43
Views
1
CrossRef citations to date
0
Altmetric
Review

The new era in the treatment of advanced colorectal cancer patients: the role of monoclonal antibodies

, , , &
Pages 665-683 | Published online: 25 Oct 2006

Bibliography

  • JEMAL A, TIWARI RC, MURRAY T et al.: Cancer statistics 2004. CA Cancer. J. Clin. (2004) 54:8-29.
  • NO AUTHORS LISTED: Expectancy or primary chemotherapy in patients with advanced asymptomatic colorectal: a randomised trial. Nordic gastrointestinal tumor adjuvant therapy group. J. Clin. Oncol. (1992) 10:904-911.
  • KOHNE-WOMPNER CH, SCHMOLL HJ, HARSTRICK A, RUSTUM YM: Chemotherapeutic strategies in metastatic colorectal cancer: an overview of current clinical trials. Semin. Oncol. (1992) 19:105-125.
  • PINEDO HM, PETERS GF: Fluorouracil: biochemistry and pharmacology. J. Clin. Oncol. (1988) 6:1653-1664.
  • SCHEITHAUER W, ROSEN H, KORNEK GV et al.: Randomized comparison of combination chemotherapy plus supportive care with supportive care alone in patients with metastatic colorectal cancer. BMJ (1993) 306:752-755.
  • EL-KHOUEIRY AB, LENZ HJ: Should continuous infusion 5-flourouracil become the standard of care in the USA as it is in Europe? Cancer Invest. (2006) 24(1):50-55.
  • KOHNE CH, WILS J, LORENZ M et al.: Randomized Phase III study of high-dose fluorouracil given as a weekly 24-hour infusion with or without leucovorin versus bolus fluorouracil plus leucovorin in advanced colorectal cancer: European organization of Research and Treatment of Cancer Gastrointestinal Group Study 40952. J. Clin. Oncol. (2003) 21(20):3721-3728.
  • CUNNINGHAM D, PYRHÔNEN S, JAMES RD et al.: Randomized trial of irinotecan plus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet (1998) 352:1413-1418.
  • DOUILLARD JY, CUNNINGHAM D, ROTH AD et al.: Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet (2000) 355:1041-1047.
  • SALTZ LB, COX JV, BLANKE C et al.: Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med. (2000) 343:905-914.
  • MISSET JL, BLEIBERG H, SUTHERLAND W et al.: Oxaliplatin clinical activity: a review. Crit. Rev. Oncol. Hematol. (2000) 35:75-93.
  • RAYMOND E, FAIVRE S, WOYNAROWSKI JM, CHANEY SG: Oxaliplatin: mechanism of action and antineoplastic activity. Semin. Oncol. (1998) 25:4-12.
  • DE GRAMONT A, FIGER A, SEYMOUR M et al.: Leucovorin and fluorouracil with or without oxaliplatin as first line treatment in advanced colorectal cancer. J. Clin. Oncol. (2000) 18:2938-2947.
  • GOLDBERG RM, MORTON RF, SARGENT DJ et al.: N9741: oxaliplatin (oxal) or CPT-11 + 5-fluorouracil (5-FU)/leucovorin (LV) or oxal + CPT-11 in advanced colorectal cancer. Updated efficacy and quality of life (QOL) data from an intergroup study. Proc. ASCO (2003) 22:252.
  • DIAZ-RUBIO E, EVANS TR, TABEMERO J et al.: Capecitabine (Xeloda) in combination with oxaliplatin: a Phase I, dose-escalation study in patients with advanced or metastatic solid tumors. Ann. Oncol. (2002) 13:558-565.
  • SANTINI D, VINCENZI B, LA CESA A et al.: Continuous infusion of oxaliplatin plus chronomodulated capecitabine in 5-fluorouracil- and irinotecan-resistant advanced colorectal cancer patients. Oncology (2005) 69(1):27-34.
  • SANTINI D, VINCENZI B, SCHIAVON G et al.: Phase I study of intermittent and chronomodulated oral therapy with capecitabine in patients with advanced and/or metastatic cancer. BMC Cancer (2006) 6:42.
  • PUNT C: New options and old dilemmas in the treatment of patients with advanced colorectal cancer. Ann. Oncol. (2004) 15:1453-1459.
  • KÖHNE C-H, FOLPRECHT G: Current perspectives in the treatment of metastatic colorectal cancer. Ann. Oncol. (2004) 15:iv43-iv53.
  • GROTHEY A, SARGENT D, GOLDBERG RM, SCHMOLL H-J: Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J. Clin. Oncol. (2004) 22:1209-1214.
  • CASTILLO L, ETIENNE-GRIMALDI MC, FISCHEL JL, FORMENTO P, MAGNÉ N, MILANO G: Pharmacological background of EGFR targeting. Ann. Oncol. (2004) 15:1007-1012.
  • TABERNERO J, SALAZAR R, CASADO E, MARTINELLI E, GÓMEZ P, BASELGA J: Targeted therapy in advanced colon cancer: the role of new therapies. Ann. Oncol. (2004) 15:iv55-iv62.
