188
Views
40
CrossRef citations to date
0
Altmetric
Review

Emerging vectors and targeting methods for nonviral gene therapy

&
Pages 541-557 | Published online: 29 Aug 2006

Bibliography

  • MULLIGAN RC: The basic science of gene therapy. Science (1993) 260:926-932.
  • BLAESE RM, CULVER KW, MILLER AD et al.: T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science (1995) 270:475-480.
  • CAVAZZANA-CALVO M, HACEIN-BEY S, DE SAINT BASILE G et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science (2000) 288:669-672.
  • KAY MA, MANNO CS, RAGNI MV et al.: Evidence for gene transfer and expression of Factor IX in haemophilia B patients treated with an AAV vector. Nat. Genet. (2000) 24:257-261.
  • GOTTESMAN MM: Cancer gene therapy: an awkward adolescence. Cancer Gene Ther. (2003) 10:501-508.
  • SHAH PB, LOSORDO DW: Non-viral vectors for gene therapy: clinical trials in cardiovascular disease. Adv. Genet. (2005) 54:339-361.
  • BUTCHER J: Parkin gene therapy could treat Parkinson’s disease. Lancet Neurol. (2005) 4:82.
  • HARPER SQ, STABER PD, HE X et al.: RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc. Natl. Acad. Sci. USA (2005) 102:5820-5825.
  • TUSZYNSKI MH, THAL L, PAY M et al.: A Phase I clinical trial of nerve growth factor gene therapy for Alzheimer’s disease. Nat. Med. (2005) 11:551-555.
  • CHECK E: Pioneering HIV treatment would use interference and gene therapy. Nature (2005) 437:601.
  • KRONKE J, KITTLER R, BUCHHOLZ F et al.: Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J. Virol. (2004) 78:3436-3446.
  • KAY MA, GLORIOSO JC, NALDINI L: Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. (2001) 7:33-40.
  • CHECK E: Gene therapy put on hold as third child develops cancer. Nature (2005) 433:561.
  • NAKAI H, MONTINI E, FUESS S, STORM TA, GROMPE M, KAY MA: AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat. Genet. (2003) 34:297-302.
  • SCHRODER AR, SHINN P, CHEN H, BERRY C, ECKER JR, BUSHMAN F: HIV-1 integration in the human genome favors active genes and local hotspots. Cell (2002) 110:521-529.
  • CAMPBELL EM, HOPE TJ: Gene therapy progress and prospects: viral trafficking during infection. Gene Ther. (2005) 12:1353-1359.
  • SHINOZAKI K, SUOMINEN E, CARRICK F et al.: Efficient infection of tumor endothelial cells by a capsid-modified adenovirus. Gene Ther. (2006) 13(1):52-59.
  • GONCALVES MA, VAN NIEROP GP, TIJSSEN MR et al.: Transfer of the full-length dystrophin-coding sequence into muscle cells by a dual high-capacity hybrid viral vector with site-specific integration ability. J. Virol. (2005) 79:3146-3162.
  • WOLFF JA, MALONE RW, WILLIAMS P et al.: Direct gene transfer into mouse muscle in vivo. Science (1990) 247:1465-1468.
  • KRIEG AM: Direct immunologic activities of CpG DNA and implications for gene therapy. J. Gene Med. (1999) 1:56-63.
  • HERWEIJER H, WOLFF JA: Progress and prospects: naked DNA gene transfer and therapy. Gene Ther. (2003) 10:453-458.
  • REILLY JP, GRISE MA, FORTUIN FD et al.: Long-term (2-year) clinical events following transthoracic intramyocardial gene transfer of VEGF-2 in no-option patients. J. Interv. Cardiol. (2005) 18:27-31.
  • CHESNOY S, HUANG L: Enhanced cutaneous gene delivery following intradermal injection of naked DNA in a high ionic strength solution. Mol. Ther. (2002) 5:57-62.
