440
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Emerging immunosuppressive drugs in myelodysplastic syndromes

, Pharm D PhD, , & , MD President, CEO
Pages 519-541 | Published online: 20 Nov 2012

Bibliography

  • Ma X, Does M, Raza A, Mayne ST, Myelodysplastic syndromes: incidence and survival in the United States. Cancer 2007;109:1536-42
  • Rollison DE, Howlader N, Smith MT, Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood 2008;112:45-52
  • Cogle CR, Craig BM, Rollison DE, List AF, Incidence of the myelodysplastic syndromes using a novel claims-based algorithm: high number of uncaptured cases by cancer registries. Blood 2011;117:7121-5
  • Bernasconi P, Klersy C, Boni M, World Health Organization classification in combination with cytogenetic markers improves the prognostic stratification of patients with de novo primary myelodysplastic syndromes. Br J Haematol 2007;137:193-205
  • Gonzalez-Porras JR, Cordoba I, Such E, Prognostic impact of severe thrombocytopenia in low-risk myelodysplastic syndrome. Cancer 2011;117:5529-37
  • Komrokji RS, Zhang L, Bennett JM, Zhang L, Bennett JM. Myelodysplastic syndromes classification and risk stratification. Hematol Oncol Clin North Am 2010;24:443-57
  • Mufti GJ, Bennett JM, Goasguen J, Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of myelodysplastic syndrome (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts. Haematologica 2008;93:1712-17
  • Garcia-Manero G. Myelodysplastic syndromes: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol 2011;86:490-8
  • Tiu RV, Gondek LP, O'Keefe CL, Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 2011;117(17):4552-60
  • Bejar R, Ebert BL. The genetic basis of myelodysplastic syndromes. Hematol Oncol Clin North Am 2010;24:295-315
  • Bejar R, Stevenson KE, Caughey BA, Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 2012;30(27):3376-82
  • Epling-Burnette PK, List AF. Advancements in the molecular pathogenesis of myelodysplastic syndrome. Curr Opin Hematol 2009;16:70-6
  • Sekeres MA. How to manage lower-risk myelodysplastic syndromes. Leukemia 2012;26:390-4
  • Sekeres MA. Are we nearer to curing patients with MDS? Best Pract Res Clin Haematol 2010;23:481-7
  • Fenaux P, Bowen D, Gattermann N, Practical use of azacitidine in higher-risk myelodysplastic syndromes: an expert panel opinion. Leuk Res 2010;34:1410-16
  • Gergis U, Wissa U. High-risk myelodysplastic syndromes: chemotherapy, transplantation, and beyond. Curr Hematol Malig Rep 2010;5:1-8
  • Gore SD. New ways to use DNA methyltransferase inhibitors for the treatment of myelodysplastic syndrome. Hematol Am Soc Hematol Educ Prog 2011;2011:550-5
  • Sugimori C, List AF, Epling-Burnette PK. Immune dysregulation in myelodysplastic syndrome. Hematol Rep 2010;2:e1
  • Biesma DH, van den Tweel JG, Verdonck LF. Immunosuppressive therapy for hypoplastic myelodysplastic syndrome. Cancer 1997;79:1548-51
  • Molldrem JJ, Caples M, Mavroudis D, Antithymocyte globulin for patients with myelodysplastic syndrome. Br J Haematol 1997;99:699-705
  • Molldrem JJ, Jiang YZ, Stetler-Stevenson M, Haematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor Vbeta profiles. Br J Haematol 1998;102:314-22
  • Lim ZY, Killick S, Germing U, Low IPSS score and bone marrow hypocellularity in MDS patients predict hematological responses to antithymocyte globulin. Leukemia 2007;21:1436-41
  • Stadler M, Germing U, Kliche KO, A prospective, randomised, phase II study of horse antithymocyte globulin vs rabbit antithymocyte globulin as immune-modulating therapy in patients with low-risk myelodysplastic syndromes. Leukemia 2004;18:460-5
