14
Views
12
CrossRef citations to date
0
Altmetric
Review

The development of protein farnesyltransferase and other ras-directed therapeutics for malignant diseases

&
Pages 161-199 | Published online: 24 Feb 2005

Bibliography

  • BOS JL: ras oncogenes in human cancer. A review.Cancer Res. (1989) 49:4682–4689.
  • BOLLAG G, MCCORMICK F: Regulators and effectors ofras proteins. Ann. Rev. Cell. Biol. (1991) 7:601–632.
  • BOGUSKI MS, MCCORMICK F: Proteins regulating Rasand its relatives. Nature (1993) 366:643–654.
  • LOWY DR, WILLUMSEN BM: Function and regulation ofRas Ann. Rev. Biochem. (1993)62:851-891.
  • LEONARD DM: Ras farnesyltransferase: a newtherapeutic target. J. Med. Chem. (1997) 40:2971–2990.
  • SHIMIZU K, GOLDFARB M, SUARD Y et al.: Three human transforming genes are related to the viral oncogenes. Proc. Natl. Acad. Sci. USA (1983) 80:2112–2116.
  • Birnbaumer L, Dickey B (Eds.), Springer-Verlag, New York, NY, USA (1993):335–344.
  • HANCOCK JF, MAGEE Al, CHILDS JE, MARSHALL CJ: All ras proteins are polyisoprenylated but only some are pahnitoylated. Cell (1989) 57:1167–1177.
  • HANCOCK JF, PATERSON H, MARSHALL CJ: A polybasic domain or pahnitoylation is required for the addition of the CAAX motif to localize p21 to the plasma membrane. Cell (1990) 63: 133–139.
  • JACKSON JH, COCHRANE CG, BOURNE JR, et al.: Farnesyl modification of Kirsten-ras exon 4B protein is essential for transformation. Proc. Natl. Acad Sci. USA (1990) 87:3042–3046.
  • KATO K, COX AD, HISAKA MM, et al.: Isoprenoid additionto Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl. Acad. Sci. USA (1992) 89:6403–6407.
  • KHOSRAVI-FAR R, DER CJ: The Ras signal transductionpathway. Cancer Metastasis Rev. (1994)13:67-89.
  • MCCORMICK F: Activators and effectors of ras p21proteins. Curr. Opin. Genet. Dev. (1994) 4:71–76.
  • PAZIN MJ, WILLIAMS LT: Triggering signaling cascadesby receptor tyrosine kinases. Trends Biochem. Sci. (1992) 17:374–378.
  • MCCORMICK F: How receptors turn Ras on. Nature (1993) 363:15–17.
  • Markers CT, Sell S (Eds.), Humana Press,Totowa, NJ, USA (1995):17–52.
  • POLAKIS P, MCCORMICK F: Interactions between p21-proteins and their GTPase activating proteins. Cancer Surv. (1992) 12:25–42.
  • KHOSRAVI-FAR R, CAMPBELL S, ROSSMAN KL, DER CJ:Increasing complexity of Ras signal transduction: involvement of Rho family members. Adv. Cancer Res. (1998) 72:57–107.
  • MCCORMICK F: Ras biology in atomic detail. NatureStruct. Biol. (1996) 3:653–655.
  • STOKOE D, MACDONALD SG, CADWALLDER K, et al.: Activation of Raf as a result of recruitment to the plasma membrane. Science (1994) 264:1463-1467. 21.LEEVERS SJ, PATERSON HF, MARSHALL CJ: Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature (1994) 369: 411–414.
  • PRITCHARD C, MCMAHON M: Raf revealed in life-or-death decisions. Nature Genet. (1997) 16:214–215.
  • MORRISON DK, CUTLER RE, JR.: The complexity of Raf-1 regulation. Curr. opin. Cell. Biol. (1997) 9:174–179.
  • MARSHALL CJ: Cell signaling. Raf gets it together. Nature (1996) 383: 127–128.
  • STANTON VP, NICHOLS DW, LAUDANO AP, COOPER GM:Definition of the human raf amino-terminal regula-tory region by deletion mutagenesis. Mol. Cell. Biol. (1989) 9:639–647.
  • BURGERING BMT, BOS JL: Regulation of Ras-mediatedsignaling: more than one way to skin a cat. Trends Biochem. Sci. (1995) 20:18–22.
  • KOLCH W, HEODECLER G, LLOYD P, RAPP UR: Raf-1 protein kinase is required for growth of induced NIII/3T3 cells. Nature (1991) 349:426–428.
  • SCHAAP D, VAN DER WAL J, HOWE LR, MARSHALL CJ,VAN BLITTERSWIIK WJ: A dominant-negative mutant of raf blocks mitogen-activated protein kinase activation by growth factors and oncogenic p2lras. J. Biol. Chem. (1993) 268:20232–20236.
  • BONNER TI, KERBY SB, SUTRAVE P, GUNNELL MA, MARKG, RAPP UR: Structure and biological activity of human homologs of the raf/mil oncogene. Mol. Cell. Biol. (1985) 5:1400–1407.
  • OLDHAM SM, CLARK GJ, GANGAROSA LM, COFFEY RJ,DER CJ: Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithe-lial cells. Proc. Natl. Acad. Sci. USA (1996) 93: 6924–6928.
  • PRENDERGAST GC, GIBBS JB: Pathways of Ras function:connections to the actin cytoskeleton. Adv. Cancer Res. (1993) 62:19–64.
  • COWLEY S, PATTERSON H, KEMP P, MARSHALL CJ: Activation of MAP kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell (1994) 77:841–852.
  • MANSOUR SJ, MATTEN WT, HERMANN AS, et al.: Transfor-mation of mammalian cells by constitutively active MAP kinase kinase. Science (1994) 265:966–970.
