellitus Type 2. Microcirculation (2005) 12(7):543-550.
  • NEGRO R, DAZZI D, HASSAN H, PEZZAROSSA A: Pioglitazone reduces blood pressure in non-dipping diabetic patients. Minerva Endocrinol. (2004) 29(1):11-17.
  • LEE CH, OLSON P, HEVENER A et al.: PPARδ regulates glucose metabolism and insulin sensitivity. Proc. Natl. Acad. Sci. USA (2006) 103(9):3444-3449.
  • OLIVER WR, JR., SHENK JL, SNAITH MR et al.: A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. USA (2001) 98(9):5306-5311.
  • BRANDT JM, DJOUADI F, KELLY DP: Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor α. J. Biol. Chem. (1998) 273(37):23786-23792.
  • LEE SS, PINEAU T, DRAGO J et al.: Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol. (1995) 15(6):3012-3022.
  • AOYAMA T, PETERS JM, IRITANI N et al.: Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). J. Biol. Chem. (1998) 273(10):5678-5684.
  • RODRIGUEZ JC, GIL-GOMEZ G, HEGARDT FG, HARO D: Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J. Biol. Chem. (1994) 269(29):18767-18772.
  • VU-DAC N, SCHOONJANS K, LAINE B, FRUCHART JC, AUWERX J, STAELS B: Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its response element. J. Biol. Chem. (1994) 269(49):31012-31018.
  • VU-DAC N, SCHOONJANS K, KOSYKH V et al.: Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J. Clin. Invest. (1995) 96(2):741-750.
  • VU-DAC N, CHOPIN-DELANNOY S, GERVOIS P et al.: The nuclear receptors peroxisome proliferator-activated receptor α and Rev-erbα mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J. Biol. Chem. (1998) 273(40):25713-25720.
  • CHINETTI G, GBAGUIDI FG, GRIGLIO S et al.: CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors. Circulation (2000) 101(20):2411-2417.
  • VOSPER H, PATEL L, GRAHAM TL et al.: The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages. J. Biol. Chem. (2001) 276(47):44258-44265.
  • DELERIVE P, MARTIN-NIZARD F, CHINETTI G et al.: Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ. Res. (1999) 85(5):394-402.
  • MARX N, SUKHOVA GK, COLLINS T, LIBBY P, PLUTZKY J: PPARα activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation (1999) 99(24):3125-3131.
  • LI AC, BINDER CJ, GUTIERREZ A et al.: Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J. Clin. Invest. (2004) 114(11):1564-1576.
  • LEE H, SHI W, TONTONOZ P et al.: Role for peroxisome proliferator-activated receptor α in oxidized phospholipid-induced synthesis of monocyte chemotactic protein-1 and interleukin-8 by endothelial cells. Circ. Res. (2000) 87(6):516-521.
  • STAELS B, KOENIG W, HABIB A et al.: Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARγ activators. Nature (1998) 393(6687):790-793.
  • HENNUYER N, TAILLEUX A, TORPIER G et al.: PPARα, but not PPARγ, activators decrease macrophage-laden atherosclerotic lesions in a nondiabetic mouse model of mixed dyslipidemia. Arterioscler. Thromb. Vasc. Biol. (2005) 25(9):1897-1902.
  • SHU H, WONG B, ZHOU G et al.: Activation of PPARα or γ reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem. Biophys. Res. Commun. (2000) 267(1):345-349.
  • NEVE BP, CORSEAUX D, CHINETTI G et al.: PPARα agonists inhibit tissue factor expression in human monocytes and macrophages. Circulation (2001) 103(2):207-212.
  • MARX N, MACKMAN N, SCHONBECK U et al.: PPARα activators inhibit tissue factor expression and activity in human monocytes. Circulation (2001) 103(2):213-219.
  • HOURTON D, DELERIVE P, STANKOVA J, STAELS B, CHAPMAN MJ, NINIO E: Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor α down-regulate platelet-activating-factor receptor expression in human macrophages. Biochem. J. (2001) 354(Pt 1):225-232.
  • CHINETTI G, GRIGLIO S, ANTONUCCI M et al.: Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages. J. Biol. Chem. (1998) 273(40):25573-25580.
  • GROSS BS, FRUCHART J-C, STAELS B: Peroxisome proliferator-activated receptor {β}/{δ}: a novel target for the reduction of atherosclerosis. Drug Discov Today: Therapeutic Strategies (2005) 2:237-243.