  • Yazji S, Giles FJ, Tsimberidou AM, Antithymocyte globulin (ATG)-based therapy in patients with myelodysplastic syndromes. Leukemia 2003;17:2101-6
  • Killick SB, Mufti G, Cavenagh JD, A pilot study of antithymocyte globulin (ATG) in the treatment of patients with 'low-risk' myelodysplasia. Br J Haematol 2003;120:679-84
  • Aivado M, Rong A, Stadler M, Favourable response to antithymocyte or antilymphocyte globulin in low-risk myelodysplastic syndrome patients with a 'non-clonal' pattern of X-chromosome inactivation in bone marrow cells. Eur J Haematol 2002;68:210-16
  • Asano Y, Maeda M, Uchida N, Immunosuppressive therapy for patients with refractory anemia. Ann Hematol 2001;80:634-8
  • Steensma DP, Dispenzieri A, Moore SB, Schroeder G, Tefferi A, Antithymocyte globulin has limited efficacy and substantial toxicity in unselected anemic patients with myelodysplastic syndrome. Blood 2003;101:2156-8
  • Mohty M. Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond. Leukemia 2007;21:1387-94
  • Sloand EM, Wu CO, Greenberg P, Young N, Barrett J, Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol 2008;26:2505-11
  • Scheinberg P, Nunez O, Weinstein B, Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med 2011;365:430-8
  • Broliden PA, Antithymocyte globulin and cyclosporine A as combination therapy for low-risk non-sideroblastic myelodysplastic syndromes. Haematologica 2006;91:667-70
  • Epling-Burnette PK, Komrokji RS, Maciejewski JP, Phase 2 Multicenter Trial of Rabbit Anti-Thymocyte Serotherapy in Myelodysplastic Syndrome: Rate of Hematological Improvement Associated with Pre-Treatment Disease Duration. ASH Ann Meeting Abstr 2010;116:602
  • Passweg JR, Giagounidis AA, Simcock M, Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care–SAKK 33/99. J Clin Oncol 2011;29:303-9
  • Craig BM, Rollison DE, List AF, Cogle, CR, Diagnostic testing, treatment, cost of care, and survival among registered and non-registered patients with myelodysplastic syndromes. Leuk Res 2011;35:1453-6
  • Kremers HM, Myasoedova E, Crowson CS, The Rochester Epidemiology Project: exploiting the capabilities for population-based research in rheumatic diseases. Rheumatology (Oxford) 2011;50:6-15
  • Myasoedova E, Crowson CS, Kremers HM, Therneau TM, Gabriel SE, Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955-2007. Arthritis Rheum 2010;62:1576-82
  • Kavanaugh A. Health economics: implications for novel antirheumatic therapies. Ann Rheum Dis 2005;64(Suppl 4):iv65-9
  • Kavanaugh A. Economic consequences of established rheumatoid arthritis and its treatment. Best Pract Res Clin Rheumatol 2007;21:929-42
  • Ali A, Sequential activation of caspase-1 and caspase-3-like proteases during apoptosis in myelodysplastic syndromes. J Hematother Stem Cell Res 1999;8:343-56
  • Elghetany MT. P53 overexpression in bone marrow biopsies in refractory anemia and aplastic anemia: impact of antibody selection. Leuk Res 2000;24:975-7
  • Ellis MH, Baraf L, Shaish A, Alteration of lipids and the transcription of lipid-related genes in myelodysplastic syndromes via a TP53-related pathway. Exp Hematol 2012;40(7):540-7
  • Invernizzi R, Pecci A, Bellotti L, Ascari E, Expression of p53, bcl-2 and ras oncoproteins and apoptosis levels in acute leukaemias and myelodysplastic syndromes. Leuk Lymphoma 2001;42:481-9
  • Kitagawa M, Yamaguchi S, Takahashi M, Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia. Leukemia 1998;12:486-92