  • TAMURA T, NISHI T, GOTO T et al.: Intratumoral delivery of interleukin 12 expression plasmids with in vivo electroporation is effective for colon and renal cancer. Hum. Gene Ther. (2001) 12:1265-1276.
  • RIZZUTO G, CAPPELLETTI M, MAIONE D et al.: Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc. Natl. Acad. Sci. USA (1999) 96:6417-6422.
  • ANDRE F, MIR LM: DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther. (2004) 11(Suppl. 1):S33-S42.
  • JAGADISH N, RANA R, MISHRA D, GARG M, SELVI R, SURI A: Characterization of immune response in mice to plasmid DNA encoding human sperm associated antigen 9 (SPAG9). Vaccine (2006) 24(17):3695-3703.
  • LAWRIE A, BRISKEN AF, FRANCIS SE, CUMBERLAND DC, CROSSMAN DC, NEWMAN CM: Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. (2000) 7:2023-2027.
  • SCHRATZBERGER P, KRAININ JG, SCHRATZBERGER G et al.: Transcutaneous ultrasound augments naked DNA transfection of skeletal muscle. Mol. Ther. (2002) 6:576-583.
  • ENDOH M, KOIBUCHI N, SATO M et al.: Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol. Ther. (2002) 5:501-508.
  • AKOWUAH EF, GRAY C, LAWRIE A et al.: Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Ther. (2005) 12:1154-1157.
  • WELLER GE, LU E, CSIKARI MM et al.: Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation (2003) 108:218-224.
  • YANG PL, ALTHAGE A, CHUNG J, CHISARI FV: Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc. Natl. Acad. Sci. USA (2002) 99:13825-13830.
  • FELGNER PL, GADEK TR, HOLM M et al.: Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA (1987) 84:7413-7417.
  • KREISS P, CAMERON B, RANGARA R et al.: Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res. (1999) 27:3792-3798.
  • FASBENDER A, MARSHALL J, MONINGER TO, GRUNST T, CHENG S, WELSH MJ: Effect of co-lipids in enhancing cationic lipid-mediated gene transfer in vitro and in vivo. Gene Ther. (1997) 4:716-725.
  • WANG L, MACDONALD RC: New strategy for transfection: mixtures of medium-chain and long-chain cationic lipids synergistically enhance transfection. Gene Ther. (2004) 11:1358-1362.
  • HYDE SC, SOUTHERN KW, GILEADI U et al.: Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther. (2000) 7:1156-1165.
  • FILION MC, PHILLIPS NC: Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim. Biophys. Acta (1997) 1329:345-356.
  • ZHANG YF, BOADO RJ, PARDRIDGE WM: Absence of toxicity of chronic weekly intravenous gene therapy with pegylated immunoliposomes. Pharm. Res. (2003) 20:1779-1785.
  • WAGNER E, OGRIS M, ZAUNER W: Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug Deliv. Rev. (1998) 30:97-113.
  • WU GY, WU CH: Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem. (1988) 263:14621-14624.
  • PERALES JC, FERKOL T, BEEGEN H, RATNOFF OD, HANSON RW: Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl. Acad. Sci. USA (1994) 91:4086-4090.
  • LEAMON CP, WEIGL D, HENDREN RW: Folate copolymer-mediated transfection of cultured cells. Bioconjug. Chem. (1999) 10:947-957.
  • HARBOTTLE RP, COOPER RG, HART SL et al.: An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Hum Gene Ther. (1998) 9:1037-1047.
  • SUH W, CHUNG JK, PARK SH, KIM SW: Anti-JL1 antibody-conjugated poly (l-lysine) for targeted gene delivery to leukemia T cells. J. Control. Release (2001) 72:171-178.
  • ZIADY AG, KIM J, COLLA J, DAVIS PB: Defining strategies to extend duration of gene expression from targeted compacted DNA vectors. Gene Ther. (2004) 11:1378-1390.