  • FERRARA N, HILLAN KJ, GERBER H-P, NOVOTNY W: Discovery and development of becacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug. Disc. (2004) 3:391-400.
  • NYGREN P, LARSSON R: Overview of the clinical efficacy of investigational anticancer drugs. J. Intern. Med. (2003) 253:46-75.
  • SOBRERO A, GUGLIELMI A: Current controversies in the adjuvant therapy of colon cancer. Ann. Oncol. (2004) 15:iv39-iv41.
  • SOBRERO AF: Scheduling of fluorouracil: a forget-me-not in the jungle of doublets. J. Clin. Oncol. (2004) 22:4-6.
  • SIMMONDS PC: Palliative chemotherapy for advanced colorectal cancer: systematic review and meta analysis. Colorectal Cancer Collaborative Group. BMJ (2000) 321(7260):531-535.
  • DE GRAMONT A, BOSSET JF, MILAN C et al.: Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study. J. Clin. Oncol. (1997) 15:808-815.
  • KÖHNE C-H, WILS J, LORENZ M et al.: Randomized Phase III study of high-dose fluorouracil given as a weekly 24-hour inufsion with or without leucovorin versus bolus fluorouracil plus leucovorin in advanced colorectal cancer: European Organization of Research and Treatment of Cancer Gastrointestinal Group Study 40952. J. Clin. Oncol. (2003) 21:3721-3728.
  • SALTZ LB, COX JV, BLANKE C et al.: Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. (2000) 343:905-914.
  • DOUILLARD JY, CUNNINGHAM D, ROTH AD et al.: Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet (2000) 355:1041-1047.
  • GOLDBERG RM, SARGENT DJ, MORTON RF et al.: A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol. (2004) 22:23-30.
  • TOURNIGAND C, ANDRE T, ACHILLE E et al.: FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J. Clin. Oncol. (2004) 22:229-237.
  • GLIMELIUS B, JAKOBSEN A, GRAF W et al.: Bolus injection (2 – 4 min) versus short-term (10 – 20 min) infusion of 5-fluorouracil in patients with advanced colorectal cancer: a prospective randomised trial. Eur. J. Cancer (1998) 34:674-678.
  • SÖRBYE H, GLIMELIUS B, BERGLUND Å et al.: Multicenter Phase II study of nordic fluorouracil and folinic acid bolus schedule combined with oxaliplatin as first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. (2004) 22:31-38.
  • VAN CUTSEM E, TWELVES C, CASSIDY J et al.: Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large Phase III study. J. Clin. Oncol. (2001) 19:4097-4106.
  • HOFF PM, ANSARI R, BATIST G et al.: Comparison of oral capecitabine versus intravenous fluorouracil plus leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer: results of a randomized Phase III study. J. Clin. Oncol. (2001) 19:2282-2292.
  • CASSIDY J, TABERNERO J, TWELVES C et al.: Xelox (capecitabine plus oxaliplatin): active first-line therapy for patients with metastatic colorectal cancer. J. Clin. Oncol. (2004) 22:2084-2091.
  • HOCHSTER HS, WELLES L, HART L et al.: Safety and efficacy of bevacizumab (Bev) when added to oxaliplatin/fluoropyrimidine (O/F) regimens as first-line treatment of metastatic colorectal cancer (mCRC): TREE 1 & 2 Studies. J. Clin. Oncol. (2005) 23(Suppl. 16s):354 (Abstract no. 3515).
  • DE GRAMONT A, FIGER A, SEYMOU M et al.: Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. (2000) 18:2938-2947.
  • GIACCHETTI S, PERPOINT B, ZIDANI R et al.: Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil–leucovorin as first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. (2000) 18:136-147.
  • SCHILSKY RL: First-line treatment options for patients with metastatic colorectal cancer. Nature Clin. Pract. Oncol. (2004) 1:70-71.
  • GLIMELIUS B, RISTAMÄKI R, KJAER M et al.: Irinotecan combined with bolus 5-fluorouracil and folinic acid Nordic schedule as first-line therapy in advanced colorectal cancer. Ann. Oncol. (2002) 13:1868-1873.
  • FALCONE A, MASI G, MURR R et al.: Biweekly irinotecan, oxaliplatin and infusional 5FU/LV (FOLFOXIRI) versus FOLFIRI as first-line treatment of metastatic colorectal cancer (MCRC): results of a randomized Phase III trial by the Gruppo Oncologico Nord Ovest (G.O.N.O.). Proc. ASCO (2006) 27:Abstract 227.
  • ROUGIER P, VAN CUTSEM E, BAJETTA E et al.: Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet (1998) 352:1407-1412.
  • HOFF PM, PAZDUR R, LASSERE Y et al.: Phase II study of capecitabine in patients with fluorouracil-resistant metastatic colorectal cancer. J. Clin. Oncol. (2004) 22:2078-2083.
