65
Views
7
CrossRef citations to date
0
Altmetric
Review

Emerging antiobesity drugs

&
Pages 217-237 | Published online: 02 Mar 2005

Bibliography

  • KUCZMARSKI RJ, FLEGAL KM, CAMPBELL SM, JOHNSON CL: Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys, 1960 to 1991. JAMA (1994) 272(3):205–211.
  • WOLF AM, COLDITZ GA: Current estimates of the economic cost of obesity in the United States. Obes. Res. (1998) 6(2):97–106.
  • •Paper emphasising the financial burden this epidemic poses.
  • SCHWARTZ MW, BASKIN DG, KAIYALA KJ, WOODS SC: Model for the regulation of energy balance and adiposity by the central nervous system. Am. Clin. Num (1999) 69(4):584–596.
  • ••An excellent review of the centralintegration of neural and hormonal signalling, and forwarding a unifying hypothesis on how the multitude of orexigenic and anorexigenic signals are integrated at the level of the CNS.
  • WOODS SC, SCHWARTZ MW, BASKIN DG, SEELEY RJ: Food intake and the regulation of body weight. Annu. Rev Psycho] (2000) 51:255–277.
  • ••An excellent review of the central integration of neural and hormonal signalling.
  • KENNEDY GS: The role of fat depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B. Biol. Sci. (1953) 140:578–592.
  • AHIMA RS, FLIER JS: Leptin. Annu. Rev Physic]. (2000) 62:413–437.
  • •Reviews all aspects of the hormone leptin.
  • KALRA SP, DUBE MG, PU S, XU B, HORVATH TL, KALRA PS: Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev (1999) 20(1):68–100.
  • SAWCHENKO PE: Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in. Comp. Neurol. (1998) 402(4):435–441.
  • ••Excellent review of the central neuralpathways involved in regulating energy balance.
  • BRUNING JC, GAUTAM D, BURKS DJ et al.: Role of brain insulin receptor in control of body weight and reproduction. Science (2000) 289:2122–2125.
  • SCHWARTZ MW, FIGLEWICZ DP, BASKIN DG, WOODS SC, PORTED JR: Insulin in the brain: a hormonal regulator of energy balance. Endocr. Rev (1992)13(3):387–414.
  • SCHWARTZ MW, SIPOLS AJ, MARKS JL et al.: Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology (1992) 130(6):3608–3616.
  • SCHWARTZ MW, MARKS JL, SIPOLS AJ et al.: Central insulin administration reduces neuropeptide Y mRNA expression in the arcuate nucleus of food-deprived lean (Fa/Fa) but not obese (fa/fa) Zucker rats. Endocrinology(1991) 128(5):2645–2647.
  • KOJIMA M, HOSODA H, DATE Y, NAKAZATO M, MATSUO H, KANGAWA K: Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature (1999) 402:656–660.
  • DATE Y, NAKAZATO M, MURAKAMI N, KOJIMA M, KANGAWA K, MATSUKURA S: Ghrelin acts in the central nervous system to stimulate gastric acid secretion. Biochem. Biophys. Res. Commun. (2001) 280(3):904–907.
  • KAMEGAI J, TAMURA H, SHIMIZU T, ISHII S, SUGIHARA H, WAKABAYASHI I: Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes (2001) 50(11):2438–2443.
  • KAMEGAI J, TAMURA H, SHIMIZU T, ISHII S, SUGIHARA H, WAKABAYASHI I: Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology (2000) 141(12):4797–4800.
  • LAWRENCE CB, SNAPE AC, BAUDOIN FM, LUCKMAN SM: Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology (2002) 143(1):155–162.
  • KEIRE DA, MANNON P, KOBAYASHI M, WALSH JH, SOLOMON TE, REEVE JR JR: Primary structures of PYY, [Pro(34)]PYY, and PYY-(3–36) confer different conformations and receptor selectivity. Jim. .1 Physiol Gastrointest. Liver Physiol (2000) 279(1):G126–G131.
  • ADRIAN TE, FERRI GL, BACARESE-HAMILTON AJ, FUESSL HS, POLAK JM, BLOOM SR: Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology (1985) 89(5):1070–1077.
  • GRANDT D, SCHIMICZEK M, BEGLINGER C et al.: Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36.Regal Pept. (1994) 51(2):151–159.