  • MAHESHWARI A, HAN S, MAHATO RI, KIM SW: Biodegradable polymer-based interleukin-12 gene delivery: role of induced cytokines, tumor infiltrating cells and nitric oxide in anti-tumor activity. Gene Ther. (2002) 9:1075-1084.
  • KOH JJ, KO KS, LEE M, HAN S, PARK JS, KIM SW: Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice. Gene Ther. (2000) 7:2099-2104.
  • HAENSLER J, SZOKA FC Jr: Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. (1993) 4:372-379.
  • RUDOLPH C, LAUSIER J, NAUNDORF S, MULLER RH, ROSENECKER J: In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med. (2000) 2:269-278.
  • TANAKA S, IWAI M, HARADA Y et al.: Targeted killing of carcinoembryonic antigen (CEA)-producing cholangiocarcinoma cells by polyamidoamine dendrimer-mediated transfer of an Epstein–Barr virus (EBV)-based plasmid vector carrying the CEA promoter. Cancer Gene Ther. (2000) 7:1241-1250.
  • TANG MX, REDEMANN CT, SZOKA FC Jr: In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. (1996) 7:703-714.
  • BOUSSIF O, LEZOUALC’H F, ZANTA MA et al.: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA (1995) 92:7297-7301.
  • DEMENEIX B, BEHR JP: Polyethylenimine (PEI). Adv. Genet. (2005) 53:217-230.
  • ABDALLAH B, HASSAN A, BENOIST C, GOULA D, BEHR JP, DEMENEIX BA: A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum. Gene Ther. (1996) 7:1947-1954.
  • COLL JL, CHOLLET P, BRAMBILLA E, DESPLANQUES D, BEHR JP, FAVROT M: In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum. Gene Ther. (1999) 10:1659-1666.
  • BOLETTA A, BENIGNI A, LUTZ J, REMUZZI G, SORIA MR, MONACO L: Nonviral gene delivery to the rat kidney with polyethylenimine. Hum. Gene Ther. (1997) 8:1243-1251.
  • BRAGONZI A, DINA G, VILLA A et al.: Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs. Gene Ther. (2000) 7:1753-1760.
  • GOULA D, BENOIST C, MANTERO S, MERLO G, LEVI G, DEMENEIX BA: Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. (1998) 5:1291-1295.
  • SONAWANE ND, SZOKA FC Jr, VERKMAN AS: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. (2003) 278:44826-44831.
  • MORIMOTO K, NISHIKAWA M, KAWAKAMI S et al.: Molecular weight-dependent gene transfection activity of unmodified and galactosylated polyethyleneimine on hepatoma cells and mouse liver. Mol. Ther. (2003) 7:254-261.
  • KUNATH K, VON HARPE A, FISCHER D et al.: Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release (2003) 89:113-125.
  • FORREST ML, MEISTER GE, KOERBER JT, PACK DW: Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res. (2004) 21:365-371.
  • THOMAS M, KLIBANOV AM: Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA (2002) 99:14640-14645.
  • LU Q: Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in-vivo with reduced tissue damage. Gene Ther. (2003) 10:396-405.
  • MATSUURA M, YAMAZAKI Y, SUGIYAMA M et al.: Polycation liposome-mediated gene transfer in vivo. Biochim. Biophys. Acta (2003) 1612:136-143.
  • HILDEBRANDT IJ, IYER M, WAGNER E, GAMBHIR SS: Optical imaging of transferrin targeted PEI/DNA complexes in living subjects. Gene Ther. (2003) 10:758-764.
  • NDOYE A, MERLIN JL, LEROUX A et al.: Enhanced gene transfer and cell death following p53 gene transfer using photochemical internalisation of glucosylated PEI–DNA complexes. J. Gene Med. (2004) 6:884-894.
  • KIRCHEIS R, BLESSING T, BRUNNER S, WIGHTMAN L, WAGNER E: Tumor targeting with surface-shielded ligand-polycation DNA complexes. J. Control. Release (2001) 72:165-170.