  • LIU K, BLACK RM, ACTON JJ 3rd et al.: Selective PPARγ modulators with improved pharmacological profiles. Bioorg. Med. Chem. Lett. (2005) 15(10):2437-2440.
  • CRONET P, PETERSEN JF, FOLMER R et al.: Structure of the PPARα and -γ ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure (2001) 9(8):699-706.
  • OSTBERG T, SVENSSON S, SELEN G et al.: A new class of peroxisome proliferator-activated receptor agonists with a novel binding epitope shows antidiabetic effects. J. Biol. Chem. (2004) 279(39):41124-41130.
  • BURGERMEISTER E, SCHNOEBELEN A, FLAMENT A et al.: A novel partial agonist of peroxisome proliferator-activated receptor-γ (PPARγ) recruits PPARγ-coactivator-1α, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol. Endocrinol. (2006) 20(4):809-830.
  • FUJIMURA T, SAKUMA H, KONISHI S et al.: FK-614, a novel peroxisome proliferator-activated receptor γ modulator, induces differential transactivation through a unique ligand-specific interaction with transcriptional coactivators. J. Pharmacol. Sci. (2005) 99(4):342-352.
  • YAMAGISHI S, TAKENAKA K, INOUE H: Role of insulin-sensitizing property of telmisartan, a commercially available angiotensin II type 1 receptor blocker in preventing the development of atrial fibrillation. Med. Hypotheses (2006) 66(1):118-120.
  • SCHUPP M, CLEMENZ M, GINESTE R et al.: Molecular characterization of new selective peroxisome proliferator-activated receptor {γ} modulators with angiotensin receptor blocking activity. Diabetes (2005) 54(12):3442-3452.
  • DUEZ H, LEFEBVRE B, POULAIN P et al.: Regulation of human apoA-I by gemfibrozil and fenofibrate through selective peroxisome proliferator-activated receptor α modulation. Arterioscler. Thromb. Vasc. Biol. (2005) 25(3):585-591.
  • MUKHERJEE R, HOENER PA, JOW L et al.: A selective peroxisome proliferator-activated receptor-γ (PPARγ) modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1 adipocytes. Mol. Endocrinol. (2000) 14(9):1425-1433.
  • MISRA P, CHAKRABARTI R, VIKRAMADITHYAN RK et al.: PAT5A: a partial agonist of peroxisome proliferator-activated receptor γ is a potent antidiabetic thiazolidinedione yet weakly adipogenic. J. Pharmacol. Exp. Ther. (2003) 306(2):763-771.
  • EPPLE R, AZIMIOARA M, RUSSO R et al.: 1,3,5-Trisubstituted aryls as highly selective PPARδ agonists. Bioorg. Med. Chem. Lett (2006) 16(11):2969-2973.
  • WALLACE JM, SCHWARZ M, COWARD P et al.: Effects of peroxisome proliferator-activated receptor α/δ agonists on HDL-cholesterol in vervet monkeys. J. Lipid Res. (2005) 46(5):1009-1016.
  • BERGERON R, YAO J, WOODS JW et al.: PPARα agonism prevents the onset of T2DM in ZDF rats: a comparison to PPARγ agonism. Endocrinology (2006) (In Press).
  • KOYAMA H, MILLER DJ, BOUERES JK et al.: (2R)-2-ethylchromane-2-carboxylic acids: discovery of novel PPARα/γ dual agonists as antihyperglycemic and hypolipidemic agents. J. Med. Chem. (2004) 47(12):3255-3263.
  • THOR M, BEIERLEIN K, DYKES G et al.: Synthesis and pharmacological evaluation of a new class of peroxisome proliferator-activated receptor modulators. Bioorg. Med. Chem. Lett (2002) 12(24):3565-3567.
  • LIU K, XU L, BERGER JP et al.: Discovery of a novel series of peroxisome proliferator-activated receptor α/γ dual agonists for the treatment of Type 2 diabetes and dyslipidemia. J. Med. Chem. (2005) 48(7):2262-2265.
  • LU Y, GUO Z, GUO Y, FENG J, CHU F: Design, synthesis, and evaluation of 2-alkoxydihydrocinnamates as PPAR agonists. Bioorg. Med. Chem. Lett (2006) 16(4):915-919.
  • SHI GQ, DROPINSKI JF, MCKEEVER BM et al.: Design and synthesis of α-aryloxyphenylacetic acid derivatives: a novel class of PPARα/γ dual agonists with potent antihyperglycemic and lipid modulating activity. J. Med. Chem. (2005) 48(13):4457-4468.