  • BATTERHAM RL, COWLEY MA, SMALL CJ et al.: Gut hormone PYY(3-36) physiologically inhibits food intake. Nature (2002) 418:650–654.
  • BASKIN DG, SEELEY RJ, KUIJPER JL et al.: Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes (1998) 47(4):538–543.
  • COWLEY MA, SMART JL, RUBINSTEIN M et al.: Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature (2001) 411:480–484.
  • HAYNES WG, MORGAN DA, DJALALI A, SIVITZ WI, MARK AL: Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension (1999) 33:542–547.
  • HAYNES WG, MORGAN DA, WALSH SA, MARK AL, SIVITZ WI: Receptor-mediated regional sympathetic nerve activation by leptin. Clin. Invest. (1997) 100(2):270–278.
  • SPANSWICK D, SMITH MA, MIRSHAMSI S, ROUTH VH, ASHFORD ML: Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat. Neurosci. (2000) 3(8):757–758.
  • SPANSWICK D, SMITH MA, GROPPI VE, LOGAN SD, ASHFORD ML: Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature (1997) 390:521–525.
  • TANNENBAUM GS, BOWERS CY: Interactions of growth hormone secretagogues and growth hormone- releasing hormone/somatostatin. Endocrine (2001) 14(1):21–27.
  • HAKANSSON ML, BROWN H, GHILARDI N, SKODA RC, MEISTER B: Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neurosci. (1998) 18(1):559–572.
  • MERCER JG, HOGGARD N, WILLIAMS LM et al.: Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J. Neuroendocrinol (1996) 8(10):733–735.
  • CHEUNG CC, CLIFTON DK, STEINER RA: Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology (1997) 138(10):4489–4492.
  • HAHN TM, BREININGER JF, BASKIN DG, SCHWARTZ MW: Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. (1998) 1(4):271–272.
  • OLLMANN MM, WILSON BD, YANG YK et al.: Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science (1997) 278:135–138.
  • MURPHY B, NUNES CN, RONAN JJ et al.: Melanocortin mediated inhibition of feeding behavior in rats. Neuropeptides (1998) 32(6):491–497.
  • THIELE TE, VAN DIJK G, YAGALOFF KA et al.: Central infusion of melanocortin agonist MTII in rats: assessment of c-Fos expression and taste aversion. Am. Physiol (1998) 274(1 Pt 2):R248–R254.
  • TSUJII S, BRAY GA: Acetylation alters the feeding response to MSH and beta-endorphin. Brain Res. Bull. (1989) 23(3):165–169.
  • ROSSI M, KIM MS, MORGAN DG et al:A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology (1998) 139(10):4428–4431.
  • KRISTENSEN P, JUDGE ME, THIM L et al.: Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature (1998) 393:72–76.
  • SCHWARTZ MW, SEELEY RJ, WOODS SC et al.: Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes (1997) 46(12):2119–2123.
  • SCHWARTZ MW, SEELEY RJ, CAMPFIELD LA, BURN P, BASKIN DG: Identification of targets of leptin action in rat hypothalamus. Clin. Invest. (1996) 98(5):1101–1106.
  • ELIAS CF, LEE CE, KELLY JF et al: Characterization of CART neurons in the rat and human hypothalamus. Comp. Neurol (2001) 432(1):1–19.
  • ELIAS CF, LEE C, KELLY J et al: Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron (1998) 21(6):1375–1385.
  • LU S, GUAN JL, WANG QP et al.: Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus. Neurosci. Lett. (2002) 321(3):157–160.
  • REYES TM, LEWIS K, PERRIN MH et al.: Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl. Acad. ScL USA (2001) 98(5):2843–2848.
  • HOWARD AD, WANG R, PONG SS et al.: Identification of receptors for neuromedin U and its role in feeding. Nature (2000) 406:70–74.
  • BAKER RA, HERKENHAM M: Arcuate nucleus neurons that project to the hypothalamic paraventricular nucleus: neuropeptidergic identity and consequences of adrenalectomy on mRNA levels in the rat. Comp. Neurol (1995) 358(4):518–530.
  • CONE RD: The central melanocortin system and energy homeostasis. Trends Endocrinol Metab. (1999) 10(6):211–216.
  • SAWCHENKO PE, SWANSON LW: The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. (1982) 257(3):275–325.
  • BROBERGER C, DE LECEA L, SUTCLIFFE JG, HOKFELT T: Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. Comp. Neurol (1998) 402(4):460–474.