  • WOJDA U, MILLER JL: Targeted transfer of polyethylenimine-avidin-DNA bioconjugates to hematopoietic cells using biotinylated monoclonal antibodies. J. Pharm. Sci. (2000) 89:674-681.
  • DIEBOLD SS, KURSA M, WAGNER E, COTTEN M, ZENKE M: Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. J. Biol. Chem. (1999) 274:19087-19094.
  • MUMPER RJ, DUGUID JG, ANWER K, BARRON MK, NITTA H, ROLLAND AP: Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharm. Res. (1996) 13:701-709.
  • LEMIEUX P, GUERIN N, PARADIS G et al.: A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther. (2000) 7:986-991.
  • ALAKHOV V, KLINSKI E, LEMIEUX P, PIETRZYNSKI G, KABANOV A: Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin. Biol. Ther. (2001) 1:583-602.
  • MUMPER RJ, WANG J, KLAKAMP SL et al.: Protective interactive noncondensing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle. J. Control. Release (1998) 52:191-203.
  • ALEXANDRIDIS P, ATHANASSIOU V, FUKUDA S, HATTON TA: Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir (1994) 10:2604-2612.
  • KABANOV AV, CHEKHONIN VP, ALAKHOV V et al.: The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett. (1989) 258:343-345.
  • BARICHELLO JM, MORISHITA M, TAKAYAMA K, CHIBA Y, TOKIWA S, NAGAI T: Enhanced rectal absorption of insulin-loaded Pluronic F-127 gels containing unsaturated fatty acids. Int. J. Pharm. (1999) 183:125-132.
  • WANG P, JOHNSTON T: Sustained-release interleukin-2 following intramuscular injection in rats. Int. J. Pharm. (1995) 113:73-81.
  • VALLE J, LAWRANCE J, BREWER J et al.: 2004 ASCO Annual Meeting. New Orleans, USA (2004). Abstract 4195.
  • KE Y, MCGRAW CL, HUNTER RL, KAPP JA: Nonionic triblock copolymers facilitate delivery of exogenous proteins into the MHC class I and class II processing pathways. Cell Immunol. (1997) 176:113-121.
  • YASUDA S, TOWNSEND D, MICHELE DE, FAVRE EG, DAY SM, METZGER JM: Dystrophic heart failure blocked by membrane sealant poloxamer. Nature (2005) 436:1025-1029.
  • VAN BELLE E, MAILLARD L, RIVARD A et al.: Effects of poloxamer 407 on transfection time and percutaneous adenovirus-mediated gene transfer in native and stented vessels. Hum. Gene Ther. (1998) 9:1013-1024.
  • CHO CW, CHO YS, KANG BT, HWANG JS, PARK SN, YOON DY: Improvement of gene transfer to cervical cancer cell lines using non-viral agents. Cancer Lett. (2001) 162:75-85.
  • NGUYEN HK, LEMIEUX P, VINOGRADOV SV et al.: Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther. (2000) 7:126-138.
  • RIERA M, CHILLON M, ARAN JM et al.: Intramuscular SP-1017-formulated DNA electrotransfer enhances transgene expression and distributes hHGF to different rat tissues. J. Gene Med. (2004) 6:111-118.
  • SRIADIBHATLA S, YANG Z, GEBHART C, ALAKHOV VY, KABANOV A: Transcriptional activation of gene expression by pluronic block copolymers in stably and transiently transfected cells. Mol. Ther. (2006) 13(4):804-813.
  • LAVIGNE MD, POHLSCHMIDT M, NOVO JF et al.: Promoter dependence of plasmid-pluronics targeted α-galactosidase-A expression in skeletal muscle of fabry mice. Mol. Ther. (2005) 12:985-990.
  • OGRIS M, BRUNNER S, SCHULLER S, KIRCHEIS R, WAGNER E: PEGylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. (1999) 6:595-605.