  • DESAI RC, HAN W, METZGER EJ et al.: 5-Aryl thiazolidine-2,4-diones: discovery of PPAR dual α/γ agonists as antidiabetic agents. Bioorg. Med. Chem. Lett (2003) 13(16):2795-2798.
  • GUO Q, SAHOO SP, WANG PR et al.: A novel peroxisome proliferator-activated receptor α/γ dual agonist demonstrates favorable effects on lipid homeostasis. Endocrinology (2004) 145(4):1640-1648.
  • TAKAMURA M, SAKURAI M, YAMADA E et al.: Synthesis and biological activity of novel α-substituted β-phenylpropionic acids having pyridin-2-ylphenyl moiety as antihyperglycemic agents. Bioorg. Med. Chem. (2004) 12(9):2419-2439.
  • DOEBBER TW, KELLY LJ, ZHOU G et al.: MK-0767, a novel dual PPARα/γ agonist, displays robust antihyperglycemic and hypolipidemic activities. Biochem. Biophys. Res. Commun. (2004) 318(2):323-328.
  • DECOCHEZ K, RIPPLEY RK, MILLER JL et al.: A dual PPAR α/γ agonist increases adiponectin and improves plasma lipid profiles in healthy subjects. Drugs R D (2006) 7(2):99-110.
  • CAI Z, FENG J, GUO Y et al.: Synthesis and evaluation of azaindole-α-alkyloxyphenylpropionic acid analogues as PPARα/γ agonists. Bioorg. Med. Chem. (2006) 14(3):866-874.
  • VERRETH W, GANAME J, MERTENS A, BERNAR H, HERREGODS MC, HOLVOET P: Peroxisome proliferator-activated receptor-α,γ-agonist improves insulin sensitivity and prevents loss of left ventricular function in obese dyslipidemic mice. Arterioscler. Thromb. Vasc. Biol. (2006) 26(4):922-928.
  • HARRITY T, FARRELLY D, TIEMAN A et al.: Muraglitazar, a novel dual (α/γ) peroxisome proliferator-activated receptor activator, improves diabetes and other metabolic abnormalities and preserves β-cell function in db/db mice. Diabetes (2006) 55(1):240-248.
  • DEVASTHALE PV, CHEN S, JEON Y et al.: Design and synthesis of N-[(4-methoxyphenoxy)carbonyl]-N-[[4-[2-(5- methyl-2-phenyl-4-oxazolyl) ethoxy]phenyl]methyl]glycine [Muraglitazar/BMS-298585], a novel peroxisome proliferator-activated receptor α/γ dual agonist with efficacious glucose and lipid-lowering activities. J. Med. Chem. (2005) 48(6):2248-2250.
  • BUSE JB, RUBIN CJ, FREDERICH R et al.: Muraglitazar, a dual (α/γ) PPAR activator: a randomized, double-blind, placebo-controlled, 24-week monotherapy trial in adult patients with Type 2 diabetes. Clin. Ther. (2005) 27(8):1181-1195.
  • KENDALL DM, RUBIN CJ, MOHIDEEN P et al.: Improvement of glycemic control, triglycerides, and HDL cholesterol levels with muraglitazar, a dual (α/γ) peroxisome proliferator-activated receptor activator, in patients with Type 2 diabetes inadequately controlled with metformin monotherapy: a double-blind, randomized, pioglitazone-comparative study. Diabetes Care (2006) 29(5):1016-1023.
  • NISSEN SE, WOLSKI K, TOPOL EJ: Effect of muraglitazar on death and major adverse cardiovascular events in patients with Type 2 diabetes mellitus. JAMA (2005) 294(20):2581-2586.
  • OAKES ND, THALEN P, HULTSTRAND T et al.: Tesaglitazar, a dual PPAR{α}/{γ} agonist, ameliorates glucose and lipid intolerance in obese Zucker rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2005) 289(4):R938-R946.
  • HEGARTY BD, FURLER SM, OAKES ND, KRAEGEN EW, COONEY GJ: Peroxisome proliferator-activated receptor (PPAR) activation induces tissue-specific effects on fatty acid uptake and metabolism in vivo – a study using the novel PPARα/γ agonist tesaglitazar. Endocrinology (2004) 145(7):3158-3164.