  • STANG S, BOTTORFF D, STORE JC: Interaction of activated Ras with Raf-1 alone may be sufficient for transformation of rat2 cells. Mol. Cell. Biol. (1997) 17:3047–3055.
  • KHOSRAVI-FAR R, SOLSKI PA, CLARK GJ, KINCH MS, DERCJ: Activation of Racl, RhoA and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. (1995) 15:6443–6453.
  • JONESON T, WHITE MA, WIGLER MH, et al.: Stimulationof membrane ruffling and MAP kinase activation by distinct effectors of Ras Science (1996) 271:810–812.
  • RIDLEY AJ, PATERSON HF, JOHNSTON CL, DIEKKMANND, HALL A: The small GTP-binding protein Rac regulates growth-factor induced membrane ruffling. Cell (1992) 70:401–410.
  • RIDLEY AJ, HALL A: The small GTP-binding protein Rhoregulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell (1992) 70:389–399.
  • LANGE-CARTER CA, PLEIMAN CM, GARDNER AM, et al.: Adivergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science (1993) 260:315–319.
  • LANGE-CARTER CA, JOHNSON GL: Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science (1994) 265:1458–1461.
  • MINDEN A, UN A, MCMAHON M, et al.: Differential activa-tion of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science (1994) 266:1719–1723.
  • YAN M, DAI T, DEAK JC, et al.: Activation of stress-activated protein kinase by MEKKI phosphorylation of its activator SEK1. Nature (1994) 372:798–800.
  • UN M, MCMAHON M, LANGE-CARTER C, et al.: Differen-tial activation of ERK and JNK mitogen-activated protein kinases by Raf-1 an d MEKK. Science (1994) 266: 1719–1723.
  • DERIJARD B, HIBI M, WU I-H et al.: A protein kinasestimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell (1994) 76:1025–1037.
  • JOHNSON R, SPIEGELMAN B, HANAHAN D, et al.: Cellular transformation and malignancy induced by ras require c-jun. Mol. Cell. Biol. (1996) 16: 4504–4511.
  • HUNTER T: Oncoprotein networks. Cell (1997) 88:333–346.
  • RODRIGUEZ-VICIANA P, WARNE PH, DHAND R, et al.:Phosphatidylinosito1-3-0H kinase as a direct target of Ras. Nature (1994) 370:527–532.
  • CARPENTER CL, CANTLEY LC: Phosphoinositide kinases. Curr. Opin. Cell. Biol. (1996) 8: 153–158.
  • YAN J, ROY S, APOLLONI A, et al.: Ras isoforms vary intheir ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. (1998) 273:24052–24056.
  • RODRIGUEZ-VICIANA P, WARNE PH, VANHAESEBROECK B, et al.: Activation of phosphoinositide 3 kinase by interaction with Ras and by point mutation. EMBO J. (1996) 15:2442–2452.
  • RODRIGUEZ-VICIANA P, WARNE PH, KHWAJA A, et al.: Role of phosphoinositide 3-0H kinase in cell transfor-mation and control of the actin cytoskeleton by Ras. Cell (1997) 89:457–467.
  • KEELY PJ, WESTWICK JK, WHITEHEAD IP, et al.: Cdc42 and Rac 1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature (1997) 390: 632–636.
  • TRESINI M, MAWAL-DEWAN M, CRISTOFALO VJ, et al.: A phosphatidylinositol 3-kinase inhibitor induces a senescent-like growth arrest in human diploid fibroblasts. Cancer Res. (1998) 58:1–4.
  • YAO R, COOPER GM: Requirement for phosphatidylinosito1-3 kinase in the prevention of apoptosis by nerve growth factor. Science (1995) 267: 2003–2006.
  • KENNEDY SG, WAGNER AJ, CONZEN SD, et al.: The PI 3-kinase/Akt signaling pathway delivers an anti-apoptitic signal. Genes Dev. (1997) 11:701–713.
  • KHWAJA A, RODRIGUEZ-VICIANA P, WENNSTROM S, et al.: Matrix adhesion and Ras transformation both activate a phosphoinositide 3-0H kinase and protein kinase B/Akt cellular survival pathway. EMBO J (1997) 16:2783–2793.
  • KAUFFMAN-ZEH A, RODRIGUEZ-VICIANA P, ULRICH E, et al.: Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature (1997) 385: 544–548.
  • FRANKE TF, KAPLAN DR, CANTLEY LC: P13K: downstream AKTion blocks apoptosis. Cell (1997) 88:435–437.
  • CHUNG K, GRAMMER TC, LEMON KP, et al.: PDGF- andinsulin-dependent pp7061' activation mediated by phosphatidylinosito1-3-0H kinase. Nature (1994) 370:71–75.
  • BANERJEE P, AHMAD MF, GROVE JR, et al.: Molecularstructure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc. Natl. Acad. Sci. USA (1990) 87:8550–8554.
  • CHUNG J, KUO CJ, CRABTREE GR, et al: Rapamycin-FKBPspecifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell (1992) 69: 1227–1236.
  • LANE HA, FERNANDEZ A, LAMB NJC, et al.: p70s6k function is essential for G1 progression. Nature (1993) 363:170–172.
  • PERUCHO M, GOLDFARB M, SHIMIZU K, et al.: Humantumor-derived cell lines contain common and different transforming genes. Cell (1981) 27:467–476.
  • CASEY PJ: p21 Ras is modified by a farnesyl isoprenoid.Proc. Natl. Acad. Sci. USA (1989) 86:8323–8327.
  • BEAUPRE DM, KURZROCK R: RAS and leukemia: frombasic mechanisms to gene-directed therapy. J. Clin. Oncol. (1999) 17:1071–1079.