  • ABDELHADY HG, ALLEN S, DAVIES MC, ROBERTS CJ, TENDLER SJ, WILLIAMS PM: Direct real-time molecular scale visualisation of the degradation of condensed DNA complexes exposed to DNase I. Nucleic Acids Res. (2003) 31:4001-4005.
  • OGRIS M, STEINLEIN P, KURSA M, MECHTLER K, KIRCHEIS R, WAGNER E: The size of DNA/transferrin–PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. (1998) 5:1425-1433.
  • TRUBETSKOY VS, WONG SC, SUBBOTIN V et al.: Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery. Gene Ther. (2003) 10:261-271.
  • ZAITSEV S, CARTIER R, VYBOROV O et al.: Polyelectrolyte nanoparticles mediate vascular gene delivery. Pharm Res. (2004) 21:1656-1661.
  • KOYAMA Y, ITO T, MATSUMOTO H et al.: Novel poly(ethylene glycol) derivatives with carboxylic acid pendant groups: synthesis and their protection and enhancing effect on non-viral gene transfection systems. J. Biomater. Sci. Polym. Ed. (2003) 14:515-531.
  • MARUYAMA K, IWASAKI F, TAKIZAWA T et al.: Novel receptor-mediated gene delivery system comprising plasmid/protamine/sugar-containing polyanion ternary complex. Biomaterials (2004) 25:3267-3273.
  • FORREST ML, PACK DW: On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design. Mol. Ther. (2002) 6:57-66.
  • BLOOMFIELD VA: DNA condensation by multivalent cations. Biopolymers (1997) 44:269-282.
  • WOLFERT MA, DASH PR, NAZAROVA O et al.: Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug. Chem. (1999) 10:993-1004.
  • ZELPHATI O, SZOKA FC Jr: Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm. Res. (1996) 13:1367-1372.
  • SCHAFFER DV, FIDELMAN NA, DAN N, LAUFFENBURGER DA: Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng. (2000) 67:598-606.
  • ZENG J, TOO HP, MA Y, LUO ES, WANG S: A synthetic peptide containing loop 4 of nerve growth factor for targeted gene delivery. J. Gene Med. (2004) 6:1247-1256.
  • KIRCHEIS R, KICHLER A, WALLNER G et al.: Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther. (1997) 4:409-418.
  • STREHBLOW C, SCHUSTER M, MORITZ T, KIRCH HC, OPALKA B, PETRI JB: Monoclonal antibody-polyethyleneimine conjugates targeting Her-2/neu or CD90 allow cell type-specific nonviral gene delivery. J. Control. Release (2005) 102:737-747.
  • ZHANG Y, JEONG LEE H, BOADO RJ, PARDRIDGE WM: Receptor-mediated delivery of an antisense gene to human brain cancer cells. J. Gene Med. (2002) 4:183-194.
  • SCHAFFER DV, LAUFFENBURGER DA: Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery. J. Biol. Chem. (1998) 273:28004-28009.
  • MISLICK KA, BALDESCHWIELER JD: Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. USA (1996) 93:12349-12354.
  • RUPONEN M, HONKAKOSKI P, RONKKO S, PELKONEN J, TAMMI M, URTTI A: Extracellular and intracellular barriers in non-viral gene delivery. J. Control. Release (2003) 93:213-217.
  • MUKHERJEE S, GHOSH RN, MAXFIELD FR: Endocytosis. Physiol. Rev. (1997) 77:759-803.
  • REMY-KRISTENSEN A, CLAMME JP, VUILLEUMIER C, KUHRY JG, MELY Y: Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim. Biophys. Acta (2001) 1514:21-32.
  • OGRIS M, STEINLEIN P, CAROTTA S, BRUNNER S, WAGNER E: DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS Pharm. Sci. (2001) 3:E21.
