236
Views
76
CrossRef citations to date
0
Altmetric
Review

Treatment of Type 2 diabetes mellitus with agonists of the GLP-1 receptor or DPP-IV inhibitors

Pages 155-166 | Published online: 02 Mar 2005

Bibliography

  • ORSKOV C, BERSANI M, JOHNSEN AH, HOJRUP P, HOLST JJ: Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J. Biol. Chem. (1989) 264(22):12826–12829.
  • BELL GI, SANCHEZ-PESCADOR R, LAYBOURN PJ, NAJARIAN RC: Exon duplication and divergence in the human preproglucagon gene. Nature (1983) 304(5924):368–371.
  • MOJSOV S, HEINRICH G, WILSON TB, RAVAZZOLA M, ORCI L, HABENER JF: Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. j Biol. Chem. (1986) 261(25):11880–11889.
  • ORSKOV C, HOLST JJ, KNUHTSEN S, BALDISSERA FG, POULSEN SS, NIELSEN OV: Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology (1986) 119(4):1467–1475.
  • HOLST JJ, ORSKOV C, HARTMANN B, DEACON CF: Posttranslational processing of proglucagon and postsecretory fate of proglucagon products. In: The Insulinotropic Gut Hormone Clucagon-Like Peptide-I Fehmann HC, Gölte B (Eds), Karger, Basel, Switzerland (1997):24–48.
  • BALDISSERA FG, HOLST JJ, KNUHTSEN S, HILSTED L, NIELSEN OV: Oxyntomodulin (glicentin-(33-69)): pharmacokinetics, binding to liver cell membranes, effects on isolated perfused pig pancreas, and secretion from isolated perfused lower small intestine of pigs. Regul Pept. (1988) 21(1-2):151–166.
  • HOLST JJ: Molecular heterogeneity of glucagon in normal subjects and in patients with glucagon-producing tumours. Diabetologia (1983) 24(5):359–365.
  • COHEN MA, ELLIS SM, LE ROUX CW et al.: Oxyntomodulin suppresses appetite and reduces food intake in humans. .1 Cliii. Endocrinol Metab. (2003) 88(10):4696–4701.
  • HOLST JJ: Glucagon-like peptide 1 (GLP-1): an intestinal hormone signalling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol Metab. (1999) 10(6):229–234.
  • ORSKOV C, WETTERGREN A, HOLST JJ: Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand. I Castroenterol (1996) 31(7):665–670.
  • FEHMANN HC, GOKE R, GOKE B: Cell and molecular biology of the incretin hormones glucagon- like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr. Rev (1995) 16(3):390–410.
  • KREYMANN B, WILLIAMS G, GHATEI MA, BLOOM SR: Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet (1987) 2(8571):1300–1304.
  • •First paper to show the incretin function of GLP-1 in humans.
  • KOLLIGS F, FEHMANN HC, GOKE R, GOKE B: Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9–39) amide. Diabetes (1995) 44(1):16–19.
  • WANG Z, WANG RM, OWJI AA, SMITH DM, GHATEI MA, BLOOM SR: Glucagon-like peptide-1 is a physiological incretin in rat. J. Clin. Invest. (1995) 95(1):417–421 (See Comments).
  • EDWARDS CM, TODD JF, MAHMOUDI M et al: Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes (1999) 48(1):86–93.
  • SCROCCHI LA, BROWN TJ, MACLUSKY N et al: Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. (1996) 2(11):1254–1258.
  • •Demonstrates the diabetogenic effect of absence of GLP-1 signalling.
  • MAYO KE, MILLER LJ, BATAILLE D et al: International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol. Rev. (2003) 55(1):167–194.
  • HOLZ GG, CHEPURNY OG: Glucagon-like peptide-1 synthetic analogs: new therapeutic agents for use in the treatment of diabetes mellitus. Curr. Med. Chem. (2003) 10(22):2471–2483.
  • HOLZ GG: Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes (2004) 53(1):5–13.