  • GELB MH: Protein prenylation, et cetera: signaltransduction in two dimensions. Science (1997) 275:1750–1751.
  • COX AD, DER CJ: Farnesyhransferase inhibitors andcancer treatment: targeting simply Ras Biochem. Biophys. Acta. (1997) 1333:F51–F71.
  • OMER CA, ANTHONY NJ, BUSER-DOEPNER CA, et al.:Farnesyl protein transferase inhibitors as agents to inhibit tumor growth. Biofactors (1997) 6:359–366.
  • GIBBS JB, OLIFF A: The potential of farnesyhransferaseinhibitors as cancer chemotherapeutics. Ann. Rev. Pharmacol. Toxicol. (1997) 37:143–166.
  • YAMANE HK, FARNSWORTH CC, XIE HY, et al Brain G protein gamma subunits contain all trans- geranylgeranlycysteine methyl ester at their carboxyl termini. Proc. Natl. Acad. Sci. USA (1990) 87:5868–5872.
  • SCHAFER WR, KIM R, STERNE R, et al.: Genetic andpharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science (1989) 245:379–385.
  • HANCOCK JF, CADWALLADER K, MARSHALL CJ: A CAAXor a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. (1991) 110:641–646.
  • DUDER T, GELB MH: Palmitoylation of H-Ras facilitatesmembrane binding, activation of downstream effectors and meiotic maturation in Xenopus oocytes. J. Biol. Chem. (1996) 271: 11541–11547.
  • GHOMASHCHI F, ZHANG X, LIU L, et al.: Binding of prenylated and polybasic peptides to membranes: affinities and intervesicle exchange. Biochemistry (1995) 34: 11910–11918.
  • ZHANG FL, CASEY PJ: Protein prenylation: molecularmechanisms and functional consequences. Ann Rev. Biochem. (1996) 65:241–269.
  • REISS Y, GOLDSTEIN JL, SEABRA MC, et al.: Inhibitors of purified p21-farnesyl: protein transferase by cys-AAX tetrapeptides. Cell (1990) 62:81–88.
  • REISS Y, STRADLEY SJ, GIERASCH LM, et al.: Sequence requirement for peptide recognition by rat brain p21 -protein farnesyltransferase. Proc. Natl. Acad. Sci. USA (1991) 88:732–736.
  • PARK HW, BODULURI SR, MOOMAW JF, et al.: Crystalstructure of protein farnesyltransferase at 2.25 angstrom resolution. Science (1997) 275:1800–1804.
  • DUNTEN P, KAMMLOT U, CROWTHER R, WEBER D, PALMERO R, BIRKTOFT J: Protein farnesyltransferase: structure and implications for function. Biochemistry (1997) 37:7907–7912.
  • ANDRES DA, GOLDSTEIN JL, HO YK, et al.: Mutationalanalysis of alpha-subunit of protein farnesyltransfe-rase: evidence for a catalytic role. J. Biol. Chem. (1993) 268:1383–1390.
  • KUMAR A, BERSINI MH, DHAWAN P, et al.: Alpha-subunit of farnesyltransferase is phosphorylated in vivo: effect of protein phosphatase-1 on enzymatic activity. Biochem. Biophys. Res. Commun. (1996) 222:445–452.
  • VOGT A, SUN J, QIAN Y, et al.: Burkitt lymphoma Daudi cells contain two distinct farnesyltransferases with different divalent cation requirements. Biochemistry (1995) 34: 12398–12403.
  • YOKOYAMA K, ZIMMERMAN K, SCHOLTEN MH: Differ-ential prenyl pyrophosphate binding to mammalian protein geranylgeranyltransferase-I and protein farnesyltransferase and its consequence on the specificity of protein prenylation. J. Biol. Chem. (1997) 272:3944–3952.
  • CLARKE S: Protein isoprenylation and methylation atcarboxyl-terminal cysteine residues Ann. Rev Biochem. (1992) 61:355–386.
  • CASEY PJ, SEABRA MC: Protein prenyhransferases. J.Biol. Chem. (1996) 271: 5289–5292.
  • JAMES GL, GOLDSTEIN JL, BROWN MS: Polylysine andCVIM sequences of KrasB dictate specificity of prenyla-tion and confer resistance to benzodiazepine peptidomimetics in vitro. J. Biol. Chem. (1995) 266:14603–14610.
  • ARMSTRONG SA, HANNAH VC, GOLDSTEIN JL, et al.: CAAX geranylgeranyl transferase transfers.
  • COX AD, HISAKA MM, BUSS JE, et al.: Specific isoprenoidmodification is required for function of normal, but not oncogenic, Ras protein. Mol. Cell. Biol. (1992) 12: 2606–2615.
  • GIBBS JB, OLIFF A, KOHL NE: Farnesyltransferaseinhibitors: Ras research yields a potential cancer therapeutic. Cell (1994) 77: 177–178.
  • JAMES GL, GOLDSTEIN JL, PATHAK RK, et al.: PxF, a prenylated protein of peroxisomes. J. Biol. Chem. (1994) 269: 14182–14190.
  • SYMONS M: The Rac and Rho pathways as a source ofdrug targets for Ras-mediated malignancies. Curr. Opin. Biotechnol. (1995) 6:668–774.
  • GOLDSTEIN JL, BROWN MS, STRADLEY SJ, et al.: Nonfat--nesylated tetrapeptide inhibitors of protein farnesyl-transferase. J. Biol. Chem. (1991) 266:15575–15578.
  • SEBTI SM, HAMILTON AD: New approaches to anticancer drug design based on the inhibition of farnesyltransferase. Drug Discov. Today (1998) 3:26–33.
