22
Views
1
CrossRef citations to date
0
Altmetric
Review

Emerging therapeutic strategies for chronic pain

&
Pages 385-413 | Published online: 24 Feb 2005

Bibliography

  • DICKENSON AH: Plasticity: implications for opioid and other pharmacological interventions in specific pain states. Behav. Brain Sci. (1997) 20:3392–3403.
  • MCCORMACK: A new perspective on signal transduc-tion in neuropathic pain. In: Pain: Current Understanding, Emerging Therapies and Novel Approaches to Drug Discovery. Bountra CMunglani R, Schmidt (Eds.), Marcel Decker (2000).
  • BROWER V: New paths to pain relief. Nature Biotechnol. (2000) 18:4387–4391.
  • WILLIS WD, COGGLESHALL RE: In: Sensor)/ Mechanisms of the Spinal Cord. Plenum Press, New York, USA (1990:273–284.
  • SEEBURG P: The TIPS/TINS lecture: the molecular biology of the mammalian glutamate receptor channels. Trends Pharmacol. Sci. (1993) 14:297–303.
  • WOOLF CJ, THOMPSON SWN: The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implica-tions for the treatment of post-injury pain hypersensi-tivity states. Pain (1991) 44:293–299.
  • COGHILL RC, PRICE DD, HAYES R, MAYER DJ: Spatial distribution of nocicep tive processing in the rat spinal cord. J. Neurophysiol. (1991) 65:133–140.
  • CATERINA MJ, SCHUMAKER MA, TOMINAGA M, ROSEN TA, LEVINE JD, JULIUS D: The capsaicin receptor: a heat-activated channel in the pain pathway. Nature (1997) 389:816–824.
  • BEVAN S, SZOLCSANYI J: Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol Sci. (1990) 11:330–333.
  • OH U, HWANG SW, KIM D: Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci. (1996) 16:1659–1667.
  • WOOD JN, DOCHERTY R: Chemical activators of sensory neurons. Ann. Rev. Physiol (1997) 59:457–482.
  • HOLZER P: Cap saicin: cellular targets, mechanisms of action and selectivity for thin sensory neurons. Pharm. Rev. (1991) 43:143–201.
  • DOCHERTY RJ, YEATS JC, BEVAN SJ, BODDEKE HWGM:Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflug. Arch. (1996) 431:828–837.
  • DRAY A: Neuropharmacological mechanisms ofcap saicin and related substances. Biochem. Pharmacol (1992) 44:611–615.
  • NOLANO M, SIMONE DA, WENDELSCHAFER-CRABB G, JOHNSON T, HAZEN E, KENNEDY WR: Topical cap saicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain (1999) 81 (0:2135–2145.
  • VYKLICCKY L, URABNCOVA K, VITASKOVA Z, VLACHOVA V, KRESS M, REEH PW: Inflammatory mediators at low pH activate capsaicin receptors in cultured sensory neurons from newborn rats. J. Neurophysiol (1998) 79:670–676.
  • DAVIS JB, GRAY J, GUNTHORPE MJ, et al.: Vanilloidreceptor-1 is essential for inflammatory thermal hyperalgesia. Nature (2000) 405:6783183–6783187.
  • MCCLEANE G: Topical application of doxepin hydrochloride, capsaicin and a combination of both produces analgesia in chronic human neuropathic pain: a randomized, double-blind, placebo-controlled study. Br. J. Clin. Pharmacol. (2000) 49:6574–6579.
  • HUA XY, CHEN P, HWANG J, YAKSH TL: An tin o cicep tio n induced by civamide, an orally active capsaicin analogue. Pain (1997) 71:3313–3322.
  • SMART D, GUNTHORPE MJ, JERMAN JC, et al.: The endoge-nous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br. J Pharmacol. (2000) 129:2227–2230.
  • ZYGMUNT PM, PETERSSON J, ANDERSSON DA, et al.:Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature (1999) 400:6743452–6743457.
  • STEIN C: The control of pain in peripheral tissue by opioids. N Eng]. J. Med. (1995) 332:1685–1690.
  • SCHAFER M, CARTER L, STEIN C: Interleukin-113 and corticotrophin releasing factor inhibit pain by releasing opioids from immune cells in inflamed tissues. Proc. Natl. Acad. Sci. USA (1994) 91:4219–4223.
  • HASSAN AHS, ABLEITNER A, STEIN C, HERZ A: Inflamma-tion of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience (1993) 55:185–195.
  • STEIN C, SCHAFER M, CABOT PJ, et al.: Peripheral opioidanalgesia. Pain Rev. (1997) 4:171–185.
  • NOZAKI-TAGUCHI N, YAKSH TL: Characterization ofthe antihyperalgesic action of a novel peripheral mu-opioid receptor agonist - loperamide. Anesthesi-ology (1999) 90:1225–1234.
  • MACHELSKA H, PFLUGER M, WEBER W, et al.: Peripheraleffects of the kappa-opioid agonist EMD 61753 on pain and inflammation in rats and humans. J. Pharmacol. Exp. Ther. (1999) 290:1354–1361.