  • CUNNINGHAM D, PYRHÖNEN S, JAMES RD et al.: Randomised trial of iriontecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet (1998) 352:1413-1318.
  • ROUGIER P, LEPERE C: Second-line treatment of patients with metastatic colorectal cancer. Semin. Oncol. (2005) 32(6 Suppl. 9):S48-S54.
  • ANDRE T, BENSMAINE MA, LOUVET C et al.: Multicenter Phase II study of bimontly high-dose leucovorin, fluorouracil infusion, and oxaliplatin for metastatic colorectal cancer resistant to the same leucovorin and fluorouracil regimen. J. Clin. Oncol. (1999) 17:3560-3568.
  • ROTHENBERG M, OZA AM, BIGELOW RH: Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil–leucovorin: interim results of a Phase III trial. J. Clin. Oncol. (2003) 21:2059-2069.
  • KEMENY N, GARAY CA, GURTLER J et al.: Randomized multicenter Phase II trial of bolus plus infusional fluorouracil/leucovorin compared with fluorouracil/leucovorin plus oxaliplatin as third-line treatment of patients with advanced colorectal cancer. J. Clin. Oncol. (2004) 22:4753-4761.
  • PFEIFFER P, HAHN P, JENSEN HA: Short-time infusion of oxaliplatin (Eloxatin) in combination with capecitabine (Xeloda) in patients with advanced colorectal cancer. Acta Oncol. (2003) 42:832-836.
  • POPOV I, JELIC SB, RADOSAVLJEVIC DI, TOMASECIV ZZ, JEZDIC SD: Which one is the best sequence of chemotherapy administration in advanced colorectal cancer? Results of five arms single centre study. Ann. Oncol. (2004) 15:Abstract 302P.
  • GLIMELIUS B: Palliative treatment of patients with colorectal cancer. Scand. J. Surg. (2003) 92:74-83.
  • BURKART C, BUDACH W, HARTMANN JT et al.: Outcome of patients with metastatic or locally advanced unresectable colorectal cancer in routine care. Ann. Oncol. (2004) 15:Abstract 354P.
  • HARRIS M: Monoclonal antibodies as therapeutic agents for cancer. Lancet. Oncol. (2004) 5:292-302.
  • KABBINAVAR F, HURWITZ HI, FEHRENBACHER L et al.: Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. (2003) 21:60-65.
  • KABBINAVAR FF, SCHULZ J, MCCLEOD M et al.: Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized Phase II trial. J. Clin. Oncol. (2005) 23(16):3697-3705.
  • HURWITZ H, FEHRENBACHER L, NOVOTNY W et al.: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. (2004) 350:2335-2342.
  • HEDRICK E, HURWITZ H, SARKAR S, GRIFFING S, GROTHEY A: Impact of post-progression therapy on survival in AVF2107, a Phase III trial of bevacizumab in the first -line treatment of metastatic colorectal cancer. Ann. Oncol. (2004) 15:Abstract 357P.
  • JOHNSON DH, FEHRENBACHER L, NOVOTNY WF et al.: Randomized Phase II trial comparing bevacizumab plus carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. (2004) 22:2184-2191.
  • FYFE GA, HURWITZ H, FEHRENBACHER L: Bevacizumab plus irinotecan/5-FU/leucovorin for treatment of metastatic colorectal cancer results in survival benefit in all pre-specified patient subgroups. J. Clin. Oncol. (2004) 23:A3617.
  • HAMBLETON J, NOVOTNY WF, HURWITZ H et al.: Bevacizumab does not increase bleeding in patients with metastatic colorectal cancer receiving concurrent anticoagulation. ASCO Annual Meeting (2004) 23:A3528.
  • SCAPPATICCI F, FEHRENBACHER L, CARTWRIGHT T et al.: Lack of effect of bevacizumab on wound healing/bleeding complications when given 28-60 days following primary cancer surgery. ASCO Annual Meeting (2004) 23:A3530.
  • HURWITZ H, FEHRENBACHER L, CARTWRIGHT T et al.: Wound healing/bleeding in metastatic colorectal cancer patients who undergo surgery during treatment with bevacizumab. ASCO Annual Meeting (2004) 23:A3702.
  • NOVOTNY W, HOLMGREN E, NELSON B, MASS R, KABBINAVAR F, HURWITZ H: Bevacizumab does not increase the incidence of venous thromboembolism when added to first-line chemotherapy to treat metastatic colorectal cancer. ASCO Annual Meeting (2004) 23:A3529.
  • GIANTONIO BJ, CATALANO PJ, MEROPOL NJ et al.: High-dose bevacizumab in combination with FOLFOX4 improves survival in patients with previously treated advanced colorectal cancer. Results from the Eastern Cooperative Oncology Group (ECOG) study E3200. J. Clin. Oncol. (2005) 23:Abstract 169a.
  • SALTZ LB, LENZ HJ, KINDLER H et al.: Interim report of randomized Phase II trial of cetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/bevacizumab (CB) in irinotecan-refractory colorectal cancer. J. Clin. Oncol. (2005) 23:Abstract 169b.