  • ELIAS CE SAPER CB, MARATOS-FLIER E et al.: Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area.' Comp. Neurol (1998) 402(4):442–459.
  • KOYLU EO, COUCEYRO PR, LAMBERT PD, KUHAR MJ: Cocaine-and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. Comp. Neurol (1998) 391(1):115–132.
  • KOYLU EO, COUCEYRO PR, LAMBERT PD, LING NC, DESOUZA EB, KUHAR MJ: Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. Neuroendocrinol (1997) 9(11):823–833.
  • VAN DEN POL AN, GAO XB, OBRIETAN K, KILDUFF TS, BELOUSOV AB: Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. Neurosci. (1998) 18(19):7962–7971.
  • MAYER J: Regulation of energy intake and bodyweight: the glucostatic theory and lipostatic hypothesis. Ann. NY Acad. ScL (1955) 63:15–43.
  • NISWENDER KD, MORTON GJ, STEARNS WH, RHODES CJ, MYERS MGJ, SCHWARTZ MW: Key enzyme in leptin induced anorexia. Nature (2001) 413:795–796.
  • GRILL HJ, SCHWARTZ MW, KAPLAN JM, FOXHALL JS, BREININGER J, BASKIN DG: Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology(2002) 143: 239–246.
  • •Paper describing evidence of a key role for brainstem nuclei, in addition to the hypothalamus, as a target for leptin action and in controlling food intake.
  • HALAAS JL, GAJIWALA KS, MAFFEI M et al: Weight-reducing effects of the plasma protein encoded by the obese gene. Science (1995) 269:543–546.
  • PELLEYMOUNTER MA, CULLEN MJ, BAKER MB et al: Effects of the obese gene product on body weight regulation in ob/ob mice. Science (1995) 269:540–543.
  • SCHWARTZ MW, PESKIND E, RASKIND M, BOYKO EJ, PORTE D JR: Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med. (1996) 2(5):589–593.
  • HALAAS JL, BOOZER C, BLAIR-WEST J, FIDAHUSEIN N, DENTON DA, FRIEDMAN JM: Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl. Acad. Sci. USA (1997) 94:8878–8883.
  • IGEL M, BECKER W, HERBERG L, JOOST HG: Hyperleptinemia, leptin resistance, and polymorphic leptin receptor in the New Zealand obese mouse. Endocrinology (1997) 138(10):4234–4239.
  • BANKS WA, KASTIN AJ, HUANG W, JASPAN JB, MANESS LM: Leptin enters the brain by a saturable system independent of insulin. Peptides (1996) 17(2):305–311.
  • DALLONGEVILLE J, FRUCHART JC, AUWERX J: Leptin, a pleiotropic hormone: physiology, pharmacology, and strategies for discovery of leptin modulators. Med. Chem. (1998) 41(27):5337–5352.
  • •Review considering strategies for pharmacological targeting of leptin-dependent signalling mechanisms.
  • VAN HEEK M, COMPTON DS, FRANCE CF et al.: Diet-induced obese mice develop peripheral, but not central, resistance to leptin.Clin. Invest. (1997)99(3):385–390.
  • KALRA SP, DUBE MG, SAHU A, PHELPS CP, KALRA PS: Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc. Natl. Acad. ScL USA (1991) 88(23):10931–10935.
  • SALIN P, KERKERIAN L, NIEOULLON A: Expression of neuropeptide Y immunoreactivity in the rat nucleus accumbens is under the influence of the dopaminergic mesencephalic pathway. Exp. Brain Res. (1990) 81(2):363–371.
  • CLARK JT, KALRA PS, CROWLEY WR, KALRA SP: Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology (1984) 115(1):427–429.
  • STANLEY BG, KYRKOULI SE, LAMPERT S, LEIBOWITZ SF: Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides (1986) 7(6):1189–1192.
  • BILLINGTON CJ, BRIGGS JE, HARKER S, GRACE M, LEVINE AS: Neuropeptide Y in hypothalamic paraventricular nucleus: a center coordinating energy metabolism. Am. J. Physiol (1994) 266(6 Pt 2):R1765–R1770.
  • STEPHENS TW, BASINSKI M, BRISTOW PK et al.: The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature (1995) 377:530–532.
  • LEVIN BE: Arcuate NPY neurons and energy homeostasis in diet-induced obese and resistant rats. Am. Physiol (1999) 276(2 Pt 2):R382–R387.
