196
Views
22
CrossRef citations to date
0
Altmetric
Review

Emerging cephalosporins

Pages 511-524 | Published online: 05 Nov 2007

Bibliography

  • ATASSI K, HERSCHBERGER E, ALAM R, ZEROS MJ: Thrombocytopenia associated with linezolid therapy. Clin. Infect. Dis. (2002) 34:695-698.
  • GREEN SL, MADDOX JC, HUTTENBACH ED: Linezolid and reversible myelosuppression. J. Am. Med. Assoc. (2001) 205:1291.
  • CORALLO CE, PAULL AE: Linezolid-induced neuropathy. Med. J. Aust. (2002) 177:332.
  • SILVERMAN JA, MARTIN LI, VANPRAAGH AD, LI T, ALDER J: Inhibition of daptomycin by pulmonary surfactant: in vitro modelling and clinical impact. J. Infect. Dis. (2005) 191:2149-2152.
  • PELEG AY, PTOSKI BA, REA R et al.: Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J. Antimicrob. Chemother. (2007) 59:128-131.
  • DE VRIESE AS, VAN COSTER R, SMET J et al.: Linezolid-induced inhibition of mitochondrial protein synthesis. Clin. Infect. Dis. (2006) 42:1111-1117.
  • MIRIAGOU V, TZELEPI E, DAIKOS L, TASSIOS PT, TZOUVELEKIS LS: Panresistance in VIM-1-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. (2005) 55:810-811.
  • SOULI M, KONTOPIDOU FV, KORATZANIS E et al.: In vitro activity of tigecycline against multiple-drug-resistant, including pan-resistant, Gram-negative and Gram-positive clinical isolates from Greek hospitals. Antimicrob. Agents Chemother. (2006) 50:3166-3169.
  • EVANS ME, FEOLA DJ, RAPP RP: Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant Gram-negative bacteria. Ann. Pharmacother. (1999) 33:960-967.
  • KATRAGKOU A, ROILIDES E: Successful treatment of multi-drug resistant Acinetobacter baumannii central nervous system infections with colistin. J. Clin. Microbiol. (2005) 43:4916-4917.
  • FERNANDEZ-VILADRICH P, CORBELLA X, CORRAL L, TUBAU F, MATEU A: Successful treatment of ventriculitis due to carbapenem-resistant Acinetobacter baumannii with intraventricular colistin sulfomethate sodium. Clin. Infect. Dis. (1999) 28:916-917.
  • POLLACK M: Pseudomonas aeruginosa. In: Principles and Practice of Infectious Diseases. (5th Edition). Mandell GL, Bennett JE, Dolin R (Eds), Philadelphia, Churchill Livingstone (2000):2310-2335.
  • ROSSOLINI GM, MANTENGOLI E: Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin. Microbiol. Infect. (2005) 11(Suppl. 4):17-32.
  • GHUYSEN J-M: Molecular structures of penicillin-binding proteins and β-lactamases. Trends Microbiol. (1994) 2:372-380.
  • GOFFIN C, GHUYSEN JM: Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. (1998) 62:1079-1093.
  • KITANO K, TOMASZ A: Triggering of autolytic cell wall degradation in Escherichia coli by β-lactam antibiotics. Antimicrob. Agents Chemother. (1979) 16:838-848.
  • SHOCKMAN GD, DANEO-MOORE L, KARIYAMA R, MASSIDDA O: Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. Microbial. Drug Res. (1996) 2:95-98.
  • GIESBRECHT P, KERSTEN T, MAIDHOF H, WECKE J: Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol. Mol. Biol. Rev. (1998) 62:1371-1414.
  • SUGINAKA H: Roles of autolysins produced from Staphylococcus aureus. Hifu (1998) 40(Suppl. 20):13-18.
  • LEWIS K: Programmed death in bacteria. Microbiol. Mol. Biol. Rev. (2000) 64:503-514.
  • JACKSON JJ, KROPP H: Differences in mode of action of β-lactam antibiotics influence morphology, LPS release and in vivo antibiotic efficacy. J. Endotoxin Res. (1996) 3:201-218.
  • JACKSON JJ, KROPP H: Antibiotic-induced endotoxin release: important parameters dictating responses. Endotoxin Health Dis. (1999):67-75.