  • GROMADA J, DISSING S, BOKVIST K et al: Glucagon-like peptide I increases cytoplasmic calcium in insulin- secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes (1995) 44(7):767–774.
  • HOLZ GG, KUHTREIBER WM, HABENER JF: Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature (1993) 361(6410):362–365.
  • GROMADA J, BOKVIST K, DING WG, HOLST JJ, NIELSEN JH, RORSMAN P: Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes (1998) 47(1):57–65.
  • TSUBOI T, DA S, X, HOLZ GG, JOUAVILLE LS, THOMAS AP, RUTTER GA: Glucagon-like peptide-1 mobilizes intracellular Ca2' and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem. (2003) 369(2):287–299.
  • GUTNIAK MK, JUNTTI-BERGGREN L, HELLSTROM PM, GUENIFI A, HOLST JJ, EFENDIC S: Glucagon-like peptide I enhances the insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas. Diabetes Care (1996) 19(8):857–863.
  • GROMADA J, HOLST JJ, RORSMAN P: Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pllugers Arch. (1998) 435 (5):583–594.
  • FLAMEZ D, VAN BREUSEGEM A, SCROCCHI LA et al: Mouse pancreatic beta-cells exhibit preserved glucose competence after disruption of the glucagon-like peptide-1 receptor gene. Diabetes (1998) 47(4):646–652.
  • FEHMANN HC, HABENER JF: Insulinotropic hormone glucagon-like peptide-I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology (1992) 130(1):159–166.
  • BUTEAU J, RODUIT R, SUSINI S, PRENTKI M: Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia (1999) 42(7):856–864.
  • EGAN JM, BULOTTA A, HUT H, PERFETTI R: GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells. Diabetes Metab. Res. Rev (2003) 19(2):115–123.
  • XU G, STOFFERS DA, HABENER JF, BONNER-WEIR S: Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes (1999) 48(12):2270–2276.
  • •Demonstrates the impressive effect of a GLP-1 receptor agonist on 13-cell proliferation and neogenesis.
  • STOFFERS DA, KIEFFER TJ, HUSSAIN MA et al: Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes (2000) 49(5):741–748.
  • ZHOU J, WANG X, PINEYRO MA, EGAN JM: Glucagon-like peptide 1 and exendin-4 convert pancrteatic AR42J cells into glucagon- and insulin-producing cells. Diabetes (1999) 48(12):2358–2366.
  • PERFETTI R, ZHOU J, DOYLE ME, EGAN JM: Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology (2000) 141(12):4600–4605.
  • LI Y, HANSOTIA T, YUSTA B, RIS F, HALBAN PA, DRUCKER DJ: Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. .1 Biol. Chem. (2003) 278(1):471–478.
  • FARILLA L, BULOTTA A, HIRSHBERG B et al: GLP-1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology (2003) 144(12):5149–5158.
  • BONNER-WEIR S: Life and death of the pancreatic beta cells. Trends Endocrinol. Metab. (2000) 11(9):375–378.
  • BUTLER AE, JANSON J, BONNER-WEIR S, RITZEL R, PIZZA RA, BUTLER PC: Beta-cell deficit and increased beta-cell apoptosis in humans with Type 2 diabetes. Diabetes (2003) 52(1):102–110.
  • ORSKOV C, HOLST JJ, NIELSEN OV: Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology (1988) 123(4):2009–2013.
  • HVIDBERG A, NIELSEN MT, HILSTED J, ORSKOV C, HOLST JJ: Effect of glucagon-like peptide-1 (proglucagon 78-107-amide) on hepatic glucose production in healthy man. Metabolism (1994) 43(1):104–108.
  • NAUCK MA, HEIMESAAT MM, BEHLE K et al.: Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. I Clin. Endocrinol Metab. (2002) 87(3):1239–1246.
  • NAUCK MA, KLEINE N, ORSKOV C, HOLST JJ, WILLMS B, CREUTZFELDT W: Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in Type 2 (non-insulin-dependent) diabetic patients. Diabetologia (1993) 36(8):741–744.