  • BENSON AB, CATALANO PJ, MEROPOL NJ et al.: Bevacizumab (anti-VEGF) plus FOLFOX4 in previously treated advanced colorectal cancer (advCRC): an interim toxicity analysis of the Eastern Cooperative Oncology Group (ECOG) study E3200. Proc. ASCO (2003) 22:243.
  • Chen HX, MOONEY M, BORON M et al.: Phase II multicenter trial of bevacizumab plus fluorouracil and leucovorin in patients with advanced refractory colorectal cancer: an NCI Treatment Referral Center Trial TRC-0301. J. Clin. Oncol. (2006) 24(21):3354-3360.
  • DÍAZ-RUBIO E, TABERNERO J, VAN CUTSEM EJD et al.: Cetuximab in combination with oxaliplatin/5-fluorouracil (5-FU)/folinic acid (FA) (FOLFOX-4) in the first-line treatment of patients with epidermal growth factor receptor (EGFR)-expressing metastatic colorectal cancer: an international Phase II study. J. Clin. Oncol. (2005) 25:A3535.
  • VENOOK A, NIEDZWIECKI D, HOLLIS D et al.: Phase III study of irinotecan/5FU/LV (FOLFIRI) or oxaliplatin/5FU/LV (FOLFOX) ± cetuximab for patients (pts) with untreated metastatic adenocarcinoma of the colon or rectum (MCRC): CALGB 80203 preliminary results. J. Clin. Oncol. (2006) A3509.
  • SALTZ LB, MEROPOL NJ, LOEHRER PJ, NEEDLE MN, KOPIT J, MAYER RJ: Phase II trial of cetuximab in patients with refractory colorectal cancer that express the epidermal growth factor receptor. J. Clin. Oncol. (2004) 22:1201-1208.
  • SALTZ L, RUBIN M, HOCHSTER H et al.: Cetuximab plus irinotecan is active in irinotecan refractory colorectal cancer that expresses epidermal growth factor receptor. J. Clin. Oncol. (2001) 19:A7.
  • CUNNINGHAM D, HUMBLET Y, SIENA S et al.: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. (2004) 351:337-345.
  • LENZ HJ, MAYER RJ, GOLD PJ et al.: Activity of cetuximab in patients with colorectal cancer refractory to both irinotecan and oxaliplatin. J. Clin. Oncol. (2004) 23:A3510.
  • CHUNG KY, SHIA J, KEMENY NE et al.: Cetuximab shows activity in colorectal cancer patients with tumours that do not express the epidermal growth factor by immunohistochemistry. J. Clin. Oncol. (2005) 23:1803-1810.
  • MEROPOL NJ: Epidermal growth factor receptor inhibitors in colorectal cancer: it’s time to get back on target. J. Clin. Oncol. (2005) 23:1791-1793.
  • VINCENZI B, SANTINI D, RABITTI C et al.: Cetuximab and irinotecan as third-line therapy in advanced colorectal cancer patients: a single centre Phase II trial. Br. J. Cancer (2006) 94(6):792-797.
  • GEBBIA V, DEL PRETE S, BORSELLINO N et al.: Efficacy and safety of cetuximab/irinotecan in chemotherapy-refractory metastatic colorectal adenocarcinomas: a clinical practice setting, multicenter experience. Clin. Colorectal Cancer (2006) 5(6):422-428.
  • LEE JC, CHOW NH, WANG ST et al.: Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur. J. Cancer (2000) 36:748-753.
  • FRANK RE, SACLARIDES TJ, LEURGANS S et al.: Tumor angiogenesis as a predictor of recurrence and survival in patients with node-negative colon cancer. Ann. Surg. (1995) 222:695-699.
  • CHOI HJ, HYUN MS, JUNG GJ et al.: Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence. Oncology (1998) 55:575-581.
  • TAKAHASHI Y, KITADAI Y, BUCANA CD et al.: Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. (1995) 55:3964-3968.
  • WARREN RS, YAUN H, MATLI MR: Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest. (1995) 95:1789-1797.
  • KONDO Y, ARII S, MORI A et al.: Enhancement of angiogenesis, tumor growth, and metastasis by transfection of vascular endothelial growth factor into LoVo human colon cancer cell line. Clin. Cancer Res. (2000) 6:622-630.
  • SHIBUYA M, YAMAGUCHI S, YAMANE A et al.: Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase (flt) closely related to the fms family. Oncogene (1990) 5:519-524.
  • TERMAN B: Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. (1992) 187:1579-1586.
  • MATTHEWS W, JORDAN CT, GAVIN M et al.: A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc. Natl. Acad. Sci. USA (1991) 88:9026-9030.
  • TERMAN B: Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene (1991) 6:1677-1683.
  • KAIPAINEN A, KORHÔNEN J, MUSTONEN T et al.: Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA (1995) 92:3566-3570.
  • PAAVONEN K, PUOLAKKAINEN P, JUSSILA L et al.: Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol. (2000) 156:1499-1504.