  • SJOLIN J, GOSCINSKI G, LUNDHOLIN M, BRING J, ODENHOLT I: Endotoxin release from Escherichia coli after exposure to tobramycin: dose-dependency and reduction in cefuroxime-induced endotoxin release. Clin. Microbiol. Infect. (2000) 6:74-81.
  • SIMPSON AJH, OPAL SM, ANGUS BJ et al.: Differential antibiotic-induced endotoxin release in severe melioidosis. J. Infect. Dis. (2000) 181:1014-1019.
  • HARDMAN JC, LIMBIRD LE, GILMAN AG: Goodman and Gilman's: The Pharmacological Basis of Therapeutics. (9th Edition). McGraw-Hill Professional (1996).
  • HILL DA, HERFORD T, PARRATT D: Antibiotic usage and methicillin-resistant Staphylococcus aureus: an analysis of causality. J. Antimicrob. Chemother. (1998) 42:676-677.
  • SCHENTAG JJ, HYATT JM, CARR JR et al.: Genesis of methicillin-resistant Staphylococcus aureus (MRSA), how treatment of MRSA infections has selected for vancomycin-resistant Enterococcus faecium, and the importance of antibiotic management and infection control. Clin. Infect. Dis. (1998) 26:1204-1214.
  • RICE L: Evolution and clinical importance of extended-spectrum β-lactamases. Chest (2001) 119(Suppl. 2):S391-S396.
  • PATTERSON JE: Antibiotic utilization. Is there an effect on antimicrobial resistance? Chest (2001) 119(Suppl. 2):S426-S430.
  • LIVERMORE DM, BROWN DFJ, QUINN JP, CARMELI Y, PATERSON DL, YU VL: Should third-generation cephalosporins be avoided against AmpC-inducible Enterobacteriaceae? Clin. Microbiol. Infect. (2004) 10:84-87.
  • FUNG-TOMC J, DOUGHERTY TJ, DEORIO FJ, SIMICH-JOHNSON V, KESSLER RE: Activity of cefepime against ceftazidime and cefotaxime-resistant Gram-negative bacteria and its relationship to β-lactamase levels. Antimicrob. Agents Chemother. (1989) 33:498-502.
  • NIKAIDO H: Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science (1994) 264:382-388.
  • HANCOCK REW: The bacterial outer membrane as a drug barrier. Trends Microbiol. (1997) 5:37-42.
  • GILL MJ, SIMJEE S, AL-HATTAWI K, ROBERTSON BD, EASMON CSF, ISON CA: Gonococcal resistance to β-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob. Agents Chemother. (1998) 42:2799-2803.
  • DÉ E, BASLÉ A, JAQUINOD M et al.: A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol. Microbiol. (2001) 41:189-198.
  • AGGELER R, THEN RL, GHOSH R: Reduced expression of outer-membrane proteins in β-lactam-resistant mutants of Enterobacter cloacae. J. Gen. Microbiol. (1987) 133:3383-3392.
  • MEDEIROS AA, O'BRIEN TF, ROSENBERG EY, NIKAIDO H: Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J. Infect. Dis. (1987) 156:751-757.
  • DOMÉNECH-SÁNCHEZ A, HERNÁNDEZ-ALLÉS S, MARTÍNEZ- MARTÍNEZ L, BENEDÍ VJ, ALBERTÍ S: Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in β-lactam antibiotic resistance. J. Bacteriol. (1999) 181:2726-2732.
  • CHARREL RN, PAGÈS J-M, DE MICCO P, MALLÉA M: Prevalence of outer membrane porin alteration in β-lactam antibiotic-resistant Enterobacter aerogenes. Antimicrob. Agents Chemother. (1996) 40:2854-2858.
  • CHEVALIER J, PAGÈS J-M, MALLÉA M: In vivo modification of porin activity conferring antibiotic resistance to Enterobacter aerogenes. Biochem. Biophys. Res. Commun. (1999) 266:248-251.
  • LI XZ, MA D, LIVERMORE DM, NIKAIDO H: Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob. Agents Chemother. (1994) 38:1742-1752.
