303
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Emerging drugs for cervical cancer

, , &
Pages 203-218 | Published online: 25 Apr 2012

Bibliography

  • Jemal A, Bray F, Center MM, Global cancer statistics. CA Cancer J Clin 2011;61:69-90
  • Pecorelli S, Zigliani L, Odicino F. Revised FIGO staging for carcinoma of the cervix. Int J Gynaecol Obstet 2009;105:107-8
  • Duenas-Gonzalez A, Cetina L, Coronel J, Martinez-Banos D. Pharmacoterapy options for locally advanced and advanced cervical cancer. Drugs 2010;70:403-32
  • Kane MA. Preventing cancer with vaccines: progress in the global control of cancer. Cancer Prev Res (Phila) 2012;5:24-9
  • Goodwin EC, DiMaio D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA 2000;97:12513-18
  • Gadducci A, Sartori E, Maggino T, The clinical outcome of patients with stage Ia1 and Ia2 squamous cell carcinoma of the uterine cervix: a Cooperation Task Force (CTF) study. Eur J Gynaecol Oncol 2003;24:513-16
  • Maneo A, Chiari S, Bonazzi C, Neoadjuvant chemotherapy and conservative surgery for stage IB1 cervical cancer. Gynecol Oncol 2008;111:438-43
  • Chemoradiotherapy for Cervical Cancer Meta-analysis Collaboration (CCCMAC). Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: individual patient data meta-analysis. Cochrane Database Syst Rev 2010(1):CD008285
  • Thomas GM. Improved treatment for cervical cancer: concurrent chemotherapy and radiotherapy. N Engl J Med 1999;340:1198-200
  • Trimble EL, Gius D, Harlan LC. Impact of NCI clinical announcement upon use of chemoradiation for women with cervical cancer [abstract]. J Clin Oncol 2007;25:5537
  • Duenas-Gonzalez A, Zarba JJ, Patel F, Phase III, open-label, randomized study comparing concurrent gemcitabine plus cisplatin and radiation followed by adjuvant gemcitabine and cisplatin versus concurrent cisplatin and radiation in patients with stage IIB to IVA carcinoma of the cervix. J Clin Oncol 2011;29:1678-85
  • Monk BJ, Sill MW, McMeekin DS, Phase III trial of four cisplatin-containing doublet combinations in stage IVB, recurrent, or persistent cervical carcinoma: a Gynecologic Oncology Group study. J Clin Oncol 2009;27:4649-55
  • Cella D, Huang HQ, Monk BJ, Health-related quality of life outcomes associated with four cisplatin-based doublet chemotherapy regimens for stage IVB recurrent or persistent cervical cancer: a Gynecologic Oncology Group study. Gynecol Oncol 2010;119:531-7
  • Benedet J, Odicino F, Maisonneuve P, Carcinoma of the cervix uteri: FIGO annual report on the results of treatment in gynaecological cancer. J Epidemiol Biost 3:5-34
  • Moore DH, Blessing JA, McQuellon RP, Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. J Clin Oncol 2004;22:3113-19
  • Long HJ, Bundy BN, Grendys EC, Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group study. J Clin Oncol 2005;23:4626-33
  • Forouzanfar MH, Foreman KJ, Delossantos AM, Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet 2011;378(9801):1461-84
  • Jemal A, Siegel R, Ward E, Cancer statistics, 2008. CA Cancer J Clin 2008;58:71-96
  • Ries LAG, Harkins D, Krapcho M, SEER Cancer Statistics Review, 1975-2003. Bethesda, MD, USA: National Cancer Institute; 2006. Available from: http://seer.cancer.gov/csr/1975_2003/results_merged/sect_05_cervi_uteri.pdf
  • Available from: http://www.datamonitor.com/store/Product/epidemiology_cervical_cancer_the_small_decrease_in_cervical_cancer_cases_over_the_next_decade_in_the_seven_major_markets_is_driven_by_decreasing_incidence_rates?productid=HC00202-001
  • Mohar A, Frias-Mendivil M. Epidemiology of cervical cancer. Cancer Invest 2000;18:584-90
  • Market Research: Cervical Cancer Market Is Forecast to Show Slow Growth. Available from: http://www.sys-con.com/node/2124321
  • Weinstein IB, Begemann M, Zhou P, Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin Cancer Res 1997;3:2696-702
  • Available from: http://www.sanger.ac.uk/perl/genetics/CGP/core_line_viewer?action=byhist&ss=NS&sn=cervix&s=3
  • Macville M, Schrock E, Padilla-Nash H, Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res 1999;59:141-50