  • HAMILTON SG, WARBURTON J, BHATTACHARJEE A, WARD J, MCMAHON SB: ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia. Brain (2000) 12 3 :61238–1246.
  • BIANCHI BR, LYNCH KJ, TOUMA E, et al: Pharma-cological characterization of recombinant human and rat P2X receptor subtypes. Eur. J. Pharmacol. (1999) 376 (1):2127–2138.
  • SAWYNOK J, SWEENEY MI: The role of purines innociception. Neuroscience (1989) 32:557–569.
  • ROBERTSON SJ, RAE MG, ROWAN EG, KENNEDY C: Characterization of a P2X-purinoceptor in cultured neurones of the rat dorsal root ganglia. Br. J. Pharmacol. (1996) 11 8 :951–956.
  • LEWIS C, NEIDHART S, HOLY C, NORTH RA, BUELL G,SUPRENANT A: Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature (1995) 377:432–435.
  • BURNSTOCK G: Noradrenaline and ATP as cotransmit-ter s in sympathetic nerves. Neurochem. Int. (1990) 17:357–368.
  • DOWD E, MCQUEEN DS, CHESSELL IP, HUMPHREY PPA: Activation by P2X purinoceptor agonists of sensory nerves innervating the rat knee joint. Br. J. Pharmacol. (1997) 122:286 (Abstract).
  • STANFA LC, KONTINEN VK, DICKENSON AH: Effects ofspinally administered P2X receptor agonists and antagonists on the responses of dorsal horn neurones recorded in normal, carrageenan-inflamed and neuropathic rats. Br. J. Pharmacol. (2000) 129: 2351–2359.
  • MICHEL AD, KAUR R, CHESSELL IP, HUMPHREY PP: Antagonist effects on human P2X(7) receptor-mediated cellular accumulation of YO-PRO-1. Br. J Pharmacol. (2000) 130:3513–3520.
  • CHESSELL IP, MICHEL AD, HUMPHREY PP: Effects of antagonists at the human recombinant P2X7 receptor. Br. J. Pharmacol (1998) 1 2 4 (6):1314–1320.
  • SAWYNOK J, REID A, POON A: Peripheral antinocicep-tive effect of an adenosine kinase inhibitor, with augmentation by an adenosine deaminase inhibitor, in the rat formalin test. Pain (1998) 74:175–181.
  • JARVIS MF, KOWALUK EA: An adenosine kinase inhibitor attenuates tactile allodynia in a rat model of diabetic neuropathic pain. Eur. J. Pharmacol. (1999) 3 6 4 (2):3141–3146.
  • KOWALUK EA, BHAGWAT SS, JARVIS MF: Adenosine kinase inhibitors [review]. Curr. Pharm. Design (1998) 4 :5403–5416.
  • JACOBSON KA, KIM YC, WILDMAN SS, et al.: A pyridoxinecyclic phosphate and its 6-azoaryl derivative selectively potentiate and antagonize activation of P2X1 receptors. J. Med. Chem. (1998) 41(13):2201–2206.
  • LEWIN GR, RUEFF A, MENDELL LM: Peripheral andcentral mechanisms of NGFinduced hyperalgesia. Eur. Neurosci. (1994) 6:1903–1912.
  • PEZET S, ONT NIENTE B, GRANNEC G, CALVINO B: Chronic pain is associated with increased TrkA immun or eactivity in spin or eticular neurons. J. Neurosci. (1999) 19(13):5482–5492.
  • MCMAHON SB, BENNETT DLH, PRIESTLEY JV, SHELTOND: The biological effects of endogenous NGF in adult sensory neurones revealed by a trk-A-IgG fusion molecule. Nature Med. (1995) 87:1117–1120.
  • BENNET DL, KOLTZENBURG M, PRIESTLEY JV, SHELTONDL, MCMAHON SB: Endogenous nerve growth factor regulates the sensitivity of nociceptors in the adult rat. Eur. j Neurosci. (1998) 10:41282–1291.
  • MALCANGIO M, RAMER MS, BOUCHER TJ, MCMAHON SB: Intrathecally injected neurotrophins and the release of substance P from the rat isolated spinal cord. Eur. Neurosci. (2000) 12:1139–1144.
  • OWOLABI JB, RIZKALLA G, TEHIM A, et al.: Characteriza-tion of antiallodynic actions of ALE-0540, a novel nerve growth factor receptor antagonist, in the rat. J Pharmacol. Exp. Ther. (1999) 289(3):1271–1276.
  • CAFFREY JM, ENG DL, BLACK JA, WAXMAN SG, KOCSISJD: Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res. (1992) 592:283–297.
  • AKOPIAN AN, SIVILOTTI L, WOOD JN: A tetrodotoxin-r esistant sodium channel expressed by sensory neurones. Nature (1996) 379:257–262.
  • TREZISE DJ, JOHN VH, XIE XM: Voltage- anduse-dependent inhibition of Na+ channels in rat sensory neurones by 4030W92, a new antihyperal-gesic agent. Br. J Pharmacol. (1998) 124:5953–5963.