  • PARK J, CHEN H, WINER J et al.: Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. (1994) 269:25646-25654.
  • OLOFSSON B, KORPELAINEN E, PEPPER MS et al.: Vascular endothelial growth factor B (VEGFB) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Natl. Acad. Sci. USA (1998) 95:11709-11714.
  • SILVESTRE JS, TAMARAT R, EBRAHIMIAN TG et al.: Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ. Res. (2003) 93:114-123.
  • CAO Y, CHEN H, ZHOU L et al.: Heterodimers of placenta growth factor/vascular endothelial growth factor. J. Biol. Chem. (1996) 271:3154-3162.
  • DISALVO J, CONN G, TRIVEDI PG et al.: Purification and characterization of a naturally occurring vascular endothelial growth factor heterodimer. J. Biol. Chem. (1995) 270:7717-7723.
  • SHIBUYA M: Vascular endothelial growth factor receptor-2: its unique signaling and specific ligand, VEGF-E. Cancer Sci. (2003) 94:751-756.
  • ACHEN MG, JELTSCH M, KUKK E et al.: Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl. Acad. Sci. USA (1998) 95:548-553.
  • JOUKOV V, PAJUSOLA K, KAIPAINEN A et al.: A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. (1996) 15:290-298.
  • FERNANDO NH, HURWITZ HI: Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer. Semin. Oncol. (2003) 30(Suppl. 6):39-50.
  • BERGSLAND E, DICKLER MN: Maximizing the potential of bevacizumab in cancer treatment. Oncologist (2004) 9(Suppl. 1):36-42.
  • KIM K, LI B, HOUCK K et al.: The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors (1992) 7:53-64.
  • HICKLIN DJ, ELLIS LM: Role of the vascular endothelial growth factor pathaway in tumour growth and angiogenesis. J. Clin. Oncol. (2005) 23.
  • WILLET CG, BOUCHER Y, DI TOMASO E et al.: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. (2004) 10:145-147.
  • KIM KJ, LI B, WINER J et al.: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature (1993) 362:841-844.
  • WARREN RS, YAUN H, MATLI MR: Regulation by vascular endothelian growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest. (1995) 95:1789-1797.
  • FOLKMAN J: Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. (1971) 285:1182-1186.
  • MESSA C, RUSSO F, CARUSO MG, DI LEO A: EGF, TGF-alpha, and EGF-R in human colorectal adenocarcinoma. Acta Oncol. (1998) 37:285-289.
  • POREBSKA I, HARLOZINSKA A, BOJAROWSKI T: Expression of the tyrosine kinase activity growth factor receptors (EGFR, ERB B2, ERB B3) in colorectal adenocarcinomas and adenomas. Tumour Biol. (2000) 21:105-115.
  • SALOMON DS, BRANDT R, CIARDIELLO F, NORMANNO N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. (1995) 19:183-232.
  • CARPENTER G, COHEN S: Epidermal growth factor. J. Biol. Chem. (1990) 265:7709-7712.
  • REAL FX, RETTIG WJ, CHESA PG et al.: Expression of epidermal growth factor receptor in human cultured cells and tissues: Relationship to cell lineage and stage of differentiation. Cancer Res. (1986) 46:4726-4473.
  • SAKO Y, MINOGHCHI S, YANAGIDA T: Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. (2000) 2:168-172.
  • ALROY I, YARDEN Y: The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. (1997) 410:83-86.
  • VIVANCO I, SAWYERS CL: The phosphatidylinositol 3-kinase-Akt pathway in human cancer. Nat. Rev. Cancer (2002) 2:489-501.
  • YARDEN Y, SLIWKOWSKI M: Untangling the ErbB signaling network. Nat. Rev. Mol. Cell Biol. (2001) 2:127-137.
  • KLAPPER LN, KIRSCHBAUM MH, SELA M et al.: Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res. (2000) 77:25-79.
  • BASELGA J: New technologies in epidermal growth factor receptor-targeted cancer therapy. Signal (2000) 1:12-21.
  • WELLS A: The epidermal growth factor receptor (EGFR) – a new target in cancer therapy. Signal (2000) 1:4-11.
  • BRABENDER J, DANENBERG KD, METZGER R et al.: Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin. Cancer Res. (2001) 7:1850-1855.
  • MEYERS MB, SHEN WP, SPENGLER BA et al.: Increased epidermal growth factor receptor in multidrug-resistant human neuroblastoma cells. J. Cell. Biochem. (1988) 38:87-97.
  • SALOMON D, BRANDT R, CIARDIELLO F et al.: Epidermal growth factorrelated peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. (1995) 19:183-232.
  • GRANDIS JR, MELHEM MF, GOODING WE et al.: Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J. Natl. Cancer Inst. (1998) 90:824-832.
  • RUSCH V, BASELGA J, CORDON-CARDO C et al.: Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res. (1993) 53:2379-2385.
  • KUAN CT, WIKSTRAND CJ, BIGNER DD: EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer (2001) 8:83-96.
  • MOSCATELLO DK: Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. (1995) 55:5536-5539.