  • Torti D, Trusolino L. Oncogene addition as a foundational rationales for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 2011;3:623-36
  • Munger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res 2002;89:213-28
  • Munger K, Scheffner M, Huibregtse JM, Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 1992;12:197-217
  • Wise-Draper TM, Wells SI. Papillomavirus E6 and E7 proteins and their cellular targets. Front Biosci 2008;13:1003-17
  • Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci 2007;98:1505-11
  • Sima N, Wang W, Kong D, Interference against HPV16 E7 oncogene leads to viral E6 and E7 suppression in cervical cancer cells and apoptosis via upregulation of Rb and p53. Apoptosis 2008;13:273-81
  • Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 2002;21:6041-8
  • Sima N, Wang S, Wang W, Antisense targeting human papillomavirus type 16 E6 and E7 genes contributes to apoptosis and senescence in SiHa cervical carcinoma cells. Gynecol Oncol 2007;106:299-304
  • Bousarghin L, Touze A, Gaud G, Inhibition of cervical cancer cell growth by human papillomavirus virus-like particles packaged with human papillomavirus oncoprotein short hairpin RNAs. Mol Cancer Ther 2009;8:357-65
  • Gu W, Putral L, Hengst K, Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther 2006;13:1023-32
  • Putral LN, Bywater MJ, Gu W, RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. Mol Pharmacol 2005;68:1311-19
  • Moon MS, Lee CJ, Um SJ, Effect of BPV1 E2-mediated inhibition of E6/E7 expression in HPV16-positive cervical carcinoma cells. Gynecol Oncol 2001;80:168-75
  • Lea JS, Sunaga N, Sato M, Silencing of HPV 18 oncoproteins with RNA interference causes growth inhibition of cervical cancer cells. Reprod Sci 2007;14:20-8
  • Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 2002;7(S4):2-8
  • Soonthornthum T, Arias-Pulido H, Joste N, Epidermal growth factor receptor as biomarker for cervical cancer. Ann Oncol 2011;22:2166-78
  • Seshacharyulu P, Ponnusamy MP, Haridas D, Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 2012;16:15-31
  • Pim D, Collins M, Banks L. Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptos. Oncogene 1992;7:27-32
  • Akerman GS, Tolleson WH, Brown KL, Human papillomavirus type 16 E6 and E7 cooperate to increase epidermal growth factor receptor (EGFR) mRNA levels, overcoming mechanisms by which excessive EGFR signaling shortens the life span of normal human keratinocytes. Cancer Res 2001;61:3837-43
  • Sizemore N, Choo CK, Eckert RL, Rorke EA. Transcriptional regulation of the GF receptor promoter by HPV16 and retinoic acid in human ectocervical epithelial cells. Exp Cell Res 1998;244:349-56
  • Hu G, Liu W, Mendelsohn J, Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. J Natl Cancer Inst 1997;89:1271-6
  • Goncalves A, Fabbro M, Lhomme C, A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer. Gynecol Oncol 2008;108:42-6
  • Schilder RJ, Sill MW, Lee YC, A phase II trial of erlotinib in recurrent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Int J Gynecol Cancer 2009;19:929-33
  • Monk BJ, Mas Lopez L, Zarba JJ, Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer. J Clin Oncol 2010;28:3562-9
  • Nogueira-Rodrigues A, do Carmo CC, Viegas C, Phase I trial of erlotinib combined with cisplatin and radiotherapy for patients with locally advanced cervical squamous cell cancer. Clin Cancer Res 2008;14:6324-9
  • Ferreira CG, Erlich F, Carmo CC, Erlotinib (E) combined with cisplatin (C) and radiotherapy (RT) for patients with locally advanced squamous cell cervical cancer: a phase II trial [abstract]. J Clin Oncol 2008;26:5511
  • Arias-Pulido H, Joste N, Chavez A, Absence of epidermal growth factor receptor mutations in cervical cancer. Int J Gynecol Cancer 2008;18:749-54
  • Longatto-Filho A, Pinheiro C, Martinho O, Molecular characterization of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinoma. BMC Cancer 2009;9:212