  • SONG JH, HUANG CS, NAGATA K, YEH JZ, NARAHASHI T: Differential action of riluzole on tetr odotoxin-sensitive and tetrodotoxin-resistant sodium channels. Pharmacol. Exp. Ther. (1997) 282:2707–2714.
  • AKOPIAN AN, SOUSLOVA V, ENGLAND S, et al: The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nature Neurosci. (1999) 2:6541–6548.
  • HLA T, NIELSON K: Human cyclo-oxygenase-1 cDNA.Proc. Natl. Acad. Sci. USA (1992) 89:7389–7398.
  • FENG L, SUN W, XIA Y, et al.: Cloning two isoforms of ratcyclooxygenase: differential regulation of their expression. Arch. Biochem. Biophysics (1 9 9 3) 307:361–368.
  • MALMSTROM K, DANIELS DO, KOTEY P, SEIDENBERG B,DESJARDINS PJ: Comparison of Rofecoxib and Celecoxib, two cyclooxygenase-2 inhibitors, in postoperative dental pain: a randomized, placebo- and active-comparator- controlled clinical trial. Clin. Ther. (1999) 21 (10) :1653–1663.
  • FRICKE J, MORRISON BW, FITE S, et al: MK-966 versus naprox en sodium 550mg in post-surgical dental pain. Pharmacol. Therap. (1999) 65:2118.
  • BROWN J, MORRISON BW, CHRISTENSEN S, et al: VIOXX 50mg versus ibuprofen 400mg in post-surgical dental pain. J. Gun. Pharmacol. (1999) 39:9974.
  • SCHNITZER TJ, TRUITT K, FLEISCHMANN R, et al: The safety profile, tolerability and effective dose range of rofecoxib in the treatment of rheumatoid arthritis. Therap. (1999) 21(10):1688–1702.
  • LANGMAN MJ, JENSEN DM, WATSON DJ, et al.: Adverse upper gastrointestinal effects of rofecoxib compared with NSAIDs. JAMA (1999) 282 (20):1929–1933.
  • SILVERSTEIN FE, FAICH G, GOLDSTEIN JL, et al.: Gastroin-testinal toxicity with celecoxib vs. nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomised controlled trial. JAMA (2000) 284(10):1247–1255.
  • HALL JM: Bradykinin receptors: pharmacologicalproperties and biological roles. Pharmacol. Ther. (1992) 56:131–190.
  • BURGESS GM, MULLANEY I, MCNEIL M, COOTE PR, MINHAS A, WOOD JN: Activation of guanylate cyclase by bradykinin in rat sensory neurones is mediated by calcium influx: possible role of the increase in cyclic GMP.J. Neurochem. (1989) 53:1212–1218.
  • DRAY A, PATEL IA, PERKINS MN, RUEFF A: Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br. J. Pharmacol. (1992) 107:1129–1134.
  • CORREA CR, CALIXTO JB: Evidence for participation of Bi and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br. J. Pharmacol. (1993) 110:193–198.
  • PERKINS MN, CAMPBELL E, DRAY A: Antinociceptive activity of the bradykinin Bland B2 receptor antago-nist, desArg9(Lzu8)-Bk and HOE 140, in two models of persistent hyperalgesia in the rat. Pain (1993) 53:191–197.
  • DE CAMPOS RO, ALVES RV, FERREIRA J, et al: Oral antinociception and oedema inhibition produced by NPC 18884, a non-peptidic bradykinin 132 receptor antagonist. Naunyn-Schmiedebergs Arch. Pharmacol. (1999) 360:3278–3286.
  • TONUSSI CR, FERREIRA SH, F: Bradykinin-induced knee joint incapacitation involves bradykinin B2 receptor mediated hyperalgesia and bradykinin Bi receptor-mediated nociception. Eur. J. Pharmacol (1997) 326:161–165.
  • MOMIYAMA A, FELDMEYER D, CULL-CANDY SG: Identifi-cation of a native low-conductance NMDA channel with reduced sensitivity to Mg2+ in rat central neurones. J Physiol. (1996) 494:479–492.
  • MONAGHAN DT, LARSEN H: MU and NR2 subunit contributions to N-methyl-D-aspartate receptor channel blocker pharmacology. J. Pharmacol. Exp. Ther. (1997) 280:614–620.
  • PARSONS CG, GRUNER R, ROZENTAL J, MILLAR J, LODGE D: Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology (1993) 32:1337–1350.
  • KEMP JA, LEESON PD: The glycine site of the NMDA receptor - five years on. Trends Pharmacol Sci. (1993) 14:20–25.
  • SUCHER NJ, AWOBULUYI M, CHOI YB, LIPTON SA: NMDAreceptors: from genes to channels. Trends Pharmacol Sci. (1996) 17:348–355.
  • DANYSZ W, PARSONS CG, BRESINK I, QUACK G: Glutamate in CNS disorders. Drug News Persp. (1995) 8:261–277.
  • BERNARDI M, BERTOLINI A, SZEZAWINSKA K, GENEDANI S: Blockade of the polyamine site of NMDA receptors produces antinociception and enhances the effect of morphine in mice. Eur. j Pharmacol (1996) 298:51–55.