  • ••In this important study it wasdemonstrated for the first time that administration of GLP-1 can completely normalise plasma glucose concentrations In patients with Type 2 diabetes.
  • NAUCK MA, HOLST JJ, WILLMS B: Glucagon-like peptide 1 and its potential in the treatment of non-insulin-dependent diabetes mellitus. Holm. Metab. Res. (1997) 29(9):411–416.
  • CREUTZFELDT WO, KLEINE N, WILLMS B, ORSKOV C, HOLST JJ, NAUCK MA: Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide 1(7-36) amide in Type I diabetic patients. Diabetes Care (1996) 19(6):580–586.
  • BRAND CL, JORGENSEN PN, SVENDSEN I, HOLST JJ: Evidence for a major role for glucagon in regulation of plasma glucose in conscious, nondiabetic, and alloxan-induced diabetic rabbits. Diabetes (1996) 45(8):1076–1083.
  • •This experimental study demonstrates that glucagon antagonism can dramatically reduce the hyperglycaemia of diabetic animals.
  • PETERSEN KF, SULLIVAN JT: Effects of a novel glucagon receptor antagonist (Bay 27-9955) on glucagon-stimulated glucose production in humans. Diabetologia (2001) 44(10:2018–2024.
  • WETTERGREN A, SCHJOLDAGER B, MORTENSEN PE, MYHRE J, CHRISTIANSEN J, HOLST JJ: Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig. Dis. Sci. (1993) 38(4):665–673.
  • •This study demonstrated the marked gastrointestinal effects of GLP-1.
  • NAUCK MA, NIEDEREICHHOLZ U, ETTLER R et al.: Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am. J. Physiol (1997) 273(5, Part 1):E981–E988.
  • YOUNG A, DENARO M: Roles of amylinin diabetes and in regulation of nutrient load. Nutrition (1998) 14(6):524–527 (Editorial).
  • FLINT A, RABEN A, ASTRUP A, HOLST JJ: Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. (1998) 101(3):515–520.
  • •This was the first study to demonstrate the effects of GLP-1 on appetite and food intake in humans.
  • NASLUND E, BARKELING B, KING N et al: Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int. I Obes. Relat. Metab. Disord. (1999) 23(3):304–311.
  • GUTZWILLER JP, DREWE J, GOKE B et al: Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus Type 2. Am. J. Physic] (1999) a276(5, Part 2):R1541–R1544.
  • GOKE R, LARSEN PJ, MIKKELSEN JD, SHEIKH SP: Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur. Neurosci. (1995) 7(11):2294–2300.
  • LARSEN PJ, TANG-CHRISTENSEN M, HOLST JJ, ORSKOV C: Distribution of glucagon-like peptide-1 and other preproglucagon- derived peptides in the rat hypothalamus and brainstem. Neuroscience (1997) 77(1):257–270.
  • TURTON MD, O'SHEA D, GUNN I et al: A role for glucagon-like peptide-1 in the central regulation of feeding. Nature (1996) 379(6560):69–72.
  • TANG-CHRISTENSEN M, LARSEN PJ, GOKE R et al.: Central administration of GLP-1-(7–36) amide inhibits food and water intake in rats. Am. Physiol (1996) 271(4, Part 2):R848–R856.
  • ORSKOV C, POULSEN SS, MOLLER M, HOLST JJ: Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes (1996) 45(6):832–835.
  • RACHMAN J, BARROW BA, LEVY JC, TURNER RC: Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia (1997) 40(2):205–211.
  • NAUCK MA, WOLLSCHLAGER D, WERNER J et al.: Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7-36 amide]) in patients with NIDDM. Diabetologia (1996) 39(12):1546–1553.
  • DEACON CE NAUCK MA, TOFT-NIELSEN M, PRIDAL L, WILLMS B, HOLST JJ: Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in Type II diabetic patients and in healthy subjects. Diabetes (1995) 44(9):1126–1131.