  • Santin AD, Sill MW, McMeekin DS, Phase II trial of cetuximab in the treatment of persistent or recurrent squamous or non-squamous cell carcinoma of the cervix: a gynecologic oncology group study. Gynecol Oncol 2011;122:495-500
  • Hertlein L, Lenhard M, Kirschenhofer A, Cetuximab monotherapy in advanced cervical cancer: a retrospective study with five patients. Arch Gynecol Obstet 2011;283:109-13
  • Kurtz E, Hardy-Bessard AC, Deslandres M, Cetuximab, topotecan and cisplatin for the treatment of advanced cervical cancer: a phase II GINECO trial. Gynecol Oncol 2009;113:16-20
  • Farley J, Sill MW, Birrer M, Phase II study of cisplatin plus cetuximab in advanced, recurrent, and previously treated cancers of the cervix and evaluation of epidermal growth factor receptor immunohistochemical expression: a Gynecologic Oncology Group study. Gynecol Oncol 2011;121:303-8
  • Kang S, Kim HS, Seo SS, Inverse correlation between RASSF1A hypermethylation, KRAS and BRAF mutations in cervical adenocarcinoma. Gynecol Oncol 2007;105:662-6
  • Bonner JA, Harari PM, Giralt J, Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567-78
  • von Knebel Doeberitz M, Gissmann L, zur-Haussen H. Growth-regulating functions of human papillomavirus early gene products in cervical cancer cells acting dominant over enhanced epidermal growth factor receptor expression. Cancer Res 1990;50:3730-6
  • Guidi AJ, Abu-Jawdeh G, Berse B, Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 1995;87:1237-45
  • Lee JS, Kim HS, Park JT, Expression of vascular endothelial growth factor in the progression of cervical neoplasia and its relation to angiogenesis and p53 status. Anal Quant Cytol Histol 2003;25:303-11
  • Cheng WF, Chen CA, Lee CN, Vascular endothelial growth factor and prognosis of cervical carcinoma. Obstet Gynecol 2000;96:721-6
  • Fujiwaki R, Hata K, Iida K, Vascular endothelial growth factor expression in progression of cervical cancer: correlation with thymidine phosphorylase expression, angiogenesis, tumor cell proliferation, and apoptosis. Anticancer Res 2000;20:1317-22
  • Chen W, Li F, Mead L, Human papillomavirus causes an angiogenic switch in keratinocytes which is sufficient to alter endothelial cell behavior. Virology 2007;367:168-74
  • Lopez-Ocejo O, Viloria-Petit A, Bequet-Romero M, Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene 2000;19:4611-20
  • Wright JD, Viviano D, Powell MA, Bevacizumab combination therapy in heavily pretreated, recurrent cervical cancer. Gynecol Oncol 2006;103:489-93
  • Tan SJ, Juan JH, Fu PT, Chemotherapy with low-dose bevacizumab and carboplatin in the treatment of a patient with recurrent cervical cancer. Eur J Gynaecol Oncol 2010;31:350-3
  • Monk BJ, Sill MW, Burger RA, Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: a Gynecology Oncology Group study. J Clin Oncol 2009;27:1069-74
  • Sonpavde G, Hutson TE. Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep 2007;9:115-19
  • Monk BJ, Pandite LN. Survival data from a phase II, open-label study of pazopanib or lapatinib monotherapy in patients with advanced and recurrent cervical cancer. J Clin Oncol 2011;29:4845
  • Wedge SR, Kendrew J, Hennequin LF, AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 2005;65:4389-400
  • Diaz-Padilla I, Siu LL. Brivanib alanitate for cancer. Expert Opin Investig Drugs 2011;20:577-86
  • Perren TJ, Swart AM, Pfisterer J, A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 2011;365:2484-96
  • Burger RA, Brady MF, Bookman MA, Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 2011;365:2473-83
  • Taja-Chayeb L, Chavez-Blanco A, Martinez-Tlahuel J, Expression of platelet derived growth factor family members and the potential role of imatinib mesylate for cervical cancer. Cancer Cell Int 2006;6:22
  • Fasolo A, Sessa C. mTOR inhibitors in the treatment of cancer. Expert Opin Investig Drugs 2008;17:1717-34
  • Kim MK, Kim TJ, Sung CO, High expression of mTOR is associated with radiation resistance in cervical cancer. J Gynecol Oncol 2010;21:181-5
  • Temkin SM, Yamada SD, Fleming GF. A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecol Oncol 2010;117:473-6