  • TANIGUCHI K, SHINJO K, MIZUTANI M, et al.:Antinociceptive activity of CP-101,606, an NMDA receptor NR2B subunit antagonist. Br. J. Pharmacol (1997) 122:809–812.
  • BOYCE S, WYATT A, WEBB JK, et al.: Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology (1999) 38:5611–5623.
  • CODERRE T, MELZACK R: Cutaneous hyperalgesia: contributions of the peripheral and central nervous systems to the increase in pain sensitivity after injury. Brain Res. (1987) 404:95–105.
  • WARNCKE T, STUBHAUG A, JORUM E: Preinjury treatment with morphine or ketamine inhibits the development of experimentally induced secondary hyperalgesia in man. Pain (2000) 86:3293–3303.
  • SANG CN: NMDA-receptor antagonists in neuropathicpain: experimental methods to clinical trials [review]. J. Pain Symptom Manag. (2000) 19 (Suppl. 1):S21–S25.
  • GRAVEN-NIELSEN T, ASPEGREN KENDALL S, HENRIKSSON KG, et al.: Ketamine reduces muscle pan, temporal summation and referred pain in fibromy-algia patients. Pain (2000) 85:3483–3491.
  • LIU ST, WU CT, YEH CC, et al.: Premedication with dextromethorphan provides posthemorrhoidectomy pain relief. Dis. Colon Rectum (2000) 43:4507–4510.
  • WIESENFELD-HALLIN Z: Combined opioid-NMDA antagonist therapies. What advantages do they offer for the control of pain syndromes [review]. Drugs (1998) 55:11–14.
  • DICKENSON AH: NMDA receptor antagonists: interac-tions with opioids. Acta Anaesthesiol. Scand. (1997) 41:2112–2115.
  • DONATI D, DI FABIO R: Synthesis and pharmacological properties of novel glycine antagonists [review]. Pharm. Acta Helvetiae (2000) 74:3239–3245.
  • BRENNAN TJ: AMPA/kainate receptor antagonists as novel analgesic agents [editorial]. Anaesthesiology (1998) 89:1049–1050.
  • ZAHN PK, UMALI E, BRENNAN TJ: Intrathecalnon-NMDA excitatory amino acid antagonists inhibit pain behaviours in a rat model of postoperative pain. Pain (1998) 74:213–223.
  • SANG CN, HOSTETTER MP, GRACELY RH, et al.: AMPA/kainate antagonist LY2 9355 8 reduces capsaicin-evoked hyperalgesia but not pain in normal skin in humans. Anesthesiology (1998) 89(5):1060–1067.
  • SALT TE, HILL RG: Neurotransmitter candidates ofsomatosensory primary afferent fibers. Neuroscience (1983) 10:1083–1103.
  • HUMPEL C, SARIA A: Characterisation of neurokinin binding sites in rat brain membranes using highly selective ligands. Neuropeptides (1993) 25:65–71.
  • MOGIL JS, GRISEL JE: Transgenic studies of pain. Pain (1998) 77:107–128.
  • MANTYH PW, ROGERS SD, HONORE P, et al: Inhibitionof hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science (1997) 278:275–279.
  • NEUMANN S, DOUBELL TP, LESLIE T, WOOLF CJ: Inflam-matory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature (1996) 384:360–364.
  • CUMBERBATCH MJ, CARLSON E, WYATT A, BOYCE S, HILL RG, RUPNIAK NM: Reversal of behavioural and electrophysiological correlates of experimental peripheral neuropathy by the NK1 receptor antago-nist GR2051 71 in rats. Pain (1998) 71:189–197.
  • IYENGAR S, HIPSKIND PA, GEHLERT DR, et al: LY303870,a centrally active neurokinin-1 antagonist with a long duration of action. J. Pharmacol. Exp. Ther. (1997) 280:2774–2785.
  • WALPOLE C, KO SY, BROWN M, et al.: 2-1Nitroph enylcarbamoy1-(S)-proly1-(S)-3-(2-naphthyl )alanyl-N-benzyl-N-methylamide (SDZ NKT 343), a potent human NK1 tachykinin receptor antagonist with good oral analgesic activity in chronic pain models. J. Med. Chem. (1998) 41(17):3159–3173.
  • HILL RG: NK1 (substance P) receptor antagonists -why are they not analgesic in humans [review]. Trends Pharm. Sci. (2000) 21:7244–7246.
  • MA QP, HILL RG: Neurokinin antagonists asp otential agents for use in pain management. Curr. Opin. CPNS Invest. Drugs (1999) 1:165–171.
  • GARDNER CJ, TVVISSEL DJ, DALE TJ, et al.: The broadspectrum anti-emetic activity of the novel non-peptide tachykinin NK1 receptor antagonist GR 203040. Br. J Pharmacol. (1995) 116:3158–3163.
  • KAWABATA A, MANABE S, MANABE Y, TAKAGI H: Effectof topical administration of L-arginine on formalin-induced nociception in the mouse. Br. J. Pharmacol (1994) 112:547–550.