  • DUMONT Y, JACQUES D, BOUCHARD P, QUIRION R: Species differences in the expression and distribution of the neuropeptide Y Yl, Y2, Y4, and Y5 receptors in rodents, guinea pig, and primates brains. I Comp. Neurol (1998) 402:372–384.
  • MCKEE KK, TAN CP, PALYHA OC et al:Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Cenomics (1997) 46(3):426–434.
  • HOWARD AD, FEIGHNER SD, CULLY DF et al.: A receptor in pituitary and hypothalamus that functions in growth hormone release. Science (1996) 273:974–977.
  • GUAN XM, YU H, PALYHA OC et al.:Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. MM. Brain Res. (1997) 48(1):23–29.
  • BAILEY AR, VON ENGLEHARDT N, LENG G, SMITH RG, DICKSON SL: Growth hormone secretagogue activation of the arcuate nucleus and brainstem occurs via a non-noradrenergic pathway. Neuroendocrinol (2000) 12(3):191–197.
  • WREN AM, SMALL CJ, ABBOTT CR et al.: Ghrelin causes hyperphagia and obesity in rats. Diabetes (2001) 50(11):2540–2547.
  • NAKAZATO M, MURAKAMI N, DATE Y et al.: A role for ghrelin in the central regulation of feeding. Nature (2001) 409:194–198.
  • WREN AM, SEAL LJ, COHEN MA et al:Ghrelin enhances appetite and increases food intake in humans. I Clin. Endocrinol Metab. (2001) 86(12):5992.
  • SHUTO Y, SHIBASAKI T, OTAGIRI A et al.: Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. Clin. Invest. (2002) 109(11):1429–1436.
  • TRAEBERT M, RIEDIGER T, WHITEBREAD S, SCHARRER E, SCHMID HA: Ghrelin acts on leptin-responsive neurones in the rat arcuate nucleus. J. Neuroendocrinol (2002) 14(7):580–586.
  • MACNEIL DJ, HOWARD AD, GUAN X et al.: The role of melanocortins in body weight regulation: opportunities for the treatment of obesity. Eur. Pharmacol (2002) 450(1):93–109.
  • ••Excellent review of melanocortinsignalling, the development of modulators of receptors for melanocortins and their potential role as antiobesity agents.
  • WIKBERG JE: Melanocortin receptors: perspectives for novel drugs. Eur. Pharmacol (1999) 375(1-3):295–310.
  • BAGNOL D, LU XY, KAELIN CB et al.: Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. Neurosci. (1999) 19(18):RC26.
  • MIZUNO TM, KLEOPOULOS SP, BERGEN HT, ROBERTS JL, PRIEST CA, MOBBS CV: Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes (1998) 47(2):294–297.
  • XIA Y, WIKBERG JE: Localization of ACTH receptor mRNA by in situ hybridization in mouse adrenal gland. Cell Tissue Res. (1996) 286(1):63–68.
  • BOSTON BA, CONE RD: Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3-L1 cell line. Endocrinology (1996) 137(5):2043–2050.
  • ROSELLI-REHFUSS L, MOUNTJOY KG, ROBBINS LS et al.: Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. USA (1993) 90(19):8856–8860.
  • JEGOU S, BOUTELET I, VAUDRY H: Melanocortin-3 receptor mRNA expression in pro-opiomelanocortin neurones of the rat arcuate nucleus. J. Neuroendocrinol (2000) 12(6):501–505.
  • MOUNTJOY KG, MORTRUD MT, LOW MJ, SIMERLY RB, CONE RD: Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. MM. Endocrinol (1994) 8(10):1298–1308.
  • COWLEY MA, PRONCHUK N, FAN W, DINULESCU DM, COLMERS WE CONE RD: Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron (1999) 24(1):155–163.
  • FONG TM, MAO C, MACNEIL T et al: ART (protein product of agouti-related transcript) as an antagonist of MC-3 and MC-4 receptors. Biochem. Biophys. Res. Commun. (1997) 237(3):629–631.
  • NIJENHUIS WA, OOSTEROM J, ADAN RA: AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. MM. Endocrinol (2001) 15(1):164–171.
  • FEKETE C, LEGRADI G, MIHALY E et al.: Alpha-melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. Neurosci. (2000) 20(4):1550–1558.
  • LEGRADI G, LECHAN RIVI: Agouti-related protein containing nerve terminals innervate thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology (1999) 140(8):3643–3652.