  • DEACON CE JOHNSEN AH, HOLST JJ: Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. aClin. Endocrinol Metab. (1995) 80(3):952–957.
  • ••In this study, the extensive DPP-IV-mediated degradation was demonstrated in diabetic subjects, and the use of DPP-IV inhibitors for the treatment of diabetes was proposed for the first time.
  • KNUDSEN LB, PRIDAL L: Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur. Pharinacol (1996) 318(2-3):429–435.
  • VILSBOLL T, AGERSO H, KRARUP T, HOLST JJ: Similar elimination rates of glucagon-like peptide-1 in obese Type 2 diabetic patients and healthy subjects. Clin. Endocrinol Metab. (2003) 88(1):220–224.
  • HANSEN L, DEACON CF, ORSKOV C, HOLST JJ: Glucagon-like peptide 1 (7 36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology (1999) 140(11):5356–5363.
  • IMERYUZ N, YEGEN BC, BOZKURT A, COSKUN T, VILLANUEVA-PENACARRILLO ML, ULUSOY NB: Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent- mediated central mechanisms. Ain. Physiol (1997) 273(4, Part 1):G920-G927. 65. NAKABAYASHI H, NISHIZAWA M, NAKAGAWA A, TAKEDA R, NIIJIMA A: Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1. Am. Physiol (1996) 271(5, Part 1):E808–E813.
  • BALKAN B, LI X: Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am. I Physiol Begin. Integr. Comp. Physiol. (2000) 279(4):R1449–R1454.
  • ZANDER M, MADSBAD S, MADSEN JL, HOLST JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in Type 2 diabetes: a parallel-group study. Lancet (2002) 359(9309):824–830.
  • ••This study demonstrated for the first timethe full clinical effect of prolonged treatment of Type 2 diabetic subjects with GLP–1.
  • EHLERS MRW, RODERICK EH, SCHNEIDER RL, KIPNES MS: Continuous subcutaneous infusion of recombinant GLP-1 for 7 days dose-dependently improved glycemic controls in Type 2 diabetes. Diabetes (2002) 51\(Suppl. 2):A579 (Abstract).
  • DEACON CF, KNUDSEN LB, MADSEN K, WIBERG FC, JACOBSEN O, HOLST JJ: Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia (1998) 41(3):271–278.
  • ORSKOV C, WETTERGREN A, HOLST JJ: Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes (1993) 42(5):658–661.
  • DEACON CE PRIDAL L, KLARSKOV L, OLESEN M, HOLST JJ: Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am. J. Physiol (1996) 271(3, Part 1):E458–E464.
  • ERSPAMER V, MELCHIORRI P, BROCCARDO M et al: The brain-gut- skin triangle: new peptides. Peptides (1981) 2 (Suppl. 2):7–16.
  • TATEMOTO K, MUTT V: Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature (1980) 285(5764):417–418.
  • ENG J, ANDREWS PC, KLEINMAN WA, SINGH L, RAUFMAN JP: Purification and structure of exendin-3, a new pancreatic secretagogue isolated from Heloderma horridum venom. J. Biol. Chem. (1990) 265(33):20259–20262.
  • ENG J, KLEINMAN WA, SINGH L, SINGH G, RAUFMAN JP: Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. (1992) 267(11):7402–7405.
  • RAUFMAN JP, SINGH L, SINGH G, ENG J: Truncated glucagon-like peptide-1 interacts with exendin receptors on dispersed acini from guinea pig pancreas. Identification of a mammalian analogue of the reptilian peptide exendin-4. .1 Biol. Chem. (1992) 267(30):21432–21437.
  • GOKE R, FEHMANN HC, LINN T et al: Exendin-4 is a high potency agonist and truncated exendin-(9-39)- amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J. Biol. Chem. (1993) 268(26):19650–19655.
  • •This study established exendin-4 as a full GLP-1 receptor agonist.