  • BAUSINGER R, VON GERSDORFF K, BRAECKMANS K et al.: The transport of nanosized gene carriers unraveled by live-cell imaging. Angew. Chem. Int. Ed. Engl. (2006) 45:1568-1572.
  • KOPATZ I, REMY JS, BEHR JP: A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J. Gene Med. (2004) 6:769-776.
  • POLLARD H, REMY JS, LOUSSOUARN G, DEMOLOMBE S, BEHR JP, ESCANDE D: Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol Chem. (1998) 273:7507-7511.
  • MOGHIMI SM, SYMONDS P, MURRAY JC, HUNTER AC, DEBSKA G, SZEWCZYK A: A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. (2005) 11:990-995.
  • WAGNER E, PLANK C, ZATLOUKAL K, COTTEN M, BIRNSTIEL ML: Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin–polylysine–DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA (1992) 89:7934-7938.
  • PLANK C, OBERHAUSER B, MECHTLER K, KOCH C, WAGNER E: The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem. (1994) 269:12918-12924.
  • VAYSSE L, BURGELIN I, MERLIO JP, ARVEILER B: Improved transfection using epithelial cell line-selected ligands and fusogenic peptides. Biochim. Biophys. Acta (2000) 1475:369-376.
  • LEE H, JEONG JH, PARK TG: A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide. J. Control. Release (2001) 76:183-192.
  • RITTNER K, BENAVENTE A, BOMPARD-SORLET A et al.: New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol. Ther. (2002) 5:104-114.
  • TURK MJ, REDDY JA, CHMIELEWSKI JA, LOW PS: Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim. Biophys. Acta (2002) 1559:56-68.
  • YOKOYAMA M: Gene delivery using temperature-responsive polymeric carriers. Drug Discov. Today (2002) 7:426-432.
  • HESKINS M, GUILLET J: Solution properties of poly(N-isopropylacrylamide). Journal of Macromolecular Science (1968) 2:1441-1455.
  • DE LAS HERAS ALARCON C, PENNADAM S, ALEXANDER C: Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. (2005) 34:276-285.
  • ERBACHER P, ROCHE AC, MONSIGNY M, MIDOUX P: The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes. Biochim. Biophys. Acta (1997) 1324:27-36.
  • KWOH DY, COFFIN CC, LOLLO CP et al.: Stabilization of poly-l-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim. Biophys. Acta (1999) 1444:171-190.
  • KURISAWA M, YOKOYAMA M, OKANO T: Gene expression control by temperature with thermo-responsive polymeric gene carriers. J. Control. Release (2000) 69:127-137.
  • HINRICHS WL, SCHUURMANS-NIEUWENBROEK NM, VAN DE WETERING P, HENNINK WE: Thermosensitive polymers as carriers for DNA delivery. J. Control. Release (1999) 60:249-259.
  • TWAITES BR, DE LAS HERAS ALARCON C, LAVIGNE M et al.: Thermoresponsive polymers as gene delivery vectors: cell viability, DNA transport and transfection studies. J. Control. Release (2005) 108:472-483.
  • TURK M, DINCER S, YULUG IG, PISKIN E: In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. J. Control. Release (2004) 96:325-340.
  • LECHARDEUR D, SOHN KJ, HAARDT M et al.: Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. (1999) 6:482-497.
  • LUKACS GL, HAGGIE P, SEKSEK O, LECHARDEUR D, FREEDMAN N, VERKMAN AS: Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. (2000) 275(3):1625-1629.
  • SUH J, WIRTZ D, HANES J: Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. USA (2003) 100:3878-3882.
  • DEAN DA, STRONG DD, ZIMMER WE: Nuclear entry of nonviral vectors. Gene Ther. (2005) 12:881-890.
  • GORLICH D: Transport into and out of the cell nucleus. EMBO J. (1998) 17:2721-2727.
  • FRANKEL AD, PABO CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell (1988) 55:1189-1193.
  • GREEN M, LOEWENSTEIN PM: Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell (1988) 55:1179-1188.