  • Rios J, Puhalla S. PARP inhibitors in breast cancer: BRCA and beyond. Oncology 2011;25:1014-25
  • Powell C, Mikropoulos C, Kaye SB, Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev 2010;36:566-75
  • Ghosh U, Bhattacharyya NP. Induction of apoptosis by the inhibitors of poly(ADP-ribose)polymerase in HeLa cells. Mol Cell Biochem 2009;320:15-23
  • Schneider-Stock R, Ocker M. Epigenetic therapy in cancer: molecular background and clinical development of histone deacetylase and DNA methyltransferase inhibitors. IDrugs 2007;10:557-61
  • Duenas-Gonzalez A, Lizano M, Candelaria M, Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer 2005;4:38
  • Vermorken JB, Tumolo S, Roozendaal KJ, 5-aza 2′ deoxycytidine in advanced or recurrent cancer of the uterine cervix. Eur J Cancer 1991;27:5216-17
  • Pohlmann P, DiLeone LP, Cancella AI, Phase II trial of cisplatin plus decitabine, a new DNA hypomethylating agent, in patients with advanced squamous cell carcinoma of the cervix. Am J Clin Oncol 2002;25:496-501
  • Gore L, Rothenberg ML, O'Bryant CL, A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients with refractory solid tumors and lymphomas. Clin Cancer Res 2008;14:4517-25
  • Munster P, Marchion D, Bicaku E, Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol 2007;25:1979-85
  • Gonzalez-Fierro A, Vasquez-Bahena D, Taja-Chayeb L, Pharmacokinetics of hydralazine, an antihypertensive and DNA-demethylating agent, using controlled-release formulations designed for use in dosing schedules based on the acetylator phenotype. Int J Clin Pharmacol Ther 2011;49:519-24
  • Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int 2006;6:2
  • De la Cruz-Hernandez E, Perez-Plasencia C, Pérez-Cárdenas E, Transcriptional changes induced by epigenetic therapy with hydralazine and magnesium valproate in cervical carcinoma. Oncol Rep 2011;25:399-407
  • Mora-Garcia M de L, Duenas-Gonzalez A, Hernandez-Montes J, Up-regulation of HLA class-I antigen expression and antigen-specific CTL response in cervical cancer cells by the demethylating agent hydralazine and the histone deacetylase inhibitor valproic acid. J Transl Med 2006;4:55
  • Candelaria M, Gallardo-Rincon D, Arce C, A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann Oncol 2007;18:1529-38
  • Candelaria M, Cetina L, Perez-Cardenas E, Epigenetic therapy and cisplatin chemoradiation in FIGO stage IIIB cervical cancer. Eur J Gynaecol Oncol 2010;31:386-91
  • De Schutter H, Nuyts S. Radiosensitizing potential of epigenetic anticancer drugs. Anticancer Agents Med Chem 2009;9:99-108
  • Coronel J, Cetina L, Pacheco I, A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med Oncol 2011;28(S1):540-6
  • Schoffski P. The modulated oral fluoropyrimidine prodrug S-1, and its use in gastrointestinal cancer and other solid tumors. Anticancer Drugs 2004;15:85-106
  • Katsumata N, Hirai Y, Kamiura S, Phase II study of S-1, an oral fluoropyrimidine, in patients with advanced or recurrent cervical cancer. Ann Oncol 2011;22:1353-7
  • Goodin S. Novel cytotoxic agents: epothilones. Am J Health Syst Pharm 2008;65(10 Suppl 3):S10-15
  • Agrawal M, Edgerly M, Fojo T, Kotz H. Treatment of recurrent cervical adenocarcinoma with BMS-247550, an epothilone B analog. Gynecol Oncol 2003;90:96-9
  • Garcia-Carbonero R, Supko JG. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 2002;8:641-61
  • Lee SW, Kim YM, Kim MB, Chemosensitivity of uterine cervical cancer demonstrated by the histoculture drug response assay. Tohoku J Exp Med 2009;219:277-82
  • Hwang JH, Lim MC, Seo SS, Phase II study of belotecan (CKD 602) as a single agent in patients with recurrent or progressive carcinoma of uterine cervix. Jpn J Clin Oncol 2001;41:624-9
  • Mitsui I, Kumazawa E, Hirota Y, A new water-soluble camptothecin derivative, DX-8951f, exhibits potent antitumor activity against human tumors in vitro and in vivo. Jpn J Cancer Res 1995;86:776-82
  • Reddy SB, Williamson SK. Tirapazamine: a novel agent targeting hypoxic tumor cells. Expert Opin Investig Drugs 2009;18:77-87