  • SRIKUMAR R. TSANG E, POOLE K: Contribution of the MexAB-OprM multidrug efflux system to the β-lactam resistance of penicillin-binding protein and β-lactamase-derepressed mutants of Pseudomonas aeruginosa. J. Antimicrob. Chemother. (1999) 44:537-540.
  • OKAMOTO K, GOTOH N, NISHINO T: Extrusion of penem antibiotics by multicomponent efflux systems MexAB-OprM, MexCD-OprJ, and MexXY-OprM of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. (2002) 46:2696-2699.
  • LI X-Z, ZHANG L, POOLE K: SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. (2002) 46:333-343.
  • NIKAIDO H, BASINA M, NGUYEN VY, ROSENBERG EY: Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J. Bacteriol. (1998) 180:4686-4692.
  • MAZZARIOL A, CORNAGLIA G, NIKAIDO H: Contributions of the AmpC β-lactamase and the acrAB multidrug efflux system in intrinsic resistance of Escherichia coli. K-12 to β-lactams. Antimicrob. Agents Chemother. (2000) 44:1387-1390.
  • BUSH K, JACOBY GA, MEDEIROS AA: A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. (1995) 39:1211-1233.
  • AMBLER RP: The structure of β-lactamases. Philos. Trans. R. Soc. Lond. (1980) 289:321-331.
  • AMBLER RP, COULSON AFW, FRERE J-M et al.: A standard numbering scheme for the class A β-lactamases. Biochem. J. (1991) 276:269-272.
  • JORIS B, LEDENT P, DIDEBERG O et al.: Comparison of the sequences of class A β-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob. Agents Chemother. (1991) 35:2294-2301.
  • KNOX JR: Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob. Agents Chemother. (1995) 39:2593-2601.
  • PAGE MGP: The kinetics of non-stoichiometric bursts of β-lactam hydrolysis catalysed by class C β-lactamases. Biochem. J. (1993) 295:295-304.
  • PAGE MGP: Resistance mediated by penicillin-binding proteins. In: Enzyme-mediated Resistance to Antibiotics: Mechanisms, Dissemination and prospects for inhibition. Bonomo R, Tolmasky ME (Eds), ASM Press, Washington, DC (2007):81-99.
  • UBUKATA K, CHIBA N, NAKAYAMA N, KONNO M: Drug resistance mechanism of β-lactamase nonproducing ampicillin-resistant strains of Haemophilus influenzae. Nippon Rinsho Biseibutsugaku Zasshi (1999) 9:22-29.
  • MENDELMAN PM, CHAFFIN DO, KALAITZOGLOU G: Penicillin-binding proteins and ampicillin resistance in Haemophilus influenzae. J. Antimicrob. Chemother. (1990) 25:525-534.
  • VILLAR HE, DANEL F, LIVERMORE DM: Permeability to carbapenems of Proteus mirabilis mutants selected for resistance to imipenem or other β-lactams. J. Antimicrob. Chemother. (1997) 40:365-370.
  • NEUWIRTH C, SIEBOR E, DUEZ J-M, PECHINOT A, KAZMIERCZAK A: Imipenem resistance in clinical isolates of Proteus mirabilis associated with alterations in penicillin-binding proteins. J. Antimicrob. Chemother. (1995) 36:335-342.
  • GODFREY AJ, BRYAN LE, RABIN HR: β-Lactam-resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrob. Agents Chemother. (1981) 19:705-711.
  • MIRELMAN D, NUCHAMOWITZ Y, RUBINSTEIN E: Insensitivity of peptidoglycan biosynthetic reactions to β-lactam antibiotics in a clinical isolate of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. (1981) 19:687-695.
  • GOTOH N, NUNOMURA K, NISHINO T: Resistance of Pseudomonas aeruginosa to cefsulodin: modification of penicillin-binding protein 3 and mapping of its chromosomal gene. J. Antimicrob. Chemother. (1990) 25:513-523.
  • PAGANI L, DEBIAGGI M, TENNI R, CEREDA PM, LANDINI P, ROMERO E: β-lactam-resistant Pseudomonas aeruginosa strains emerging during therapy: synergistic resistance mechanisms. Microbiologica (1988) 11:47-53.