  • Orazi A, p53 overexpression in myeloid leukemic disorders is associated with increased apoptosis of hematopoietic marrow cells and ineffective hematopoiesis. Mod Pathol 1996;9:48-52
  • Parcharidou A, Raza A, Economopoulos T, Extensive apoptosis of bone marrow cells as evaluated by the in situ end-labelling (ISEL) technique may be the basis for ineffective haematopoiesis in patients with myelodysplastic syndromes. Eur J Haematol 1999;62:19-26
  • Parker JE, Mufti GJ, Rasool F, The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 2000;96:3932-8
  • Raza A, Gezer S, Mundle S, Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 1995;86:268-76
  • Shetty V, Mundle S, Alvi S, Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes. Leuk Res 1996;20:891-900
  • Sloand EM, Kim S, Fuhrer M, Fas-mediated apoptosis is important in regulating cell replication and death in trisomy 8 hematopoietic cells but not in cells with other cytogenetic abnormalities. Blood 2002;100:4427-32
  • Jadersten M, Saft L, Smith A, TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 2011;29:1971-9
  • Aggarwal S, van de Loosdrecht AA, Alhan C, Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy. Br J Haematol 2011;153:568-81
  • Mevorach D, Trahtemberg U, Krispin A, What do we mean when we write "senescence," "apoptosis," "necrosis," or "clearance of dying cells"? Ann NY Acad Sci 2010;1209:1-9
  • Sun E. Cell death recognition model for the immune system. Med Hypotheses 2008;70:585-96
  • Viorritto IC, Nikolov NP, Siegel RM. Autoimmunity versus tolerance: can dying cells tip the balance? Clin Immunol 2007;122:125-34
  • Maratheftis CI, Andreakos E, Moutsopoulos HM, Voulgarelis M, Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin Cancer Res 2007;13:1154-60
  • Linsley PS, Greene JL, Tan P, Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med 1992;176:1595-604
  • Yokosuka T, Saito T. The immunological synapse, TCR microclusters, and T cell activation. Curr Top Microbiol Immunol 2010;340:81-107
  • Dennehy KM, Kerstan A, Bischof A, Mitogenic signals through CD28 activate the protein kinase Ctheta-NF-kappaB pathway in primary peripheral T cells. Int Immunol 2003;15:655-63
  • Hoyne GF. Mechanisms that regulate peripheral immune responses to control organ-specific autoimmunity. Clin Dev Immunol 2011;2011:294968
  • Keene JA, Forman J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med 1982;155:768-82
  • Yang Y, Villain P, Mustelin T, Couture C, Critical role of Ser-520 phosphorylation for membrane recruitment and activation of the ZAP-70 tyrosine kinase in T cells. Mol Cell Biol 2003;23:7667-77
  • Mustelin T, Tasken K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 2003;371(Pt 1):15-27
  • Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R, T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009;228:9-22
  • Marinari B, Costanzo A, Viola A, Vav cooperates with CD28 to induce NF-kappaB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase 1. Eur J Immunol 2002;32:447-56
  • Haubert D, Weckbecker G. Vav1 couples the T cell receptor to cAMP response element activation via a PKC-dependent pathway. Cell Signal 2010;22:944-54
  • Wang D, Matsumoto R, You Y, CD3/CD28 costimulation-induced NF-kappaB activation is mediated by recruitment of protein kinase C-theta, Bcl10, and IkappaB kinase beta to the immunological synapse through CARMA1. Mol Cell Biol 2004;24:164-71
  • Narayan P, Holt B, Tosti R, Kane LP, CARMA1 is required for Akt-mediated NF-kappaB activation in T cells. Mol Cell Biol 2006;26:2327-36