  • SALTER M, STRIJBOS PJLM, NEALE S, DUFFY C, FOLLEN-FANT RL, GARTHWAITE J: The nitric oxide-cyclic GMC pathway is required for nociceptive signalling at specific loci within the somatosensory pathway. Neuroscience (1996) 73:649–655.
  • IALENTI A, IANARO A, MONCADA S, DI ROSA M: Modula-tion of acute inflammation by endogenous nitric oxide. Eur.J. Pharmacol. (1992) 211:177–182.
  • VANE JR, MITCHELL JA, APPLETON I, et al: Inducible isoforms of cyclooxygenase and nitric oxide synthase in inflammation. Proc. Natl. Acad. Sci. USA (1994) 91:2046–2050.
  • GARRY MG, RICHARDSON JD, HARGREAVES KM: Sodium nitroprusside evokes the release of immunoreactive calcitonin gene-related peptide and substance P from dorsal horn slices via nitric oxide-dependent and nitric oxide-independent mechanisms. J. Neurosci. (1994) 14:4329–4337.
  • MACHELSKA H, LABUZ D, PRZEWLOCKI R, PRZEWLOCKA B: Inhibition of nitric oxide synthase enhances antinociception mediated by mu, delta and kappa opioid receptors in acute and prolonged pain in the rat spinal cord. J. Pharmacol. Exp. Ther. (1 9 9 7) 282:2977-2984.
  • PRAST H, PHILIPPU A: Nitric oxide releases acetylcho-line in the basal forebrain. Eur. j Pharmacol. (1992) 21 6:139–140.
  • ZHOU M, MELLER ST, GEBHART GF: Endogenous nitric oxide is required for tonic cholinergic inhibition of spinal mechanical transmission. Pain (1993) 54:71–78.
  • BEIRITH A, CRECZYNSKI-PASA TB, BONETTI VR, et al.: Antinociceptive properties and nitric oxide synthase inhibitory action of new ruthenium complexes. Eur. Pharmacol. (1999) 3 69:3289–3297.
  • BUDZINSKI M, MISTEREK K, GUMULKA W, DOROCIAK A: Inhibition of inducible nitric oxide synthase in persis-tent pain. Life Sci. (2000) 66:4301–4305.
  • DE WAARD M, LIU H, WALKER D, SCOTT VE, GURNETT CA, CAMPBELL KP: Direct binding of G-protein 137 complex to voltage-dependent calcium channels. Nature (1997) 385:446–450.
  • KIM CJ, RHEE JS, AKAIKE N: Modulation of high-voltage activated Ca2+ channels in the rat periaqueductal grey neurons by .L-type opioid agonist.j Neurophysiol. (1997) 77:1418–1424.
  • HOSOHATA Y, VANDERAH TVV, BURKEY TH, et al.: Delta-opioid receptor agonists produce antinociception and [355]GTPgammaS binding in mu receptor knockout mice. Eur. j Pharmacol. (2000) 388:3241–3248.
  • BURKEY TH, EHLERT FJ, HOSOHATA Y, et al: The efficacy of delta-opioid receptor-selective drugs [review]. Life Sci. (1998) 62:17–181531–1536.
  • RONSISVALLE G, PASQUINUCCI L, PITTALA V, et al: Nonpeptide analogues of dynorphin A(1-8): design, synthesis, an pharmacological evaluation of kappa-selective agonists. J Med. Chem. (2000) 43:162992–163004.
  • BILSKY EJ, QIAN X, HRUBY VJ, PORRECA F: Antinocicep-tive activity of [beta-methyl-2', 6t-dimethyltyr-osine(1)]-substituted cyclic [D-Pen(5)]Enkephalin and [D-Ala(2),Asp (4)] Delto r p h in analogs. J. Pharmacol Exp. Ther. (2000) 293:1151–1158.
  • CHAPMAN V, DIAZ A, DICKENSON AH: Distinct inhibi-tory effects of spinal endomorphin-1 and endomorphin-2 on evoked dorsal horn responses in the rat. Br. J. Pharmacol. (1997) 122:1537–1539.
  • ZADINA JE, HACKLER L, GE L-J, KASTIN AJ: A potent and selective endogenous agonist for the 11-opiate receptor. Nature (1997) 386:499–502.
  • OHSAWA M, MIZOGUCHI H, NARITA M, CHUM, NAGASE H, TSENG LF: Differential mechanisms mediating descending pain controls for antinociception induced by supraspinally administered endomorphin-1 and endomorphin-2 in the mouse. J. Pharmacol. Exp. Ther. (2000) 294(3):1106–1111.
  • NOBLE F, SMADJA C, VALVERDE 0 et al.: Pain-suppressive effects on various nociceptive stimuli (thermal, chemical, electrical and inflamma-tory) of the first orally active enkephalin-metabolizing enzyme inhibitor RB 120. Pain (1997) 73:3383–3391.
  • ZHOU Y, SUN YH, ZHANG ZW, HAN JS: Increased release of immunoreactive cholecystokinin octapep tide by morphine and potentiation of µ-opioid analgesia by CCKB receptor antagonist L-365,260 in rat spinal cord. Eur. J. Pharmacol. (1993) 234:147–154.