  • HEIMBROOK DC, OLIFF A: Therapeutic intervention and signaling. Curr. Opin. Cell. Biol. (1998) 10:284–288.
  • POMPLIANO DL, RANDS E, SCHABER MD, MOSSER SD, ANTHONY NJ, GIBBS JB: Steady-state kinetic mechanism of Ras farnesyl: protein transferase. Biochemistry (1992) 31:3800–3807.
  • BROWN MS, GOLDSTEIN JL, PARIS KJ, et al.: Tetrapeptide inhibitors of protein farnesyltransferase: amino-terminal substitution in phenylalanine-containing tetrapeptides restores farnesylation. Proc. Natl. Acad. Sci. USA (1992) 89: 8313–8316.
  • REISS Y, GOLDSTEIN JL, SEABRA MC, CASEY PJ, BROWN MS: Inhibition of purified p21 Ras farnesyl: protein transferase by Cys-AAX tetrapeptides. Cell (1990) 62:81–88.
  • KOHL NE, MOSSER SD, DESOLMS SJ: Selective inhibitionof ras-dependent transformation by a farnesyltransfe-rase inhibitor. Science (1993) 260: 1934–1937.
  • GRAHAM SL, SMITH RL, SCOLNICK EM, OLIFF A, GIBBS JB:Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science (1993) 260:1934–1937.
  • KOHL NE, WILSON FR, MOSSER SD, et al.: Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc. Natl. Acad. Sci. USA (1994) 91: 9141–9145.
  • SEPP-LORENZINO L, MA Z, RANDS E, et al.: A peptidomi-metic inhibitor of farnesyl: protein transferase blocks the anchorage- dependent and -independent growth of human tumor cell lines. Cancer Res. (1995) 55: 5302–5309.
  • DESOLMS SJ, DEANA AA, GIULIAN EA, et al.: Pseudo-dipeptide inhibitors of protein farnesyltransferase. J. Med. Chem. (1995) 38: 3967–3971.
  • LERNER EC, QIAN Y HAMILTON AD, et al.: Disruption of oncogenic K-Ras4B processing and signaling by a potent geranylgeranyltransferase I inhibitor. J. Biol. Chem. (1995) 270:26770–26773.
  • VOGT A, QIAN Y, BLASKOVICH MA, FOSSUM RD, HAMILTON AD, SEBTI SM: A non-peptide mimetic of Ras-CAAX: selective inhibition of farnesyltransferase and Ras processing. J. Biol. Chem. (1995) 270:660–664.
  • QIAN Y, VOGT A, SEBTI SM, HAMILTON AD: Design and synthesis of non-peptide Ras CAAX mimetics as potent farnesyltransferase inhibitors. J. Med. Chem. (1996) 39: 217–223.
  • NAGASU T, YOSHIMATSU K, ROWELL C, et al.: Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res. (1995) 270:26770–26773.
  • JAMES GL, GOLDSTEIN JL, BROWN MS, et al.: Benzodi-azepine peptidominietics: potent inhibitors of Ras farnesylation in animal cells. Science (1993) 260:1937–1942.
  • JAMES GL, BROWN MS, COBB MH, GOLDSTEIN JL: Benzodiazepine peptidominietic BZA-5B interrupts the MAP kinase activation pathway in H-Ras-transformed Rat-1 cells, but not in untransforrned cells. J. Biol. Chem. (1994) 269: 27705–27714.
  • MARSTERS JC, MCDOWELL RS, REYNOLDS ME, et al.: Benzodiazepine peptidomimetic inhibitors of farnesyltransferase. Bioorg. Med. Chem. (1994) 2:949–957.
  • QIAN Y, BASKOVICH MA, SALEEM M, et al.: Design and structural requirements of potent peptidominietic inhibitors of p21 Ras farnesyltransferase. J. Biol. Chem. (1994) 269: 12410–12413.
  • LEFTHERIS K, KLINE T, VITE GD, et al.: Development of highly potent inhibitors of Ras farnesyltransferase possessing cellular and in vivo activity. J. Med. Chem. (1996) 39:353–358.
  • HUNT JT, LEE VG, LEFTHERIS K, et al.: Potent cell active, non-thiol tetrapeptide inhibitors of farnesyltransfe-rase. J. Med. Chem. (1996) 39:353–358.
  • LEONARD D, SHULER KR, POULTER CJ, et al.: Structure-activity relationships of cysteine-lacking pentapeptide derivatives that inhibit ras farnesyltransferase J. Med. Chem. (1997) 40:192-200. SCHOLTEN JD, ZIMMERMAN K, OXENDER M, et al.: Inhibi-tors of farnesyl: protein transferase -a possible cancer chemotherapeutic. Bioorg. Med. Chem. (1996) 9: 1537–1543.
  • SCHOLTEN JD, ZIMMERMAN K, OXENDER Met al.: Inhibitors of farnesyl: protein transferase -a possible cancer chemotherapeutic. Bioorg. Med. Chem. (1996)9:1537–1543.
  • LIU M, BRYANT MS, CHEN J, et al.: Antitumor activity of SCH66336 and orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res. (1998) 58:4947–4956.
  • MALLAMS AK, NOJOROGE FG, DOLL RJ, et al.: Antitumor 8-chlorobenzocycloheptapyridines: a new class of selective, nonpeptidic, nonsulfhydryl inhibitors of ras farnesylation. Bioorg. Med. Chem. (1997) 5:93–99.
  • NJOROGE FG, DOLL RJ, VIBULBHAN B, et al.: Discovery of novel nonpeptidic tricyclic inhibitors of Ras farnesyl protein transferase. Bioorg. Med. Chem. (1997) 5:101–113.