  • RODRIGUEZ-TEBAR A, ROJO F, DAMASO D, VAZQUEZ D: Carbenicillin resistance of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. (1982) 22:255-261.
  • GEHRLEIN M, LEYING H, CULLMANN W, WENDT S, OPFERKUCH W: Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy (1991) 37:405-412.
  • FERNANDEZ-CUENCA F, MARTINEZ-MARTINEZ L, CONEJO MC, AYALA JA, PEREA EJ, PASCUAL A: Relationship between β-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J. Antimicrob. Chemother. (2003) 51:565-574.
  • FONTANA R, GROSSATO A, ROSSI L, CHENG YR, SATTA G: Transition from resistance to hypersusceptibility to β-lactam antibiotics associated with loss of a low-affinity penicillin-binding protein in a Streptococcus faecium mutant highly resistant to penicillin. Antimicrob. Agents Chemother. (1985) 28:678-683.
  • CHEN HY, WILLIAMS JD: Penicillin-binding proteins in Streptococcus faecalis and S. faecium. J. Med. Microbiol. (1987) 23:141-147.
  • LIGOZZI M, PITTALUGA F, FONTANA R: Modification of penicillin-binding protein 5 associated with high-level ampicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. (1996) 40:354-357.
  • RYBKINE T, MAINARDI J-L, SOUGAKOFF W, COLLATZ E, GUTMANN L: Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of β-lactam resistance. J. Infect. Dis. (1998) 178:159-163.
  • SIFAOUI F, ARTHUR M, RICE L, GUTMANN L: Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob. Agents Chemother. (2001) 45:2594-2597.
  • RICE LB, BELLAIS S, CARIAS LL et al.: Impact of specific pbp5 mutations on expression of β-lactam resistance in Enterococcus faecium. Antimicrob. Agents Chemother. (2004) 48:3028-3032.
  • DOUGHERTY TJ, KOLLER AE, TOMASZ A: Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. (1980) 18:730-737.
  • DOUGHERTY TJ: Genetic analysis and penicillin-binding protein alterations in Neisseria gonorrhoeae with chromosomally mediated resistance. Antimicrob. Agents Chemother. (1986) 30:649-652.
  • SPRATT BG: Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature (1988) 332:173-176.
  • MENDELMAN PM, CAMPOS J, CHAFFIN DO, SERFASS DA, SMITH AL, SAEZ-NIETO JA: Relative penicillin G resistance in Neisseria meningitidis and reduced affinity of penicillin-binding protein 3. Antimicrob. Agents Chemother. (1988) 32:706-709.
  • SPRATT BG, ZHANG QY, JONES DM, HUTCHISON A, BRANNIGAN JA, DOWSON CG: Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis. Proc. Nat. Acad. Sci. USA (1989) 86:8988-8992.
  • ZHANG QY, JONES DM, NIETO JAS, TRALLERO EP, SPRATT BG: Genetic diversity of penicillin-binding protein 2 genes of penicillin-resistant strains of Neisseria meningitides revealed by fingerprinting of amplified DNA. Antimicrob. Agents Chemother. (1990) 34:1523-1528.
  • JABES D, NACHMAN S, TOMASZ A: Penicillin-binding protein families: evidence for the clonal nature of penicillin resistance in clinical isolates of pneumococci. J. Infect. Dis. (1989) 159:16-25.
  • HAKENBECK R, KONIG A, KERN I et al.: Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level β-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J. Bacteriol. (1998) 180:1831-1840.
  • BRANNIGAN JA, TIRODIMOS IA, ZHANG QY, DOWSON CG, SPRATT BG: Insertion of an extra amino acid is the main cause of the low affinity of penicillin-binding protein 2 in penicillin-resistant strains of Neisseria gonorrhoeae. Mol. Microbiol. (1990) 4:913-919.
  • GREBE T, HAKENBECK R: Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of β-lactam antibiotics. Antimicrob. Agents Chemother. (1996) 40:829-834.
  • NAGAI K, DAVIES TA, JACOBS MR, APPELBAUM PC: Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci. Antimicrob. Agents Chemother. (2002) 46:1273-1280.