  • LJUNG B, BAMBERG K, DAHLLOF B et al.: AZ 242, a novel PPARα/γ agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese Zucker rats. J. Lipid Res. (2002) 43(11):1855-1863.
  • FAGERBERG B, EDWARDS S, HALMOS T et al.: Tesaglitazar, a novel dual peroxisome proliferator-activated receptor α/γ agonist, dose-dependently improves the metabolic abnormalities associated with insulin resistance in a non-diabetic population. Diabetologia (2005) 48(9):1716-1725.
  • SAAD MF, GRECO S, OSEI K et al.: Ragaglitazar improves glycemic control and lipid profile in Type 2 diabetic subjects: a 12-week, double-blind, placebo-controlled dose-ranging study with an open pioglitazone arm. Diabetes Care (2004) 27(6):1324-1329.
  • MAMNOOR PK, HEGDE P, DATLA SR, DAMARLA RK, RAJAGOPALAN R, CHAKRABARTI R: Antihypertensive effect of ragaglitazar: a novel PPARα and γ dual activator. Pharmacol. Res. (2006) 54(2):129-135.
  • IMOTO H, SUGIYAMA Y, KIMURA H, MOMOSE Y: Studies on non-thiazolidinedione antidiabetic agents. 2. Novel oxyiminoalkanoic acid derivatives as potent glucose and lipid lowering agents. Chem. Pharm. Bull. (Tokyo) (2003) 51(2):138-151.
  • SEKI N, BUJO H, JIANG M et al.: A potent activator of PPARα and γ reduces the vascular cell recruitment and inhibits the intimal thickning in hypercholesterolemic rabbits. Atherosclerosis (2005) 178(1):1-7.
  • UPTON R, WIDDOWSON PS, ISHII S, TANAKA H, WILLIAMS G: Improved metabolic status and insulin sensitivity in obese fatty (fa/fa) Zucker rats and Zucker Diabetic Fatty (ZDF) rats treated with the thiazolidinedione, MCC-555. Br. J. Pharmacol. (1998) 125(8):1708-1714.
  • REGINATO MJ, BAILEY ST, KRAKOW SL et al.: A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor γ-activating properties. J. Biol. Chem. (1998) 273(49):32679-32684.
  • MOGENSEN JP, JEPPESEN L, BURY PS et al.: Design and synthesis of novel PPARα/γ/δ triple activators using a known PPARα/γ dual activator as structural template. Bioorg. Med. Chem. Lett (2003) 13(2):257-260.
  • ETGEN GJ, OLDHAM BA, JOHNSON WT et al.: A tailored therapy for the metabolic syndrome: the dual peroxisome proliferator-activated receptor-α/γ agonist LY-465608 ameliorates insulin resistance and diabetic hyperglycemia while improving cardiovascular risk factors in preclinical models. Diabetes (2002) 51(4):1083-1087.
  • ZUCKERMAN SH, KAUFFMAN RF, EVANS GF: Peroxisome proliferator-activated receptor α,γ coagonist LY-465608 inhibits macrophage activation and atherosclerosis in apolipoprotein E knockout mice. Lipids (2002) 37(5):487-494.
  • MAHINDROO N, HUANG CF, PENG YH et al.: Novel indole-based peroxisome proliferator-activated receptor agonists: design, SAR, structural biology, and biological activities. J. Med. Chem. (2005) 48(26):8194-8208.
  • MAHINDROO N, WANG CC, LIAO CC et al.: Indol-1-yl acetic acids as peroxisome proliferator-activated receptor agonists: design, synthesis, structural biology, and molecular docking studies. J. Med. Chem. (2006) 49(3):1212-1216.
  • REIFEL-MILLER A, OTTO K, HAWKINS E et al.: A peroxisome proliferator-activated receptor α/γ dual agonist with a unique in vitro profile and potent glucose and lipid effects in rodent models of Type 2 diabetes and dyslipidemia. Mol. Endocrinol. (2005) 19(6):1593-1605.
  • O’SULLIVAN SE, TARLING EJ, BENNETT AJ, KENDALL DA, RANDALL MD: Novel time-dependent vascular actions of Δ9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor γ. Biochem. Biophys. Res. Commun. (2005) 337(3):824-831.
  • THOMAS J, BRAMLETT KS, MONTROSE C et al.: A chemical switch regulates fibrate specificity for peroxisome proliferator-activated receptor α (PPARα) versus liver X receptor. J. Biol. Chem. (2003) 278(4):2403-2410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.