  • DEROSSI D, JOLIOT AH, CHASSAING G, PROCHIANTZ A: The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. (1994) 269:10444-10450.
  • ELLIOTT G, O’HARE P: Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell (1997) 88:223-233.
  • CARTIER R, RESZKA R: Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther. (2002) 9:157-167.
  • ZANTA MA, BELGUISE-VALLADIER P, BEHR JP: Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA (1999) 96:91-96.
  • CHAN CK, JANS DA: Enhancement of polylysine-mediated transferrinfection by nuclear localization sequences: polylysine does not function as a nuclear localization sequence. Hum. Gene Ther. (1999) 10:1695-1702.
  • TORCHILIN VP, RAMMOHAN R, WEISSIG V, LEVCHENKO TS: TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA (2001) 98:8786-8791.
  • TUNG CH, MUELLER S, WEISSLEDER R: Novel branching membrane translocational peptide as gene delivery vector. Bioorg. Med. Chem. (2002) 10:3609-3614.
  • VAN DER AA MA, KONING GA, D’OLIVEIRA C et al.: An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems. J. Gene Med. (2005) 7:208-217.
  • LEIFERT JA, HARKINS S, WHITTON JL: Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther. (2002) 9:1422-1428.
  • CARON NJ, TORRENTE Y, CAMIRAND G et al.: Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol. Ther. (2001) 3:310-318.
  • SCHWARZE SR, DOWDY SF: In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol. Sci. (2000) 21:45-48.
  • LI S, MACLAUGHLIN FC, FEWELL JG et al.: Muscle-specific enhancement of gene expression by incorporation of SV40 enhancer in the expression plasmid. Gene Ther. (2001) 8:494-497.
  • VOZIYANOV Y, PATHANIA S, JAYARAM M: A general model for site-specific recombination by the integrase family recombinases. Nucleic Acids Res. (1999) 27:930-941.
  • THYAGARAJAN B, GUIMARAES MJ, GROTH AC, CALOS MP: Mammalian genomes contain active recombinase recognition sites. Gene (2000) 244:47-54.
  • ESPOSITO D, THROWER JS, SCOCCA JJ: Protein and DNA requirements of the bacteriophage HP1 recombination system: a model for intasome formation. Nucleic Acids Res. (2001) 29:3955-3964.
  • ORTIZ-URDA S, THYAGARAJAN B, KEENE DR et al.: Stable nonviral genetic correction of inherited human skin disease. Nat. Med. (2002) 8:1166-1170.
  • HACKETT PB, EKKER SC, LARGAESPADA DA, MCIVOR RS: Sleeping beauty transposon-mediated gene therapy for prolonged expression. Adv. Genet. (2005) 54:189-232.
  • PIECHACZEK C, FETZER C, BAIKER A, BODE J, LIPPS HJ: A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res. (1999) 27:426-428.
  • SAFFERY R, WONG LH, IRVINE DV et al.: Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc. Natl. Acad. Sci. USA (2001) 98:5705-5710.
  • HARRINGTON JJ, VAN BOKKELEN G, MAYS RW, GUSTASHAW K, WILLARD HF: Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. (1997) 15:345-355.
  • SHEN MH, MEE PJ, NICHOLS J et al.: A structurally defined mini-chromosome vector for the mouse germ line. Curr. Biol. (2000) 10:31-34.
  • TRIPATHY SK, BLACK HB, GOLDWASSER E, LEIDEN JM: Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat. Med. (1996) 2:545-550.
  • WELLS DJ, GOLDSPINK G: Age and sex influence expression of plasmid DNA directly injected into mouse skeletal muscle. FEBS Lett. (1992) 306:203-205.
  • SBAI H, SCHNEIDER J, HILL AV, WHALEN RG: Role of transfection in the priming of cytotoxic T-cells by DNA-mediated immunization. Vaccine (2002) 20:3137-3147.