  • Rosebeck S, Rehman AO, Lucas PC, McAllister-Lucas LM, From MALT lymphoma to the CBM signalosome: three decades of discovery. Cell Cycle 2011;10:2485-96
  • Lohr J, Knoechel B, Abbas AK. Regulatory T cells in the periphery. Immunol Rev 2006;212:149-62
  • Afzali B, Lombardi G, Lechler RI, Lord GM, The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 2007;148:32-46
  • Sato K. Th17 cells and rheumatoid arthritis–from the standpoint of osteoclast differentiation. Allergol Int 2008;57:109-14
  • de Latour RP, Visconte V, Takaku T, Th17 immune responses contribute to the pathophysiology of aplastic anemia. Blood 2010;116:4175-84
  • Breedveld FC, Combe B. Understanding emerging treatment paradigms in rheumatoid arthritis. Arthritis Res Ther 2011(13 Suppl 1):S3
  • Valencia X, Stephens G, Goldbach-Mansky R, TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 2006;108:253-61
  • Saunthararajah Y, Nakamura R, Nam JM, HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood 2002;100:1570-4
  • Saunthararajah Y, A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome. Blood 2003;102:3025-7
  • Shimamoto T, Ohyashiki K. Immunosuppressive treatments for myelodysplastic syndromes. Leuk Lymphoma 2003;44:593-604
  • Deeg HJ, Jiang PY, Holmberg LA, Hematologic responses of patients with MDS to antithymocyte globulin plus etanercept correlate with improved flow scores of marrow cells. Leuk Res 2004;28:1177-80
  • Sugimori C, Chuhjo T, Feng X, Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood 2006;107:1308-14
  • Nagarajan S, Brodsky RA, Young NS, Medof ME, Genetic defects underlying paroxysmal nocturnal hemoglobinuria that arises out of aplastic anemia. Blood 1995;86:4656-61
  • Marsh JC, Gordon-Smith EC. Treatment of aplastic anaemia with antilymphocyte globulin and cyclosporin. Int J Hematol 1995;62:133-44
  • Molnar L, Berki T, Hussain A, Nemeth P, Losonczy H, Detection of TNFalpha expression in the bone marrow and determination of TNFalpha production of peripheral blood mononuclear cells in myelodysplastic syndrome. Pathol Oncol Res 2000;6:18-23
  • Selleri C, Maciejewski JP, Catalano L, Effects of cyclosporine on hematopoietic and immune functions in patients with hypoplastic myelodysplasia: in vitro and in vivo studies. Cancer 2002;95:1911-22
  • Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol 2008;15:162-8
  • Zou JX, Rollison DE, Boulware D, Altered naive and memory CD4+ T-cell homeostasis and immunosenescence characterize younger patients with myelodysplastic syndrome. Leukemia 2009;23:1288-96
  • Cope AP, Schulze-Koops H, Aringer M. The central role of T cells in rheumatoid arthritis. Clin Exp Rheumatol 2007;25(5 Suppl 46):S4-11
  • Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 2011;23:598-604
  • Scott BL, Ramakrishnan A, Fosdal M, Anti-thymocyte globulin plus etanercept as therapy for myelodysplastic syndromes (MDS): a phase II study. Br J Haematol 2010;149:706-10
  • Scott BL, Prolonged responses in patients with MDS and CMML treated with azacitidine and etanercept. Br J Haematol 2010;148:944-7
  • Deeg HJ, Gotlib J, Beckham C, Soluble TNF receptor fusion protein (etanercept) for the treatment of myelodysplastic syndrome: a pilot study. Leukemia 2002;16:162-4
  • Sloand EM, Olnes MJ, Shenoy A, Alemtuzumab treatment of intermediate-1 myelodysplasia patients is associated with sustained improvement in blood counts and cytogenetic remissions. J Clin Oncol 2010;28:5166-73
  • Winter SS, Hanissian GA, Harville TO, Ware RE, Tumor necrosis factor-alpha suppresses hematopoiesis in children with myelodysplasia. Med Pediatr Oncol 1997;28:69-74