  • PRENZEL N, ZWICK E, DAUB H et al.: EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHBEGF. Nature (1999) 402:884-888.
  • LIU D, GHISO JA, ESTRADA Y et al.: EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell (2002) 1:445-457.
  • KAWAMOTO T, SATO JD, LE A et al.: Growth stimulation of A431 cells by EGF: Identification of high affinity receptors for epidermal growth factor nby an anti-receptor monoclonal antibody. Proc. Natl. Acad. Sci. USA (1983) 80:1337-1341.
  • SATO JD, KAWAMOTO T, LE AD et al.: Biological effect in vitro of monoclonal antibodies to human EGF receptors. Mol. Biol. Med. (1983) 1:511-529.
  • GILL GN, KAWAMOTO T, COCHET C et al.: Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J. Biol. Chem. (1984) 259:7755-7760.
  • HUMBLET Y: Cetuximab: an IgG1 monoclonal antibody for the treatment of epidermal growth factor receptor-expressing tumors. Expert Opin. Pharmacother. (2004) 5:1621-1633.
  • GOLDSTEIN NI, PREWETT M: Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res. (1995) 1:1311-1318.
  • HERBST RS, SHIN DM: Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer (2002) 94:1593-1611.
  • FAN Z, LU Y, WU X et al.: Antibody-induced epidermal growth factor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J. Biol. Chem. (1994) 269:27595-27602.
  • NARAMURA M, GILLIES SD, MENDELSOHN J et al.: Therapeutic potential of chimeric and murine anti-(epidermal growth factor receptor) antibodies in a metastasis model for huma melanoma. Cancer Immunol. Immunother. (1993) 37:343-349.
  • BUDILLON A, DI GENNARO E, BARBARINO M et al.: ZD-1839, an epidermal growth factor receptor tyrosine kinase inhibitor, upregulates p27Kip1 inducing G1 arrest and enhancing the antitumor effect of interferon alpha. Proc. Am. Assoc. Cancer Res. (2000) 41:4910.
  • WU X, FAN Z, MASUI H et al.: Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J. Clin. Invest. (1995) 95:1897-1905.
  • MANDAL M, ADAM L, MENDELSOHN J et al.: Nuclear targeting of Bax during apoptosis in human colorectal cancer cells. Oncogene (1998) 17:999-1007.
  • LIU B, FANG M, SCHMIDT M et al.: Induction of apoptosis and activation of the caspase cascade by anti-EGF receptor monoclonal antibodies in DiFi human colon cancer cells do not involve the c-jun N-terminal kinase activity. Br. J. Cancer (2000) 82:1991-1999.
  • PETIT AM, RAK J, HUNG MC et al.: Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases downregulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am. J. Pathol. (1997) 151:1523-1530.
  • PERROTTE P, MATSUMOTO T, INOUE K et al.: Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. (1999) 5:257-264.
  • BRUNS CJ, SOLORZANO CC, HARBISON MT et al.: Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res. (2000) 60:2926-2935.
  • CIARDIELLO F, CAPUTO R, BIANCO R et al.: Inhibition of growth factor production and angiogenesis in human cancer cells by ZD-1839 (‘Iressa’), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res. (2001) 7:1459-1465.
  • O-CHAROENRAT P, MODJTAHEDI H, RHYS-EVANS P et al.: Epidermal growth factor-like ligands differentially up-regulate matrix metalloproteinase 9 in head and neck squamous carcinoma cells. Cancer Res. (2000) 60:1121-1128.
  • O-CHAROENRAT P, RHYS-EVANS P, COURT W et al.: Differential modulation of proliferation, matrix metalloproteinase expression and invasion of human head and neck squamous carcinoma cells by c-erbB ligands. Clin. Exp. Metastasis (1999) 17:631-639.
  • MATSUMOTO T, PERROTTE P, BAR-ELI M et al.: Blockade of EGF-R signaling with anti-EGFR monoclonal antibody (Mab) C225 inhibits matrix metalloproteinase-9 (MMP-9) expression and invasion of human transitional cell carcinoma (TCC) in vitro and in vivo. Proc. Am. Assoc. Cancer Res. (1998) 39:83.
  • BASELGA J, NORTON L, MASUI H et al.: Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J. Natl. Cancer Inst. (1993) 85:1327-1333.
  • FAN Z, BASELGA J, MASUI H et al.: Antitumor effect of anti-EGF receptor monoclonal antibodies plus cis-diaminedichloroplatinum (cis-DDP) on well established A431 cell xenografts. Cancer Res. (1993) 53:4637-4642.
  • BASELGA J, NORTON L, COPLAN K et al.: Antitumor activity of paclitaxel in combination with anti-growth factor receptor monoclonal antibodies in breast cancer xenografts. Proc. Am. Assoc. Cancer Res. (1994) 35:2262.
  • CIARDIELLO F, BIANCO R, DAMIANO V et al.: Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor antibody. Clin. Cancer Res. (1999) 5:909-916.