  • BISHOP WR, BOND R, PETRIN J, et al.: Novel tricyclic inhibitor of farnesyl protein transferase: biochemical characterization and inhibition of Ras modification in transfected Cos cells. J. Biol. Chem. (1995) 270:30611–30618.
  • STRICKLAND CL, WEBER PC, WINDSOR WT, et al.: Tricyclic farnesyl protein transferase inhibitors: crystallographic and calorimetric studies of structure activity relationships J. Med. Chem. (1999) 42:2125–2135.
  • VENET M, ANGIBAUD P, SANZ G, et al.: Synthesis and in vitro structure-activity relationships of irnidazoly1-2-quinolinones as farnesyl protein transferase inhibi-tors. Proc. Am. Assoc. Cancer Res. (1998) 39:2171.
  • TODD AV, APPLEGATE TL, FUERYU CJ, et al.: Farnesyl transferase inhibitor (FTD: effect on ras activation. Proc. Am. Assoc. Cancer Res. (1998) 39:2168A.
  • END D, SKRZAT S, DEGVINE A, et al.: R115777, a novel irnidazole farnesyl protein transferase inhibitor (F11): biochemical and cellular effects in H-ras and K-ras dominant systems. Proc. Am. Assoc. Cancer Res. (1998) 39: 1847.
  • MANNE V, YAN N, CARBONI JM, et al.: Bisubstrate inhibi-tors of farnesyltransferase: a novel class of specific inhibitors of ras transformed cells. Oncogene (1995) 10:1763–1779.
  • PATEL DV, GORDON EM, SCHMIDT RJ, et al.: Phosphinyl acid-based bisubstrate anlog inhibitors of Ras farnesyl protein transferase. J. Med. Chem. (1995) 38:435–442.
  • YAN N, RICCA C, FLETCHER J, et al.: Farnesyltransferase inhibitors block the neurofibromatosis Type I (NF1) malignant phenotype. Cancer Res. (1995) 55:3569–3575.
  • BASU TN, GUTMANN DH, FLETCHER JA, et al.: Aberrant regulation of ras proteins in malignant tumor cells from Type I neurofibromatosis patients. Nature (1992) 356:713–715.
  • DECLUE JE, PAPAGEORGE AG, FLETCHER JA, et al.: Abnormal regulation of mammalian p23ras contrib-utes to malignant tumor growth in von Recklinghausen (Type 1) neurofibromatosis. Cell (1992) 69:256–273.
  • KAINUMA O, ASANO T, HASEGAWA M, et al.: Inhibitor of growth and invasive activity of human pancreatic cancer cells by a farnesyltransferase inhibitor, manumycin. Pancreas (1997) 15:379–383.
  • HOHL RJ, LEWIS K: Differential effects of monoterpenes and lovastatin on ras processing. J. Biol. Chem. (1995) 270: 17508–17512.
  • SUN JA, ELSON CE, TANNER MA, GOULD MN: Inhibition of DMBA-induced mammary cancer by monoterpene d-limonene. Carcinogenesis (1984) 5:661–664.
  • ELSON CE, MALTZMAN TH, BOSTON JL, TANNER MA, GOULD MN: Anti-carcinogenic activity of d-limonene during the initiation and promotion/progression stages of DMBA-induced rat mammary carcinogenesis. Carcinogenesis (1998) 331–332.
  • HAAG ID, LINDSTROM MJ, GOULD MN: Limonene-induced regression of mammary carcinoma. Cancer Res. (1992) 52:4021–4026.
  • CROWELL PL, RENZ, UN S, VEDEJS E, GOULD MN: Structure activity relationships among monoterpene inhibitors of protein isoprenylation and cell prolifera-tion. Biochem. Pharmacol. (1994)47:1405-1415.
  • HOHL RJ: Monoterpenes as regulators of malignant cell proliferation. Adv. Exp. Med. Biol. (1996) 401:137–46.
  • STAYBROOK KR, MCKINZIE JH, BARBHAIYA LH, CROWELL PL: Effects of the antitumor agent perillyl alcohol on H-ras vs. K-ras farnesylation and signal transduction. Anticancer Res. (1998) 18:823–828.
  • REN Z, ELSON CE, GOULD MN: Inhibition of Type I and Type II geranylgeranyl protein transferases by the monoterpene perillyl alcohol in NIH3T3 cells. Biochem. Pharmacol. (1997) 54:113–120.
  • REN Z, GOULD MN: Inhibition of ubiquinone and cholesterol synthesis by the monoterpene perillyl alcohol. Cancer Lett. (1994)76:185-190.
  • GELB MH, TAMANOL F, KOHEL Y, GHOMASHCHI F, ESSON K, GOULD M: The inhibition of protein prenyl-transferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Lett. (1995) 91: 169–175.
  • HARDCASTLE IR, ROWLANDS MG, BARBER AM, et al.: Inhibition of protein prenylation by metabolites of limonene. Biochem. Pharmacol. (1999) 57:801–809.
  • AIAZI EA, SATOMI Y, ELLIS MJ, et al.: Activation of the transforming growth factor P signaling pathway and induction of cytostasis and apoptosis in mammary carcinomas treated with the anticancer agent perillyl alcohol. Cancer Res. (1999) 59: 1917–1928.
  • RIPPLE GH, GOULD MN, STEWART JA, et al.: Phase I clinical trial of perillyl alcohol administered daily. Clin. Can. Res. (1998) 4:1159–1164.
  • SUN J, QIAN Y, HAMILTON AD, et al.: Both farnesyltrans-ferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenyla-don but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene (1998) 16:1467–1473.
  • MIGUEL K, PRADINES A, SUN J, et al.: GGTI-228 induces Go-G, block and apoptosis whereas FTI-227 causes 13,-M enrichment in A549 cells. Cancer Res. (1997) 57:1846–1850.