  • STANFA L, DICKENSON A, XU XJ, WEISENFELD-HALLIN Z: Cholecystokinin and morphine analgesia: variations on a theme. Trends Pharmacol. ScL (1994) 15:65–66.
  • REEVE JR, EYSSELEIN V, SOLOMON TE, GO VLW (EDS.): Cholecystokinin. Ann. NY Acad. Sci. (1994) 713.
  • CRAWLEY JN, CORWIN RL: Biological actions of cholecystokinin. Peptides (1994) 15:731–755.
  • LIU NJ, XU T, LI CQ, YU YX, KANG HG, HAN JS: Cholecys-tokinin octapeptide reverses µ-opioid-receptor--mediated inhibition of calcium current in rat dorsal root ganglion neurons. J. Pharmacol. Exp. Ther. (1995) 275:1293–1299.
  • SCHAFER M, ZHOU L, STEIN C: Cholecystokinin inhibits peripheral opioid analgesia in inflamed tissue. Neurosci (1998) 82:2603–2611.
  • ZHANG X, DAGERLIND A, ELDE RP, et al.: Marked increase in cholecystokinin B receptor messenger RNA levels in rat dorsal root ganglia after peripheral axotomy. Neuroscience (1993) 57:227–233.
  • STANFA LC, DICKENSON AH: Cholecystokinin as a factor in the enhanced potency of spinal morphine following carrageenin inflammation. Br. J. Pharmacol. (1993) 108:967–973.
  • MCCLEANE G: The cholecystokinin antagonist proglu-mide enhances the analgesic efficacy of morphine in humans with chronic benign pain. Anesth. Analg. (1998) 87(5):1117–1120.
  • Arneric SP, Brioni JD (Eds.), Wiley-Liss, New York, USA (1999):359–377.
  • KHAN IM, BUERKLE H, TAYLOR P, YAKSH TL: Nocicep-tive and antinociceptive responses to intrathecal administered nicotinic agents. Neuropharmacology (1998) 37(12):1515–1525.
  • GREEN PG, KITCHEN I: Antinociception opioids and the cholinergic system. Prog. Neurobiol (1986) 26:119–146.
  • EISENBACH JC: Muscarinic-mediated analgesia. Life Sci. (1999) 64:549–554.
  • XU Z, TONG C, PAN HL, CERDA SE, EISENBACH JC: Intravenous morphine increases release of nitric oxide from spinal cord by an alpha-arenergic and cholinergic mechanism. J. Neurophysiol (1997) 78:2072–2078.
  • BANNON AW, DECKER MW, et al.: Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science (1998) 279:77–81.
  • LAWAND NB, LU Y, WESTLUND KN: Nicotinic cholinergic receptors: potential targets for inflamma-tory pain relief. Pain (1999) 80:2291–2299.
  • DECKER MW, BANNON AW, BUCKLEY MJ, et al.: Antinociceptive effects of the novel neuronal nicotinic acetyl choline receptor agonist, ABT-594, in mice. Eur. Pharmacol. (1998) 346:123–133.
  • KESINGLAND AC, GENTRY CT, PANESAR MS, et al.: Analgesic profile of the nicotinic acetylcholine receptor agonists, (+)-epibatidine and ABT-594 in models of persistent inflammatory and neuropathic pain. Pain (2000) 86:2113–2118.
  • MEYER MD, DECKER MW, RUETER LE, et al: The identifi-cation of novel structural compound classes exhibiting high affinity for neuronal nicotinic acetyl-choline receptors and analgesic efficacy in preclinical models of p ain. Eur.J. Pharmacol. (2000) 393:3171–3177.
  • MILLER LP, HSU C: Therapeutic potential for adenosine receptor activation in ischaemic brain injury. J. Neurotrauma (1992) 9:S563–S577.
  • LI E, PERL E: Adenosine inhibition of synaptic transmission in the substantia gelatinosa. J. Neurophysiol. (1994) 4:1611–1621.
  • SANTICIOLI P, DEL BIANCO E, TRAMONTANA M, MAGGI CA: Adenosine inhibits action potential-dependent release of calcitonin gene-related peptide and substance P-like immunoreactivites from primary afferents in rat spinal cord. Neurosci. Lett. (1992) 144:211–214.
  • SJOLUND KF, SOLLEVI A, SEGERDAHL M, LUNDBERG T: Intrathecal adenosine analog administration reduces substance P in cerebrospinal fluid along with behavioural effects that suggest antinociception in rats. Anesth. Analg. (1997) 85:627–632.
  • SAWYNOK J, SWEENEY MI, WHITE TD: Classification of adenosine receptors mediating antinociception in the rat spinal cord. Br. J Pharmacol. (1986) 88:923–930.
  • NEWBY AC, HOLMQUIST AC, ILLINGWORTH J, PEARSON D: The control of adenosine concentration in polymorphonuclear leukocytes, cultured cells and isolated perfused heart from the rat. Biochem. J (1983) 214:317–323.
  • PERTVVEE RG: Pharmacology of cannabinoid CBI. and CB2 receptors. Pharmacol. Ther. (1997) 74:129–180.