  • HUANG SM, LI J, HARARI PM: molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Mol. Cancer Ther. (2002) 1:507-514.
  • PREWETT MC, HOOPER AT, BASSI R, ELLIS LM, WAKSAL HW, HICKLIN DJ: Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin. Cancer Res. (2002) 8(5):994-1003.
  • YANG X-D, JIA X-C, CORVALAN JRF et al.: Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res. (1999) 59:1236-1243.
  • WEINER L M, BELLDEGRUN A, ROWINSKY E et al.: Updated results from a dose and schedule study of panitumumab (ABX-EGF) monotherapy, in patients with advanced solid malignancies. J. Clin. Oncol. (2005) 23:Abstract 3059.
  • HECHT J et al.: Panitumumab plus IFL in first-line Rx of mCRC. Proc. Chemother. Symposium XXII (New York) (2004) 10:13.
  • CRAWFORD J, WITTA SE, HELFRICH B et al.: Overcoming resistance to EGFR inhibitors in NSCLS cell line by sequencial. Proc. ASCO (2004) 22:Abstract 7083.
  • HECHT JR, PATNAIK A, MALIK I et al.: ABX-EGF monotherapy in patients (pts) with metastatic colorectal cancer (mCRC): an updated analysis. Proc. ASCO (2004) 23:248 (Abstract 3511).
  • CRIPPS C, BURNELL M, JOLIVET J et al.: Phase II study of first-line LY-231514 (multi-targeted antifolate) in patients with locally advanced or meta-static colorectal cancer: an NCIC Clinical Trials Group study. Ann. Oncol. (1999) 10:1175-1179.
  • JOHN W, PICUS J, BLANKE CD et al.: Activity of multitargeted antifolate (pemetrexed disodium, LY-231514) in patients with advanced colorectal carcinoma: results from a Phase II study. Cancer (2000) 88:1807-1813.
  • SCAGLIOTTI GV, SHIN DM, KINDLER HL et al.: Phase II study of pemetrexed with and without folic acid and vitamin B12 as front-line therapy in malignant pleural mesothelioma. J. Clin. Oncol. (2003) 21:1556-1561.
  • ATKINS JN, JACOBS S, WIEAND S et al.: Pemetrexed and oxaliplatin for first-line treatment of patients with advanced colorectal cancer: a Phase II trial of the NSABP foundation research program. Proc. ASCO (2003) 22:276.
  • NAHUM K, SHIBA D, PADAVANIJA P et al.: Phase II efficacy and tolerability study of edotecarin (J-107088) in patients with irinotecannaïve metastatic colorectal cancer (MCRC). Proc. ASCO (2003) 22:274.
  • POPLIN E, MOORE M, O’DWYER P et al.: Safety and efficacy of EPO-906 in patients with advanced colorectal cancer: a review of 2 Phase II trials. Proc. ASCO (2003) 22:283.
  • ENG C, KINDLER HL, NATTAM S et al.: A Phase II trial of the epothilone B analog, BMS-247550,in patients with previously treated colorectal cancer. Ann. Oncol. (2004) 15(6):928-932.
  • WIEDMANN MW, CACA K: Molecularly targeted therapy for gastrointestinal cancer. Curr. Cancer Drug Targets (2005) 5(3):171-193.
  • AOKI M, BLAZEK E, VOGT PK et al.: A role of the kinase mTOR in cellular transformation induced by the oncoproteins PI3K and AKT. Proc. Natl. Acad. Sci. USA (2001) 98:136-141.
  • SEKULIK A, HUDSON CC, HOMME JL et al.: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. (2000) 60:3504-3513.
  • SCHMELZLE T, HALL MN: TOR, a central controller of cell growth. Cell (2000) 103:253-262.
  • CASTEDO M, FERRI KF, KROEMER G et al.: Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ. (2002) 9:99-100.
  • ROHDE J, HEITMAN J, CARDENAS ME et al.:The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. (2001) 276:9583-9586.
  • HARA K, YONEZAWA K, KOZLOWSKI MT et al.: Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. (1997) 272:26457-26463.
  • KUMAR V, SABATINI D, PANDEY P et al.: Regulation of the rapamycin and FKBP-target 1/mammalian target of rapamycin and cap-dependent initiation of translation by the c-Abl protein-tyrosine kinase. J. Biol. Chem. (2000) 275:10779-10787.
  • GARBER K: Rapamycin’s resurrection: a new way to target the cancer cell cycle. J. Natl. Cancer Inst. (2001) 93:1517-1519.
  • HIDALGO M, ROWINSKY EK: The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene (2000) 19:6680-6686.
  • GUBA M, VON BREITENBUCH P, STEINBAUER M et al.: Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat. Med. (2002) 8:128-135.
  • PODSYPANINA K, LEE RT, POLITIS C et al.: An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in PTEN+/- mice. Proc. Natl. Acad. Sci. USA (2001) 98:10320-10325.
  • DEPOWSKI PL, ROSENTHAL SI, ROSS JS et al.: Loss of expression of the PTEN gene protein product is associated with poor outcomes in breast cancer. Mod. Pathol. (2001) 14:672-676.