  • RAUFMAN JP, SINGH L, ENG J: Exendin-3, a novel peptide from Heloderma horridum venom, interacts with vasoactive intestinal peptide receptors and a newly described receptor on dispersed acini from guinea pig pancreas. Description of exendin-3 (9-39) amide, a specific exendin receptor antagonist. ./. Biol. Chem. (1991) 266(5):2897–2902.
  • CHEN YE, DRUCKER DJ: Tissue-specific expression of unique mRNAs that encode proglucagon-derived peptides or exendin 4 in the lizard. J. Biol. Chem. (1997) 272(7):4108–4115.
  • THORENS B, PORRET A, BUHLER L, DENG SP, MOREL P, WIDMANN C: Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin- (9-39) an antagonist of the receptor. Diabetes (1993) 42(11):1678–1682.
  • •Bernard Thorens was the first to clone the GLP-1 receptor and here describes cloning of the human receptor.
  • EDWARDS CM, STANLEY SA, DAVIS Ret al: Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am. I Physiol. Endocrinol. Metab. (2001) 281(1):E155–E161.
  • FINEMAN MS, BICSAK TA, SHEN LZ et al: Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with Type 2 diabetes. Diabetes Care (2003) 26(8):2370–2377.
  • •This study provides proof-of-concept for the use of exendin-4 for diabetes treatment.
  • BARON A, POON T, TAYLOR K et al: Exenatide (synthetic exendin-4) showed marked HbAlc decline over 5 months in patients with Type 2 diabetes failing oral agents in an open-label study. American Diabetes Association, late-breaking clinical studies, 3-LB (2003) (Abstract).
  • MARKOVIC TP, JENKINS AB, CAMPBELL LV, FURLER SM, KRAEGEN EW, CHISHOLM DJ: The determinants of glycemic responses to diet restriction and weight loss in obesity and NIDDM. Diabetes Care (1998) 21(5):687–694.
  • LARSEN J, HYLLEBERG B, NG K, DAMSBO P: Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in Type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care (2001) 24(8):1416–1421.
  • KNUDSEN LB, AGERSO H, BJENNING C et al.: GLP-1 derivatives as novel compounds for the treatment of Type 2 diabetes. Drugs of the Future (2001) 26:677–685.
  • JUHL CB, HOLLINGDAL M, STURIS J et al: Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in Type 2 diabetes. Diabetes (2002) 51(2):424–429.
  • RIBEL U, LARSEN MO, ROLIN B et al:NN2211: a long-acting glucagon-like peptide-1 derivative with anti-diabetic effects in glucose-intolerant pigs. Eur. Pharmacol. (2002) 451(2):217–225.
  • STURIS J, GOTFREDSEN CE ROMER J et al.: GLP-1 derivative liraglutide in rats with beta-cell deficiencies: influence of metabolic state on beta-cell mass dynamics. Br. J. Pharmacol. (2003) 140(1):123–132.
  • ROLIN B, LARSEN MO, GOTFREDSEN CF et al: The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am. Physiol. Endocrinol. Metab. (2002) 283(4):E745–E752.
  • LARSEN PJ, FLEDELIUS C, KNUDSEN LB, TANG-CHRISTENSEN M: Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes (2001) 50(11):2530–2539.
  • BREGENHOLT S, MOLDRUP A, KNUDSEN LB, PETERSEN JS: The GLP-1 derivative NN2211 inhibits cytokine-induced apoptosis in primary rat beta cells. Diabetes (2001) 50\(Suppl. 2):A31 (Abstract).
  • BREGENHOLT S, MOLDRUP A, BLUME N, KNUDSEN LB, PETERSEN JS: The GLP-1 analogue, NN2211, inhibits free fatty acid induced apoptosis in primary rat beta cells. Diabetologia (2001) a44\(Suppl. 1):A19 (Abstract).
  • MATTHEWS D, MADSBAD S, SCHMITZ O, LANGENDORF KW, JAKOBSEN G: The long-acting GLP-1 derivative, NN2211, a new agent for the treatment of Type 2 diabetes. Diabetes (2002) 51\(Suppl. 2):A84 (Abstract).