  • FARQUHAR-SMITH WP, EGERTOVA M, BRADBURY EJ, MCMAHON SB, RICE AS, ELPHICK MR: Cannabinoid CB(1) receptor expression in rat spinal cord. Mol. NeuroscL (2000) 1 5 :6510–6521.
  • TSOU K, LOWITZ KA, HOHMANN AG, et al: Suppression of noxious stimulus-evoked expression of fos protein-like immunoreactivity in rat spinal cord by a selective cannabinoid agonist. Neuroscience (1996) 70:791–798.
  • MARTIN WJ, HOHMANN AG, WALKER JM: Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabi-noid agonist: correlation between electrophysio-logical and antinociceptive effects. j Nenrosci. (1996) 16:6601–6611.
  • SMITH PB, COMPTON DR, WELCH SP, RAZDAN RK, MECHOULAM R, MARTIN BR: The pharmacological activity of anandamide, a putative endogenous cannabinoid, in mice. J. Pharmacol. Exp. Ther. (1994) 270:219–227.
  • WELCH SP, THOMAS C, PATRICK GS: Modulation of cannabinoid-induced antinociception after intracere-broventricular versus intrathecal administration to mice: possible mechanisms for interaction with morphine. J. Pharmacol. Exp. Ther. (1995) 272:310–321.
  • WELCH SP, EADS M: Synergistic interactions of endoge-nous opioids and cannabinoid systems. Brain Res. (1999) 848:2183–2190.
  • LI J, DAUGHTERS RS, BULLIS C, et al: The cannabinoid receptor agonist WIN 55,212-2 mesylate blocks the development of hyperalgesia produced by capsaicin in rats. Pain (1999) 81 (1):225–233.
  • HERZBERG U, ELIAV E, BENNETT GJ, KOPIN IJ: The analgesic effects of R(+)-WIN55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. NeuroscL Lett. (1997) 221:3157–3160.
  • JAGGAR SI, HASNIE FS, SELLATURAY S, RICE AS: The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain (1998) 76:2189–2199.
  • FINLEY JC, MADERDRUT JL, ROGER LJ, PETRUSZ P: The immunocytochemical localization of somatostatin-containing neurons in the rat central nervous system. Neuroscience (1981) 6:112173–2192.
  • ELDE R, JOHANSSON 0, HOKFELT T: Immunocyto-chemical studies of somatostatin neurons in brain. Adv. Exp. Med. Biol. (1985) 188:167–181.
  • ONO N, KROIN JS, PENN RD, PAICE JA: Effects of intrathecal nonnarcotic analgesics on chronic tactile allodynia in rats: alpha-2-agonists versus somato-statin analog. Neurol Medico-Chirurgica (1997) 37:16–10.
  • BETOIN F, ARDID D, HERBET A, et al: Evidence for a central long-lasting antinociceptive effect of vapreo-tide, an analog of somatostatin involving an opioidergic mechanism. J. Pharmacol. Exp. Ther. (1994) 269:17–14.
  • RAINVILLE P, DUNCAN GH, PRICE D, CARRIER B, BUSHNELL C: Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science (1997) 277:968–971.
  • BASS RT, BUCKWALTER BL, PATEL BP, et al.: Identifica-tion and characterization of novel somatostatin antagonists. Mol Pharmacol. (1996) 50:4709–4715.
  • BONNER GG, DAVIS P, STROPOVA D, et al: Opioid peptides: simultaneous delta agonism and mu antago-nism in somatostatin analogues. Peptides (1997) 18:193–100.
  • SPEDDING M, PAOLETTI R: Classification of calcium channels and the sites of action of drugs modifying channel function. Pharm. Rev. (1992) 44:63–376.
  • CODERRE TJ, MELZACK R: The role of NMDA receptor-operated calcium channels in persistent nociception after formalin-induced tissue injury. j Nenrosci. (1992) 12:3671–3675.
  • EVANS AR, NICOL GD, VASCO MR: Differential regula-tion of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res. (1996) 712:265–273.
  • HA TS, KIM YH, SONG DK, WIE MB, SUH HVV: Molecular mechanisms underlying the regulation of proenkephalin gene expression in cultured spinal cord cells. Neuropeptides (1996) 30 :506–513.
  • DIAZ A, DICKENSON AH: Blockade of spinal N- and P-type, but not L-type, calcium channels inhibits the excitability of rat dorsal horn neurones produced by subcutaneous formalin inflammation. Pain (1997) 69:93–100.
  • GRUNER W, SILVA LR: (.0-Cono toxin sensitivity and presynaptic inhibition of glutamatergic neurotrans-mission in vitro. J. NeuroscL (1994) 14:2800–2808.
  • MALMBERG AB, YAKSH TL: Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N- and P-type channels inhibits formalin-induced nociception. j NeuroscL (1994) 14:4882–4890.
  • ALAGARSAMY S, JOHNSON M: Voltage-dependent calcium channel involvement in NNIDA-induced activation of NOS. NeuroReport (1995) 6:2250–2254.