  • VOGT A, SUN J, QIAN Y, et al.: The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in Bo/G, and induces plDa in a p53-independent manner. J. Biol. Chem. (1997) 272:27224–27229.
  • CHANG EH, MILLER PS, CUSHMAN C, et al.: Antisense inhibition of ras p21 expression that is sensitive to point mutation. Biochemistry (1991) 30:8283–8286.
  • MONIA BP, JOHNSTON JF, ECKER DJ, et al.: Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J. Biol. Chem. (1992) 267: 19954–19962.
  • GRAY GD, HERNANDEZ OM, HEBEL D, ROOT M, POW-SANG JM, WICKSTROM E: Antisense DNA inhibi-tion of tumor growth induced by c-Ha-ras oncogene in nude mice. Cancer Res. (1993) 53:577–580.
  • Agrawal S (Ed.), Humana Press, Totowa, NJ, USA (1990:87–108.
  • SCHWAB G, CHAVANY C, DUROUX I, et al.: Antisense oligonucleotides absorbed to polyalkykyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc. Natl. Acad. Sci. USA (1994) 91: 10460–10464.
  • DORR A, BURGE J, MONIA B, et al.: Phase land pharma-cokinetic trial of ISIS 2503, a 20-mer antisense oligonu-cleotide against H-ras by 14-day continous infusion (CIV) in patients with advance cancer. Proc. Am. Soc. of Clin. Oncol. (1999) 18: 603.
  • ADJEI A, ERLICHMAN C, SLOAN J, et al.: A Phase I trial of Isis 2503, an antisense inhibitor of H-Ras in combina-tion with gemcitabine in patients with advanced cancer. Proc. Am. Soc. of Clin. Oncol. (2000) 19:722.
  • MUKHOPADHYAY T, TAINSKY M, CAVENDAR AC, ROTH JA: Specific inhibition of K-ras expression and tumori-genicity of lung cancer cells by antisense RNA. Cancer Res. (1991) 51:1744–1748.
  • GEORGES R, MUKHOPADYAY T, ZHANG Y, YEN N, ROTH JA: Prevention of orthotopic human lung cancer growth by intrateracheal instillation of a retroviral antisense K-ras construct. Cancer Res. (1993) 53:1743–1746.
  • ALEMANY R, RUAN S, MASAFUMI K, et al.: Growth inhibi-tory effect of anti-K-ras adenovirus on lung cancer cells. Cancer Gene Ther. (1996) 3:296301.
  • ROTH JA: Modification of mutant K-ras gene in nonsmall cell lung cancer (NSCLC). Hum. Gene Ther. (1996) 7:875–889.
  • AOKI K, YOSHIDA T, SUGIMURA T, TERADA M: Liposome mediated transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res. (1995) 55:3810–3816.
  • AOKI K, TOSHIDA T, MATSUMOTO N, IDE H, SUGIMURA T, TERADA M: Suppression of K-ras p21 levels leading to growth inhibition of pancreatic cancer cells lines with k-ras mutation but not those without Ki-ras mutation. Mol. Carcinog. (1997) 20:251–258.
  • O'DWYER PJ, STEVENSON JP, GALLAGHER M, et al.: c-raf-1 depletion and tumor responses in patients treated with the c-raf-1 antisense oligodeoxynucleo-tide ISIS 5132 (CGP 69846A). Clin. Cancer Res. (1999) 12: 3977–3982.
  • STEVENSON JP, YAO KS, GALLAGHER M, et al.: Phase I clinical/pharmacokinetic and pharmacodynarnic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J. Clin. Oncol. (1999) 17:2227–2236.
  • GARCIA AM, ROWELL C, ACKERMANN K, et al.: Peptidomi-metic inhibitors of Ras farnesylation and function in whole cells. Biol. Chem. (1993) 268:18415–18418.
  • PRENDERGAST GC, DAVIDE JP, DESOLMS SJ, et al.: Farnesyltransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol. Cell Biol. (1994) 14:4193–4202.
  • FIORDALISI JJ, RUSHTON BC, TOURSSAINT LF III, et al.: High affinity for FTase and alternative prenylation contribute individually to K-ras resistance to FTIs. Proc. Am. Assoc. Can. Res. (1999) 40:521.
  • JAMES G, GOLDSTEIN JL, BROWN MS: Resistance of K-Rase2 proteins to farnesyltransferase inhibitors in Ratl cells. Proc. Natl. Acad. Sci. USA(1996)93:4454-4458.
  • JACKSON JH, LI JW, BUSS JE, et al.: Polylysine domain of K-ras 4B protein is crucial for malignant transforma-tion. Proc. Natl. Acad. Sci. USA (1994) 91: 12730–12734.
  • LERNER EC, QIAN Y, BLASKOVICH MA, et al Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras/Raf complexes. J. Biol. Chem. (1995) 270:26802–26806.
  • SUN J, QIAN Y, HAMILTON AD, et al.: Ras CAAX peptidomimetic FTI-276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K-Ras mutation and p53 deletion. Cancer Res. (1995) 55:4243–4247.
  • WHYTE DB, KIRSCHMEIER P, HOCKENBERRY TN, et al.: K-and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. (1997) 272:14459–14464.
  • ROWELL CA, KOWALCZYK JJ, LEWIS MD, et al.: Direct demonstration of geranylgeranylation and farnesyla-tion of Ki-Ras in vivo. J. Biol. Chem. (1997) 272:14093–14097.
  • LEBOWITZ PF, DAVIDE JP, PRENDERGAST GC: Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol. Cell Biol. (1995) 15: 6613–6622.