  • BROBERGER C: Hypothalamic cocaine-and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res. (1999) 848(1-2):101–113.
  • CSIFFARY A, GORCS TJ, PALKOVITS M: Neuropeptide Y innervation of ACTH-immunoreactive neurons in the arcuate nucleus of rats: a correlated light and electron microscopic double immunolabeling study. Brain Res. (1990) 506(2):215–222.
  • HAGAN MM, BENOIT SC, RUSHING PA, PRITCHARD LM, WOODS SC, SEELEY RJ: Immediate and prolonged patterns of Agouti-related peptide (83 132) induced c-Fos activation in hypothalamic and extrahypothalamic sites. Endocrinology (2001) 142(3):1050–1056.
  • MARSH DJ, HOLLOPETER G, HUSZAR D et al.: Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. (1999) 21(1):119–122.
  • YASWEN L, DIEHL N, BRENNAN MB, HOCHGESCHWENDER U: Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med. (1999) 5(9):1066–1070.
  • CHEN AS, MARSH DJ, TRUMBAUER ME et al.: Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. (2000) 26(1):97–102.
  • BUTLER AA, KESTERSON RA, KHONG K et al.: A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology (2000) 141(9):3518–3521.
  • BUTLER AA, MARKS DL, FAN W, KUHN CM, BARTOLOME M, CONE RD: Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat. Neurosci. (2001) 4(6):605–611.
  • CHEN AS, METZGER JM, TRUMBAUER ME et al.: Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res. (2000) 9(2):145–154.
  • HUSZAR D, LYNCH CA, FAIRCHILD-HUNTRESS V et al.: Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell (1997) 88(1):131–141.
  • •Excellent paper indicating the importance of MC4 receptors in maintaining energy homeostasis and their potential as targets for antiobesity strategies.
  • STE MARIE L, MIURA GI, MARSH DJ, YAGALOFF K, PALMITER RD: A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc. Nati Acad. Sci. USA (2000) 97(22):12339–12344.
  • FAN W, DINULESCU DM, BUTLER AA, ZHOU J, MARKS DL, CONE RD: The central melanocortin system can directly regulate serum insulin levels. Endocrinology (2000) 141(9):3072–3079.
  • OBICI S, FENG Z, TAN J, LIU L, KARKANIAS G, ROSSETTI L: Central melanocortin receptors regulate insulin action. Clin. Invest. (2001) 108(7):1079–1085.
  • FAROOQI IS, YEO GS, KEOGH JM et al.: Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency../. Clin. Invest. (2000) 106(2):271–279.
  • GU W, TU Z, KLEYN PW et al.: Identification and functional analysis of novel human melanocortin-4 receptor variants. Diabetes (1999) 48(3):635–639.
  • CHAGNON YC, CHEN WJ, PERUSSE L et al.: Linkage and association studies between the melanocortin receptors 4 and 5 genes and obesity-related phenotypes in the Quebec Family Study. Mol. Med. (1997) 3(10):663–673.
  • SAWYER TK, SANFILIPPO PJ, HRUBY VJ et al.: 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity. Proc. Natl. Acad. Sci. USA (1980) 77(10):5754–5758.
  • AL-OBEIDI F, CASTRUCCI AM, HADLEY ME, HRUBY VJ: Potent and prolonged acting cyclic lactam analogues of alpha-melanotropin: design based on molecular dynamics. Med. Chem. (1989) 32(12):2555–2561.
  • HRUBY VJ, LU D, SHARMA SD et al.: Cyclic lactam alpha-melanotropin analogues of Ac-N1e4-cyclorAsp5, D-Phe7,Lys10] alpha-melanocyte-stimulating hormone-(4-10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors.' Med. Chem. (1995) 38(18):3454–3461.
  • FAN W, BOSTON BA, KESTERSON RA, HRUBY VJ, CONE RD: Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature (1997) 385: 165–168.
  • GRILL HJ, GINSBERG AB, SEELEY RJ, KAPLAN JM: Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight.' Neurosci. (1998) 18(23):10128–10135.
  • BEDNAREK MA, MACNEIL T, KALYANI RN, TANG R, VAN DER PLOEG LH, VVEINBERG DH: Selective, high affinity peptide antagonists of alpha-melanotropin action at human melanocortin receptor 4: their synthesis and biological evaluation in vitro. I Med. Chem. (2001) 44(22):3665–3672.