  • BACKJONA M, HES MS, LAMOREAUX LK, GRAOFALO EA, KOTO EM, US STUDY GROUP 210: Gabapentin (GBP, Neurontin) reduces pain in diabetics with painful peripheral neuropathy: results of a double blind, placebo-controlled trial (945–210). American Pain Society Meeting. New Orleans, USA (1997) (Abstract).
  • GEE NS, BROWN JP, DISSANAYAKE VUK, OFFORD J, THURLOW R, WOODRUFF GN: The novel anticonvul-sant drug, gabapentin (Neurontin), binds to the OC28 subunit of a calcium channel. J Biol. Chem. (1996) 271:5768–5776.
  • SHIMOYAMA N, SHIMOYAMA M, DAVIS AM, INTURRISI CE, ELLIOTT KJ: Spinal gabapentin is antinociceptive in the rat formalin test. Neurosci. Lett. (1997) 222:65–67.
  • HUNTER JC, GORGAS KR, HEDLEY LR, et al.: The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur. J. Pharmacol. (1997) 324:153–160.
  • ABDI S, LEE DH, CHUNG JM: The antiallodynic effects of amitriptylline, gabapentin and lidocaine in a rat model of neuropathic pain. Anesth. Analg. (1998) 87:1360–1366.
  • MORELLO CM, LECKBAND SG, STONER CP, MOORHOUSE DF, SAHAGIAN GA: Randomised double-blind study comparing the efficacy of gabapentin with amitrip-tyline on diabetic peripheral neuropathy pain. Arch. Intern. Med. (2000) 159:161931–161937.
  • BACKJONA M, BEYDOUN A, EDWARDS KR, et al.: Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA (1998) 280:211831–211836.
  • ROWBOTHAM M, HARDEN N, STACEY B, BERNSTEIN P, MAGNUS-MILLER L: Gabapentin for the treatment of postherpetic neuralgia: a randomised controlled trial. JAMA (1998) 280:211837–211842.
  • PENN RD, PAICE JA: Adverse effects associated with the intrathecal administration of ziconotide. Pain (2000) 85:2291–2296.
  • WANG YX, GAO D, PETTUS M, PHILLIPS C, BOWERSOX SS: Interactions of intrathecally administered zicono-tide, a selective blocker of neuronal N-type voltage-sensitive calcium channels, with morphine on nociceptoin in rats. Pain (2000) 84:3271–3281.
  • SLUKA KA: Blockade of N- and P/Q-type calcium channels reduces the secondary heat hyperalgesia induced by acute inflammation. J. Pharmacol Exp. Ther. (1998) 287:1232–1237.
  • NEBE J, VANEGAS H, NEUGEBAUER V, SCHAIBLE HG: Omega-agatoxin IVA, a P-type calcium channel antago-nist, reduces nociceptive processing in spinal cord neurons with input from the inflamed but not from the normal knee joint - an electrophysiological study in the rat in vivo. Eur. Neurosci. (1997) 9(10):2193–2201.
  • NEBE J, VANEGAS H, SCHAIBLE HG: Spinal application of omega-conotoxin GVIA, an N-type calcium channel antagonist, attenuates enhancement of dorsal spinal neuronal responses caused by intra-articular injection of mustard oil in the rat. Exp. Brain Res. (1998) 120:161–169.
  • XU M, KONTINEN VK, KALSO E: Effects of radolmidine, a novel alpha2-adrenergic agonist compared with dexmedetomidine in different pain models in the rat. Anesthesiology (2000) 93:2473–2481.
  • WAKISAKA S, KAJANDER KC, BENNET GJ: Increased neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy. Neurosci. Lett. (1991) 124:200–203.
  • WAKISAKA S, KAJANDER KC, BENNET GJ: Effects of peripheral nerve injuries and tissue inflammation on the levels of neuropep tide Y-like immunoreactivity in rat primary afferent neurons. Brain Res. (1992) 598:349–352.
  • COLMERS WF, BLEAKMAN D: The effects of neurop ep-tide Y on the electrical properties of neurons. Trends Neurosci. (1994) 17:373–379.
  • GALEOTTI N, GHELARDINI C, BARTOLINI A: 5 -HT'. A agonists induce central cholinergic antinociception. Pharmacol. Biochem. Behav. (1997) 57:4853–4841.
  • SMITH MI, BANNER SE, SANGER GJ: 5-HT4 receptor antagonism potentiates inhibition of intestinal allodynia by 5-HT3 receptor antagonism in conscious rats. Neurosci. Lett. (1999) 271:161–164.
  • HUA XY, CHEN P, YAKSH TL: Inhibition of spinal protein kinase C reduces nerve injury-induced tactile allodynia in neuropathic rats. Neurosci. Lett. (1999) 276:299–102.
  • KESSLER F, HABELT C, AVERBECK B, REEH PW, KRESS M: Heat-induced release of CGRP from isolated rat skin and effects of bradykinin and the protein kinase C activator PMA. Pain (1999) 83:2289–2295.
  • OHSAWA M, KAMEI J: Possible involvement of spinal protein kinase C in thermal allodynia and hyperal-gesia in diabetic mice. Eur. J. Pharmacol. (1999) 372:3221–3228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.