  • LEBOWITZ PF, SAKAMURO D, PRENDERGAST GC: Farnesyl transferase inhibitors induce apoptosis of Ras-transformed cells denied substratum attachment. Cancer Res. (1997) 57:708–713.
  • HUNG W-C, CHAUNG L-Y: The farnesyltransferase inhibitor FPT inhibitor BI upregulates Bax and Bcl-xs expression and induces apoptosis in human ovarian cancer cells. Int. J. Oncol. (1998) 12:137–140.
  • SMETS G, VANEYCK N, DEVINE A, et al.: R115777, a selective farnesyl protein transferase inhibitor, induces predominately apoptotic activity in C32 melanoma tumor xenografts Proc. Am. Assoc. Cancer Res. (1999) 40: 522.
  • DU W, PRENDERGAST GC: Activation of the P13-AKT pathway masks the proapoptotic effects of farnesyl-transferase inhibitors. Cancer Res. (1999) 59:4208–4212.
  • GIBBS JP: Ras c-terminal processing enzymes: new drug targets Cell (1991) 65:1–4.
  • MIYAKE M, MIZUTANI S, KOIDE H, et al.: Unfarnesylated transforming Ras mutant inhibits the Ras-signaling pathway by forming a stable. Ras complex in the cytosol. FESS LeU. (1992) 378: 15–18.
  • PRENDERGAST GC, DAVIDE JP, LEBOWITZ PF, et al.: Resistance of a variant Ras transformed cell line to phenotypic reversion by farnesyltransferase inhibi-tors. Cancer Res. (1996) 56:2626–2632.
  • SKRZAT S, ANGIBAUD P, VENET M, et al.: R115777, a novel irnidazole farnesyl protein transferase inhibitor (FTI) with potent oral antitumor activity. Proc. Am. Assoc. Cancer Res. (1998) 39:2169A.
  • SMETS G, XEIONNEUX B, CORNELISSEN F, et al.: R115777, a selective farnesyl protein transferase inhibitor (F11), induces antiangiogenic, apoptotic and anti-proliferative activity in CAPAN-2 and LoVo tumor xenografts. Proc. Am. Assoc. Cancer Res . (1998) 39:2170A.
  • FELDKAMP M, LAU N, GUHA A: The farnesyl transferase inhibitor SCH66336 inhibits the growth of human astrocytoma cell lines and xenografts implanted in NOD-SCI) mice. Proc. Am. Assoc. Cancer Res. (2000) 41:2834.
  • ROSE WC, ARICO MA, BURKE CL, et al.: Preclinical antitumor activity of BMS-214662, a novel farnesyl transferase inhibitor. Proc. Am. Assoc. Cancer Res. (2000) 41:2835.
  • KOHL NE, OMER CA, CONNER MW, et al.: Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nature Med. (1995) 1: 792–797.
  • SINN E, MULLER W, PATTENGALE P, et al.: Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice; Synergistic action of oncogenes in vivo. Cell (1987) 49:465–475.
  • HUNDLEY JE, KOESTER SK, TROYER DA, et al.: Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol. Cell Biol. (1997) 17:723–731.
  • SHI B, YAREMKO B, HAJIAN G, et al.: The farnesyl protein transferase inhibitor 5CH66336 synergizes with the taxanes in vitro and enhances their anti-tumor activity in vivo. Cancer Chemother. Pharmacol. (2000) (In Press).
  • NIELSEN LL, SHI B, HAJIAN G, et al.: Combination therapy with the farnesyl protein transferase inhibitor SCH66336 and SCH5850 (p53 adenovirus) in preclinical cancer models. Cancer Res. (1999) 59:5896–5901.
  • YONISH-ROUACH E: The P53 tumour suppressor gene: a mediator of a G1 growth arrest and of apoptosis. Experientia (1996) 52: 1001–1007.
  • BARRINGTON RE, SUBLER MA, RANDS E, et al.: A farnesyl-transferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol. Cell. Biol. (1998) 18:85–92.
  • DONEHOWER LA, HARVEY M, SLAGLE BL, et al.: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature (1992) 356: 215–221.
  • ADJEI AA, ERLICHMAN C, DAVIS J, et al.: A Phase I trial of the farnesyl transferase inhibitor 5CH66336: evidence for biological and clinical activity. Cancer Res. (2000) 60:1871–1877.
  • ADJEI AA, DAVIS JN, ERLICHMAN C, et al.: Comparison of potential surrogate markers of farnesyltransferase inhibition. Clin. Cancer Res. (2000) 6:2318–2325.
  • BECK LA, HOSICK TJ, SINENSKY M: Isoprenylation is required for the processing of the lamin A precursor. J. Cell Biol. (1990) 110:1489–1499.
  • SOIGNET S, YAO S-L, BRITTEN D, et al.: Pharmacoki-netics and pharmacodynarnics of the farnesyl protein transferase inhibitor (L-778,123) in solid tumors. Proc. Am. Assoc. Can. Res. (1998) 40:517.
  • KILIC F, DALTON MB, BURRELL SK, et al.: In vitro assay and characterization of the farnesyl-dependent prelamin A. Cancer Res. (1994)54:3229-3232.
  • SINENSKY M, FANTLE K, DALTON M: An antibody which specifically recognizes prelamin A but not mature lamin A: application to detection of blocks in farnesylation-dependent protein processing. Cancer Res. (1994) 54:3229–3232.
  • MINAMI Y, MINAMI M: Hsc70/Hsp40 chaperone system mediates the Hsp90-dependent refolding of firefly luciferase. Genes Cells (1999) 4:721–729.
  • SINENSKY M, LUTZ RJ: The prenylation of proteins. Bioessays (1992) 14:25–31.
  • HANCOCK JF: Prenylation and paknitoylation analysis. Methods Enzymol. (1995) 25:237–245.