  • ASAHI Y, UBUKATA K: Association of a Thr-371 substitution in a conserved amino acid motif of penicillin-binding protein 1A with penicillin resistance of Streptococcus pneumoniae. Antimicrob. Agents Chemother. (1998) 42:2267-2273.
  • HENZE UU, BERGER-BAECHI B: Penicillin-binding protein 4 overproduction increases β-lactam resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. (1996) 40:2121-2125.
  • CHAMBERS HF, SACHDEVA MJ, HACKBARTH CJ: Kinetics of penicillin binding to penicillin-binding proteins of Staphylococcus aureus. Biochem. J. (1994) 301:139-144.
  • UTSUI Y, TAJIMA M, SEKIGUCHI R, SUZUKI E, YOKOTA T: Role of an altered penicillin-binding protein (PBP) and membrane-bound penicillinase in cephem-resistant Staphylococcus aureus. Proceedings of 13th International Congress of Chemotheraphy. Spitzy KH, Karrer K (Eds), Verlag H Egermann, Vienna, Austria (1983) 2:88/7-88/10.
  • HARTMAN BJ, TOMASZ A; Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus. J. Bacteriol. (1984) 158:513-516.
  • BERGER-BACHI B, ROHRER S: Factors influencing methicillin resistance in staphylococci. Arch. Microbiol. (2002) 178:165-171.
  • STAPLETON PD, TAYLOR PW: Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci. Prog. (2002) 85:57-72.
  • PAGE MGP: Cephalosporins in clinical development. Expert Opin. Investig. Drugs (2004) 13:973-985.
  • PAGE MGP: Anti-MRSA β-lactams in development. Curr. Opin. Pharmacol. (2006) 6:480-485.
  • KOGA T, ABE T, INOUE H et al.: In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob. Agents Chemother. (2005) 49:3239-3250.
  • KURAZONO M, IDA T, YAMADA K et al.: In vitro activities of ME1036 (CP5609), a novel parenteral carbapenem, against mehticillin-resistant staphylococci. Antimicrob. Agents Chemother. (2004) 48:2831-2837.
  • UEDA Y, KANAZAWA K, EGUCHI K, TAKEMOTO K, EIGUCHI Y, SUNAGAWA M: In vitro and in vivo antibacterial activities of SM-216601, a new broad spectrum parenteral carbapenem. Antimicrob. Agents Chemother. (2005) 49:4185-4196.
  • PAGE MGP: Ceftobiprole – a case study. Expert Opin. Drug Discov. (2007) 2:115-129.
  • NOEL GJ: Clinical profile of ceftobiprole, a novel β-lactam antibiotic. Clin. Microbiol. Infect. (2007) 13(Suppl. 2):25-29.
  • BUSH K, HEEP M, MACIELAG M, NOEL GJ: Anti-MRSA beta-lactams in development, with a focus on ceftobiprole: the first anti-MRSA β-lactam to demonstrate clinical efficacy. Expert Opin. Investig. Drugs (2007) 16:419-429.
  • MUSHTAQ S, WARNER M, GE Y, KANIGA K, LIVERMORE D: In-vitro activity of cephalosporin PPI-0903M vs critical resistance types. Poster F-1451. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC (16 – 19 December 2005).
  • SADER H, FRITSCHE TR, KANIGA K, GE Y, JONES RN: Antimicrobial activity and spectrum of PPI-0903(T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains. Antimicrob. Agents Chemother. (2005) 49:3501-3512.
  • KRESKEN M, HEEP M, WIEGAND I: Gram-negative bacteria producing characterized β-lactamases: in vitro activities of BAL9141, the active component of prodrug BAL5788, and comparators. Poster P536. 14th European Conference on Clinical Microbiology and Infectious Disease. Prague (1 – 4 May 2004).
  • HATANO K, TAKEDA S, NAKAI T et al.: In vitro anti-Pseudomonas aeruginosa activity of novel parenteral cephalosporin, FR264205. Poster F-1452. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC (16 – 19 December 2005).
  • TODA A, OHKI H, YAMANAKA T et al.: FR264205, a novel parenteral antipseudomonal cephem: synthesis and SAR of 3-(2,4-disubstituted 3-aminopyrazolio)methyl cephalosporins. Poster F1-240. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco (27 – 30 September 2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.