  • BEDNAREK MA, MACNEIL T, TANG R, KALYANI RN, VAN DER PLOEG LH, WEINBERG DH: Potent and selective peptide agonists of alpha-melanotropin action at human melanocortin receptor 4: their synthesis and biological evaluation in vitro. Biochem. Biophys. Res. Commun. (2001) 286(3):641–645.
  • BLUNDELL JE: Serotonin and appetite. Neuropharmacology (1984) 23: 1537–1551.
  • LEIBOWITZ SF, WEISS GE SHOR-POSNER G: Hypothalamic serotonin: Pharmacological, biochemical and behavioral analyses of its feeding suppressive action. Clin. Neuropharmacol. (1988) 11:S51–S71.
  • CURZON G, GIBSON EL, OLOYOMI A: Appetite suppression by commonly used drugs depends on 5-HT receptors but not 5-HT availability. Trends Pharmacol. Sci. (1997) 18:21–25.
  • NONOGAKI K, STRACK AM, DALLMAN MF, TECOTT LH: Leptin independent hyperphagia and type 2 diabetes in ice with a mutated serotonin 5-HT2c receptor gene. Nature (1998) 4:1152–1156.
  • HIRANO T: Interleuldn 6 and its receptor: ten years later. Int. Rev Immunol. (1998) 16(3-4):249–284.
  • GLOAGUEN I, COSTA P, DEMARTIS A et al.: Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc. Nati Acad. Sci. USA (1997) 94(12):6456–6461.
  • LAMBERT PD, ANDERSON KD, SLEEMAN MW et al.: Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc. Natl. Acad. Sci. USA (2001) 98(8):4652–4657.
  • ••Excellent paper indicating the potential forCNTF and related compounds to mimic actions of leptin and highlight the potential for this signalling pathway for antiobesity strategies.
  • PU S, DHILLON H, MOLDAWER LL, KALRA PS, KALRA SP: Neuropeptide Y counteracts the anorectic and weight reducing effects of ciliary neurotropic factor. Neuroendocrinol. (2000) 12(9):827–832.
  • KALRA SP, XU B, DUBE MG, MOLDAWER LL, MARTIN D, KALRA PS: Leptin and ciliary neurotropic factor (CNTF) inhibit fasting-induced suppression of luteinizing hormone release in rats: role of neuropeptide Y. Neurosci. Lett. (1998) 240(1):45–49.
  • XU B, DUBE MG, KALRA PS et al.: Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin. Endocrinology (1998) 139(2):466–473.
  • DAVIS S, ALDRICH TH, VALENZUELA DM et al: The receptor for ciliary neurotrophic factor. Science (1991) 253:59–63.
  • KORDOWER JH, YAPING-CHU, MACLENNAN AJ: Ciliary neurotrophic factor receptor alpha-immunoreactivity in the monkey central nervous system. J. Comp. Neurol (1997) 377(3):365–380.
  • BJORBAEK C, ELMQUIST JK, EL-HASCHIMI K et al.: Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology (1999) 140(5):2035–2043.
  • BOUILLAUD F, RICQUIER D, THIBAULT J, VVEISSENBACH J: Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein. Proc. Natl. Acad. Sci. USA (1985) 82(2):445–448.
  • KLINGENBERG M, HUANG SG: Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta (1999) 1415(2):271–296.
  • ARCH JR, WILSON S: Prospects for beta 3-adrenoceptor agonists in the treatment of obesity and diabetes. Int. J. Obes. Relat. Metab. Disord. (1996) 20(3):191–199.
  • HARPER IA, DICKINSON K, BRAND MD: Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes. Rev (2001) 2(4):255–265.
  • ••Excellent review of recent developments inour understanding of uncoupling proteins and the renewed interest in these proteins for antiobesity strategies.
  • VVEYER C, GAUTIER JF, DANFORTH E JR: Development of beta 3-adrenoceptor agonists for the treatment of obesity and diabetes--an update. Diabetes Metab. (1999) 25(1):11–21.
  • BOSS O, SAMEC S, PAOLONI-GIACOBINO A et al.: Uncoupling protein- 3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. (1997) 408(1):39–42.
  • GONG DW, HEY, KARAS M, REITMAN M: Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. Biol. Chem. (1997) 272(39):24129–24132.
  • VIDAL-PUIG A, SOLANES G, GRUJIC D, FLIER IS, LOWELL BB: UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophys. Res. Commun. (1997) 235(1):79–82.