  • JOHNSTON SR, ELLIS PA, HOUSTON S, et al.: A phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced breast cancer. Proc. Am. Soc. Clin. Oncol. (2000) 19:318.
  • ZUJEWSKI J, HORAK ID, BOL CJ, et al.: A Phase I study of farnesyl protein transferase inhibitor, R115777, in advanced cancer. J. Clin. Oncol. (2000) 18:927–934.
  • HUDES G, SCHOL J, BAAB et al.: Phase I clinical and pharmacokinetic trial of the farnesyltransferase inhibitor R115777 on a 21-day dosing schedule. Proc. Am. Soc. Clin. Oncol. (1999) 18:156a.
  • BRITTEN CD, ROWINSKY E, YAO S-L et al.: A Phase I and pharmacologic study of the farnesyl protein transfe-rase inhibitor L-778,123 in patients with solid cancers. Proc. Am. Soc. Clin. Oncol. (1999) 18: 597.
  • RUBIN E, ABBRUZZESE J, MORRISON B, et al.: Phase I trial of the farnesyl transferase (FPTase) inhibitor L-778,123 on a 14 or 28-day dosing schedule. Proc. Am. Soc. Clin. Oncol. (2000) 19:689.
  • ADJEI AA, ERLICHMAN C, DAVIS JN, et al.: A Phase I and pharmacologic study of the farnesyl protein transfe-rase inhibitor SCH66336 in patients with locally advanced or metastatic cancer. Proc. Am. Soc. Clin. Oncol. (1999) 18: 598.
  • HURWITZ HI, COLVIN OM, PETROS WP, et al.: A Phase I and pharmacokinetic study of SCH 66336, a novel FPTI using a 2-week on, 2-week off schedule. Proc. Am. Soc. Clin. Oncol. (1999) 18: 599.
  • ESKENS F, AWADA A, VERWEIJJ J, et al.: Phase I and pharmacologic stud of continuous daily oral SCH66336, a novel farnesyl transferase inhibitor, in patients with solid tumors. Proc. Am. Soc. Clin. Oncol. (1999) 18:156a.
  • SONNICHSEN D, DAMLE B, MANNING J, et al.: Pharma-cokinetics and pharmacodynarnics of the farnesyl-transferase inhibitor BMS-214662 in patients with advanced solid tumors. Proc. Am. Soc. Clin. Oncol. (2000) 19 (In Press).
  • RYAN DP, EDGE JP, SUPKO JG, et al.: Phase I clinical trial of the farnesyl transferase inhibitor BMS-214662 in patients with advanced solid tumours. Proc. Am. Soc. Clin. Oncol. (2000) 19:720.
  • BASELGA J, NORTON L, ALBANELL J, et al Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res (1998) 58:2825–2831.
  • GOLDENBERG MM: Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin. Ther. (1999) 21:309–318.
  • MOASSER MM, SEPP-LORENZINO L, KOHL NE, et al.: Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc. Natl. Acad. Sci. USA (1998) 95:1369–1374.
  • SKRZAT SG, BOWDEN CR, END DW: Interaction of the farnesyl protein transferase inhibitor R115777 with cytotoxic chemotherapeutics in vitro and in vivo. Proc. Am. Assoc. Cancer Res. (1999) 40:523.
  • SHI B, GURNANI M, YAREMKO B, et al.: Enhanced efficacy of the farnesyl protein transferase inhibitor SCH66336 in combination with paclitaxel. Proc. Am. Assoc. Cancer Res. (1999) 40:524.
  • SHARMA S, BRITTEN C, SPRIGGS D, et al A Phase land pharmacokinetic study of farnesyl transferase inhibitor L-778,123 administered as a seven day continuous infusion in combination with paclitaxel. Proc. Am. Soc. Clin. Oncol. (2000) 19 (In Press). 214. PEETERS M, VAN CUTSEM E, MARSE H, et al.: Phase-I combination trial of the farnesyltransferase inhibitor (FT) 11115777 with A 5FU/LV regimen in advanced colorectal or pancreatic cancer. Proc. Am. Soc. Clin. Oncol. (1999) 18:859:
  • PATNAIK A, ECKHARDT SG, IZBICKA E, et al.: A Phase I and pharmacologic (PK) study of the farnesyltransfe-rase inhibitor, R115777 in combination with gemcita-bine. Proc. Am. Soc. Clin. Oncol. (2000) 19:5A.
  • GRUGEL S, FINKENZELLER G, WEINDEL K, et al.: Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIII 3T3 cells. J. Biol. Chem. (1995) 270:25915–25919.
  • RAK J, MITSUHASHI Y, BAYKO L, et al.: Mutant ras oncogenes upregulate VEGF/VPF expression: implica-tions for induction and inhibition of tumor angiogene-sis. Cancer Res. (1995) 55:4575–4580.
  • BERNHARD EJ, KAO G, COX AD, et al.: The farnesyl transferase inhibitor FTI-277 radiosensitizes H-Ras transformed rat embryo fibroblasts. Cancer Res. (1996) 56:1727–1730.
  • MCKENNA WG, WEISS MC, ENDLICH B, et al.: Synergistic effects of the v-myc oncogene with H-Ras on radiore-sistance. Cancer Res. (1990) 50:97–102.
  • LANCET J, ROSENBLOTT J, LIEVELD JL, et al.: Use of farnesyl transferase inhibitor R115777 in relapsed and refractory leukemia. Preliminary results of a phase I trial. Proc. Am. Soc. Clin. Oncol. (2000) 19:58.
  • EISENHAUER EA: Phase I and II trials of novel anti-cancer agents: endpoints, efficacy and existen-tialism. Ann. Oncol. (1998) 9:1047–1052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.