  • NESHAT MS, MELLINGHOFF IK, TRAN C et al.: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA (2001) 98:10314-10319.
  • SHI Y, FRANKEL A, RADVANYI LG et al.: Rapamycin enhances apoptosis and increase sensitivity to cisplatin in vitro. Cancer Res. (1995) 55:1982-1988.
  • NEFF GW, MONTALBANO M, TZAKIS AG: Ten years of sirolimus therapy in orthotopic liver transplant recipients. Transplant Proc. (2003) 35(Suppl. 3):S209-S216.
  • KISSELEV AF, GOLDBERG AL: Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. (2001) 8:739-758.
  • MAKI CG, HUIBREGTSE JM, HOWLEY PM: In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res. (1996) 56:2649-2654.
  • CLURMAN BE, SHEAFF RJ, THRESS K, GROUDINE M, ROBERTS JM: Turnover of cyclin E by the ubiquitin-proteasome Pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev. (1996) 10:1979-1990.
  • TATEBE H, YANAGIDA M: Cut8, essential for anaphase, controls localization of 26S proteasome, facilitating destruction of cyclin and Cut2. Curr. Biol. (2000) 10:1329-1338.
  • CAYROL C, DUCOMMUN B: Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21. Oncogene (1998) 17:2437-2444.
  • PAGANO M, TAM SW, THEODORAS AM et al.: Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science (1995) 269:682-685.
  • CHAUHAN D, UCHIYAMA H, AKBARALI Y et al.: Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood (1996) 87:1104-1112.
  • HIDESHIMA T, CHAUHAN D, SCHLOSSMAN R et al.: The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene (2001) 20:4519-4527.
  • HIDESHIMA T, CHAUHAN D, RICHARDSON P et al.: NF-kappa B as a therapeutic target in multiple myeloma. J. Biol. Chem. (2002) 277:16639-16647.
  • MITSIADES N, MITSIADES CS, POULAKI V et al.: Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood (2002) 99:4079-4086.
  • MITSIADES CS, MITSIADES N, POULAKI V et al.: Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene (2002) 21:5673-5683.
  • PODAR K, TAI YT, LIN BK et al.: Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J. Biol. Chem. (2002) 277:7875-7881.
  • HIDESHIMA T, ANDERSON KC: Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat. Rev. Cancer (2002) 2:927-937.
  • LEBLANC R, CATLEY LP, HIDESHIMA T et al.: Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. (2002) 62:4996-5000.
  • HIDESHIMA T, RICHARDSON P, CHAUHAN D et al.: The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. (2001) 61:3071-3076.
  • ADAMS J, PALOMBELLA VJ, SAUSVILLE EA et al.: Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. (1999) 59:2615-2622.
  • SUNWOO JB, CHEN Z, DONG G et al.: Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res. (2001) 7:1419-1428.
  • FRANKEL A, MAN S, ELLIOTT P et al.: Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin. Cancer Res. (2000) 6:3719-3728.
  • PINK MM, PIEN CS, WORLAND P et al.: PS-341 enhances chemotherapeutic effect in human xenograft models. Proc. Am. Assoc. Cancer Res. (2002) 43:158.
  • CUSACK JC JR, LIU R, HOUSTON M et al.: Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res. (2001) 61:3535-3540.
  • BOLD RJ, VIRUDACHALAM S, MCCONKEY DJ: Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J. Surg. Res. (2001) 100:11-17.
  • SHAH SA, POTTER MW, MCDADE TP et al.: 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J. Cell. Biochem. (2001) 82:110-122.
  • TEICHER BA, ARA G, HERBST R et al.: The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. (1999) 5:2638-2645.
  • RUSSO SM, TEPPER JE, BALDWIN AS Jr et al.: Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kB. Int. J. Radiat. Oncol. Biol. Phys. (2001) 50:183-193.
  • PERVAN M, PAJONK F, SUN JR et al.: Molecular pathways that modify tumor radiation response. Am. J. Clin. Oncol. (2001) 24:481-485.
  • MITSIADES N, MITSIADES CS, POULAKI V et al.: Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc. Natl. Acad. Sci. USA (2002) 99:14374-14379.
  • HIDESHIMA T, MITSIADES C, AKIYAMA M et al.: Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood (2003) 101:1530-1534.
  • MITSIADES CS, TREON SP, MITSIADES N et al.: TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood (2001) 98:795-804.
  • MITSIADES N, MITSIADES CS, POULAKI V et al.: Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood (2002) 99:4525-4530.
  • ORLOWSKI RZ, STINCHCOMBE TE, MITCHELL BS et al.: Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J. Clin. Oncol. (2002) 20:4420-4427.
  • MACKAY H, HEDLEY D, MAJOR P et al.: A Phase II trial with pharmacodynamic endpoints of the proteasome inhibitor bortezomib in patients with metastatic colorectal cancer. Clin. Cancer Res. (2005) 11(15):5526-5533.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.