  • Gersuk GM, A role for tumour necrosis factor-alpha, Fas and Fas-ligand in marrow failure associated with myelodysplastic syndrome. Br J Haematol 1998;103:176-88
  • Thalayasingam N, Isaacs JD. Anti-TNF therapy. Best Pract Res Clin Rheumatol 2011;25:549-67
  • Van den Bosch F, De Keyser F, Mielants H, Veys EM, Tumor necrosis factor-alpha blockade in ankylosing spondylitis: a potent but expensive anti-inflammatory treatment or true disease modification? Arthritis Res Ther 2005;7:121-3
  • Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T, Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 2010;49:1215-28
  • Richard-Miceli C Dougados M. Tumour necrosis factor-alpha blockers in rheumatoid arthritis: review of the clinical experience. BioDrugs 2001;15:251-9
  • Yazici Y, Regens AL. Promising new treatments for rheumatoid arthritis - the kinase inhibitors. Bull NYU Hosp Jt Dis 2011;69:233-7
  • Thompson JE. JAK protein kinase inhibitors. Drug News Perspect 2005;18:305-10
  • Ferrajoli A, Faderl S, Ravandi F, Estrov Z, The JAK-STAT pathway: a therapeutic target in hematological malignancies. Curr Cancer Drug Targets 2006;6:671-9
  • Imada K, Leonard WJ. The Jak-STAT pathway. Mol Immunol 2000;37:1-11
  • Hu X, Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 2007;82:237-43
  • Vijayakrishnan L, Venkataramanan R, Gulati P. Treating inflammation with the Janus kinase inhibitor CP-690,550. Trends Pharmacol Sci 2011;32:25-34
  • West K. CP-690550, a. JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr Opin Investig Drugs 2009;10:491-504
  • Sansone P, Bromberg J. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol 2012;30:1005-14
  • Quintas-Cardama A, Verstovsek S. New JAK2 inhibitors for myeloproliferative neoplasms. Expert Opin Investig Drugs 2011;20:961-72
  • Oh ST, Gotlib J. JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol 2010;3:323-37
  • Krieg AM, Vollmer J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev 2007;220:251-69
  • Sun S, TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm Allergy Drug Targets 2007;6:223-35
  • Jennings C, Kusler B, Jones PP. Calcineurin inactivation leads to decreased responsiveness to LPS in macrophages and dendritic cells and protects against LPS-induced toxicity in vivo. Innate Immun 2009;15:109-20
  • Perl A. Pathogenic mechanisms in systemic lupus erythematosus. Autoimmunity 2010;43:1-6
  • Bai L, Blockade of toll-like receptor 2 expression and membrane translocation in rat corneal epithelial cells by glucocorticoid (TobraDex) after penetrating keratoplasty. Cornea 2011;30:1253-9
  • Broering R, Corticosteroids shift the Toll-like receptor response pattern of primary-isolated murine liver cells from an inflammatory to an anti-inflammatory state. Int Immunol 2011;23:537-44
  • Larange A, Glucocorticoids inhibit dendritic cell maturation induced by Toll-like receptor 7 and Toll-like receptor 8. J Leukoc Biol 2012;91:105-17
  • Komrokji RS, Phase 1 Dose-Escalation/Expansion Study of the p38/Tie2 Inhibitor ARRY-614 in Patients with IPSS Low/Int-1 Risk Myelodysplastic Syndromes. ASH Ann Meeting Abstr 2011. 118:118
  • Jonasova A, Neuwirtova R, Cermak J, Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anaemias without hypoplastic bone marrow. Br J Haematol 1998;100:304-9
  • Chen SC, Curative effects of cyclosporin A therapy upon myelodysplastic syndrome. Zhonghua Yi Xue Za Zhi 2006;86:2711-15
  • Dixit A, Cyclosporin A in myelodysplastic syndrome: a preliminary report. Ann Hematol 2005;84:565-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.