  • LAROCHELLE N, LOCHMULLER H, ZHAO J et al.: Efficient muscle-specific transgene expression after adenovirus-mediated gene transfer in mice using a 1.35 kb muscle creatine kinase promoter/enhancer. Gene Ther. (1997) 4:465-472.
  • MIAO CH, OHASHI K, PATIJN GA et al.: Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic Factor IX gene expression in vivo but not in vitro. Mol. Ther. (2000) 1:522-532.
  • KELLY R, ALONSO S, TAJBAKHSH S, COSSU G, BUCKINGHAM M: Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J. Cell Biol. (1995) 129:383-396.
  • LI X, EASTMAN EM, SCHWARTZ RJ, DRAGHIA-AKLI R: Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat. Biotechnol. (1999) 17:241-245.
  • MARTINELLI R, DE SIMONE V: Short and highly efficient synthetic promoters for melanoma-specific gene expression. FEBS Lett. (2005) 579:153-156.
  • KRIEG AM, YI AK, MATSON S et al.: CpG motifs in bacterial DNA trigger direct B-cell activation. Nature (1995) 374:546-549.
  • KLINMAN DM, YI AK, BEAUCAGE SL, CONOVER J, KRIEG AM: CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon-γ. Proc. Natl. Acad. Sci. USA (1996) 93:2879-2883.
  • SCHWARTZ DA, QUINN TJ, THORNE PS, SAYEED S, YI AK, KRIEG AM: CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract. J. Clin. Invest. (1997) 100:68-73.
  • YEW NS, ZHAO H, WU IH et al.: Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol. Ther. (2000) 1:255-262.
  • YEW NS, WANG KX, PRZYBYLSKA M et al.: Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum. Gene Ther. (1999) 10:223-234.
  • JONES PA, BAYLIN SB: The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. (2002) 3:415-428.
  • CHEN ZY, HE CY, MEUSE L, KAY MA: Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther. (2004) 11:856-864.
  • HODGES BL, TAYLOR KM, JOSEPH MF, BOURGEOIS SA, SCHEULE RK: Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol. Ther. (2004) 10:269-278.
  • YEW NS, ZHAO H, PRZYBYLSKA M et al.: CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol. Ther. (2002) 5:731-738.
  • LEAHY P, CARMICHAEL GG, ROSSOMANDO EF: Transcription from plasmid expression vectors is increased up to 14-fold when plasmids are transfected as concatemers. Nucleic Acids Res. (1997) 25:449-450.
  • KAMIYA H, YAMAZAKI J, HARASHIMA H: Size and topology of exogenous DNA as determinant factors of transgene transcription in mammalian cells. Gene Ther. (2002) 9:1500-1507.
  • HOFMAN CR, DILEO JP, LI Z, LI S, HUANG L: Efficient in vivo gene transfer by PCR amplified fragment with reduced inflammatory activity. Gene Ther. (2001) 8:71-74.
  • JOHANSEN J, TORNOE J, MOLLER A, JOHANSEN TE: Increased in vitro and in vivo transgene expression levels mediated through cis-acting elements. J. Gene Med. (2003) 5:1080-1089.
  • PIKAART MJ, RECILLAS-TARGA F, FELSENFELD G: Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. (1998) 12:2852-2862.
  • RECILLAS-TARGA F, VALADEZ-GRAHAM V, FARRELL CM: Prospects and implications of using chromatin insulators in gene therapy and transgenesis. Bioessays (2004) 26:796-807.
  • WELLS KE, MAULE J, KINGSTON R et al.: Immune responses, not promoter inactivation, are responsible for decreased long-term expression following plasmid gene transfer into skeletal muscle. FEBS Lett. (1997) 407:164-168.
  • COUTELLE C, THEMIS M, WADDINGTON SN et al.: Gene therapy progress and prospects: fetal gene therapy – first proofs of concept – some adverse effects. Gene Ther. (2005) 12:1601-1607.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.