  • ZHANG CY, BAFFY G, PERRET P et al.: Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell (2001) 105 (6) : 745–755.
  • PAULIK MA, BUCKHOLZ RG, LANCASTER ME et al.: Development of infrared imaging to measure thermogenesis in cell culture: thermogenic effects of uncoupling protein-2, troglitazone, and beta-adrenoceptor agonists. Pharm. Res. (1998) 15(6):944–949.
  • COLOMBO G, AGABIO R, DIAZ G, LOBINA C, REALI R, GESSA GL: Appetite suppression and weight loss after the cannabinoid antagonist SR 141716.Life Sci. (1998) 63(8):PL113–PL117.
  • WILLIAMS CM, KIRKHAM TC: Anandamide induces overeating: mediation by central cannabinoid (CBI) receptors. Psychopharmacology Merl). (1999) 143(3):315–317.
  • RAVINET-TRILLOU C, ARNONE M, DELGORGE C et al: Anti-obesity effect of 5R141716, a CB1 receptor antagonist, in diet-induced obese mice. Am. .1 Physiol Regal Integr: Comp. Physiol (2003) 284(2):R345–R353.
  • MAILLEUX P, VANDERHAEGHEN JJ: Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience (1992) 48(3):655–668.
  • JAMSHIDI N, TAYLOR DA: Ariariclamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br. Pharmacol (2001) 134(6):1151–1154.
  • DI MARZO V, GOPARAJU SK, WANG L et al.: Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature (2001) 410:822–825.
  • •Important paper highlighting the role of central cannabinoid receptors in feeding and leptin-sensitive pathways.
  • ADAMS LD, GONG W, VECHIA SD, HUNTER RG, KUHAR MJ: CART: from gene to function. Brain Res. (1999) 848(1-2):137–140.
  • •Excellent review of CART peptides.
  • BANNON AW, SEDA J, CARMOUCHE M, FRANCIS JM, JAROSINSKI MA, DOUGLASS J: Multiple behavioral effects of cocaine- and amphetamine-regulated transcript (CART) peptides in mice: CART 42-89 and CART 49-89 differ in potency and activity. Pharmacol Exp. Ther: (2001) 299(3):1021–1026.
  • LAMBERT PD, COUCEYRO PR, MCGIRR KM, DALL VECHIA SE, SMITHY, KUHAR MJ: CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse (1998) 29(4):293–298.
  • AJA S, SAHANDY S, LADENHEIM EE, SCHWARTZ GJ, MORAN TH: Intracerebroventricular CART peptide reduces food intake and alters motor behavior at a hindbrain site. Am.' Physiol Regal Integr. Comp. Physiol (2001) 281(6):R1862–R1867.
  • ZHENG H, PATTERSON C, BERTHOUD HR: Fourth ventricular injection of CART peptide inhibits short-term sucrose intake in rats. Brain Res. (2001) 896(1-2):153–156.
  • ABBOTT CR, ROSSI M, WREN AM et al.: Evidence of an orexigenic role for cocaine- and amphetamine-regulated transcript after administration into discrete hypothalamic nuclei. Endocrinology (2001) 142(8):3457–3463.
  • ASNICAR MA, SMITH DP, YANG DD et al.: Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology (2001) 142(10):4394–4400.
  • VRANG N, LARSEN PJ, CLAUSEN JT, KRISTENSEN P: Neurochemical characterization of hypothalamic cocaine-amphetamine-regulated transcript neurons. Neurosci. (1999) 19(10):RC5.
  • ROBSON AJ, ROUSSEAU K, LOUD ON AS, EBLING FJ: Cocaine and amphetamine-regulated transcript mRNA regulation in the hypothalamus in lean and obese rodents. Neuroendocrinol (2002) 14(9):697–709.
  • DEL GIUDICE EM, SANTORO N, CIRILLO G, D'URSO L, DI TORO R, PERRONE L: Mutational screening of the CART gene in obese children: identifying a mutation (Leu34Phe) associated with reduced resting energy expenditure and cosegregating with obesity phenotype in a large family. Diabetes (2001) 50 (9) :2157–2160.
  • BANNON AW, SEDA J, CARMOUCHE M, FRANCIS JM, JAROSINSKI MA, DOUGLASS J: Multiple behavioral effects of cocaine- and amphetamine-regulated transcript (CART) peptides in mice: CART 42–89 and CART 49–89 differ in potency and activity. 299(3):1021–1026.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.