  • Craighead PS, Pearcey R, Stuart G. A phase I/II evaluation of tirapazamine administered intravenously concurrent with cisplatin and radiotherapy in women with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 2000;48:791-5
  • Finch RA, Liu M, Grill SP, Triapine (3-aminopyridine-2-carboxaldehyde-thiosemicarbazone): a potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem Pharmacol 2000;59:983-91
  • Kunos CA, Radivoyevitch T, Pink J, Ribonucleotide reductase inhibition enhances chemoradiosensitivity of human cervical cancers. Radiat Res 2010;174:574-81
  • Kunos CA, Waggoner S, von Gruenigen V, Phase I trial of pelvic radiation, weekly cisplatin, and 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) for locally advanced cervical cancer. Clin Cancer Res 2010;16:1298-306
  • Koldehoff M, Steckel NK, Beelen DW, Elmaagacli AH. Therapeutic application of small interfering RNA directed against bcr-abl transcripts to a patient with imatinib-resistant chronic myeloid leukaemia. Clin Exp Med 2007;7:47-55
  • Davis ME, Zuckerman JE, Choi CH, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464(7291):1067-70
  • Zhao CY, Szekely L, Bao W, Selivanova G. Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation. Cancer Res 2010;70:3372-81
  • Mungala R, Kausar H, Munjal C, Gupta RC. Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 2011;32:1697-705
  • Allen KL, Tschantz DR, Awad KS, A plant lignan, 3′-O-methyl-nordihydroguaiaretic acid, suppresses papillomavirus E6 protein function, stabilizes p53 protein, and induces apoptosis in cervical tumor cells. Mol Carcinog 2007;46:564-75
  • Beerheide W, Sim MM, Tan YJ, Inactivation of the human papillomavirus-16 E6 oncoprotein by organic disulfides. Bioorg Med Chem 2000;8:2549-60
  • Baleja JD, Cherry JJ, Liu Z, Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Res 2006;72:49-59
  • Cho Y, Cho C, Joung O, Development of screening systems for drugs against human papillomavirus-associated cervical cancer: based on E6-E6AP binding. Antiviral Res 2000;47:199-206
  • Abdulkarim B, Sabri S, Deutsch E, Antiviral agent cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene 2002;21:2334-46
  • Sirianni N, Wang J, Ferris RL. Antiviral activity of cidofovir on a naturally human papillomavirus-16 infected squamous cell carcinoma of the head and neck (SCCHN) cell line improves radiation sensitivity. Oral Oncol 2005;41:423-8
  • Yang Y, Zhao X, Chen W, Effects of cidofovir on human papillomavirus-positive cervical cancer cells xenografts in nude mice. Oncol Res 2010;18:519-27
  • Snoeck R, Andrei G, De Clercq E. Cidofovir in the treatment of HPV-associated lesions. Verh K Acad Geneeskd Belg 2001;63:93-120
  • Van Pachterbeke C, Becella D, Rozenber S, Topical treatment of CIN 2+ by cidofovir: results of a phase II, double-blind, prospective, placebo-controlled study. Gynecol Oncol 2009;115:69-74
  • Tan S, de Vries EG, van der Zee AG, de Jong S. Anticancer drugs aimed at E6 and E7 activity in HPV-positive cervical cancer. Curr Cancer Drug Targets 2012;12:170-84
  • de la Cruz-Hernandez E, Perez-Cardenas E, Contreras-Paredes A, The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study. Virol J 2007;4:18
  • Um SJ, Lee SY, Kim EJ, Down-regulation of human papillomavirus E6/E7 oncogene by arsenic trioxide in cervical carcinoma cells. Cancer Lett 2002;181:11-22
  • Wen X, Li D, Zhang Y, Arsenic trioxide induces cervical cancer apoptosis, but specifically targets human papillomavirus-infected cell populations. Anticancer Drugs 2012; [Epub ahead of print]
  • Trarbach T, Moehler M, Heinemann V, Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1) in patients with refractory colorectal cancer. Br J Cancer 2010;102:506-12
  • Ariza ME, Ramakrishnan R, Singh NP, Bryostatin-1, a naturally occurring antineoplastic agent, acts as a Toll-like receptor 4 (TLR-4) ligand and induces unique cytokines and chemokines in dendritic cells. J Biol Chem 2011;286:24-34
  • Bubenik J. Interleukin 12 in cancer treatment. Folia Biol (Praha) 2011;57:1-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.