  • KIM JG, BAGGIO LL, BRIDON DP et al.: Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes (2003) 52(3):751–759.
  • LAWRENCE B, DREYFUS J, WEN S, GUICARC'H P, DRUCKER D, CASTAIGNE JP: CJC-1131, a long acting GLP-1 derivative, exhibits an extended pharmacokinetic profile in healthy human volunteers. Diabetes (2003) 52\(Suppl. 1):A125.
  • BLOOM M, BOCK J, DUTTAROY A et al.: Albugon fusion protein: A long acting analogue of GLP-1 that provides lasting antidiabetic effect in animals. Diabetes (2003) 52\(Suppl. 1):A112 (Abstract).
  • HOLST JJ, DEACON CF: Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for Type 2 diabetes. Diabetes (1998) 47(10:1663–1670.
  • MENTLEIN R: Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul. Pept. (1999) 85(1):9–24.
  • DEACON CE HUGHES TE, HOLST JJ: Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes (1998) 47(5):764–769.
  • AHREN B, HOLST JJ, MARTENSSON H, BALKAN B: Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase IV in mice. Eur. I Pharmacol. (2000) 404(1-2):239–245.
  • POSPISILIK JA, STAFFORD SG, DEMUTH HU et al: Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes (2002) 51(4):943–950.
  • •The study demonstrates the remarkable effects of long-term treatment of diabetic animals with a DPP-IV inhibitor.
  • SUDRE B, BROQUA P, WHITE RB et al: Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes (2002) 51(5):1461–1469.
  • MITANI H, TAKIMOTO M, KIMURA M: Dipeptidyl peptidase IV inhibitor NVP-DPP728 ameliorates early insulin response and glucose tolerance in aged rats but not in aged Fischer 344 rats lacking its enzyme activity. fpn. Pharmacol. (2002) 88(4):451–458.
  • CONARELLO SL, LI Z, RONAN J et al: Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Nati Acad. Sri. USA (2003) 100(11):6825–6830.
  • AHREN B, SIMONSSON E, LARSSON H et al.: Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in Type 2 diabetes. Diabetes Care (2002) 25(5):869–875.
  • •This study provides proof-of-concept for the use of DPP-IV inhibitors for the treatment of diabetes.
  • AHREN B, LANDIN-OLSSON M, JANSSON PA et al.: The DPPIV inhibitor, LAF237, reduces fasting and postprandial glucose in subjects with Type 2 diabetes over a 4 week period by increasing active GLP-1, sustaining insulin and reducing glucagon. Diabetes (2003) 52\(Suppl. 1):A15.
  • •This study demonstrates that GLP-1 is capable of completely restoring 13-cell sensitivity to glucose in patients with diabetes, but also that their sensitivity to GLP-1 is nevertheless reduced compared with that of healthy subjects.
  • DEACON CF, DANIELSEN P, KLARSKOV L, OLESEN M, HOLST JJ: Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes (2001) 50(7):1588–1597.
  • VILSBOLL T, KRARUP T, MADSBAD S, HOLST JJ: Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia (2002) 45(8):1111–1119.
  • VON BONIN A, HUHN J, FLEISCHER B: Dipeptidyl-peptidase CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol Rev (1998) 161:43–53.
  • PEDERSON RA, KIEFFER TJ, PAULY R, KOFOD H, KWONG J, MCINTOSH CH: The enteroinsular axis in dipeptidyl peptidase IV-negative rats. Metabolism (1996) 45(11):1335–1341.
  • MARGUET D, BAGGIO L, KOBAYASHI T et al: Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Nati Acad. Sci. USA (2000) 97(12):6874–6879.
  • POSPISILIK JA, STAFFORD SG, DEMUTH HU, MCINTOSH CH, PEDERSON RA: Long-term treatment with dipeptidyl peptidase IV inhibitor improves hepatic and peripheral insulin sensitivity in the VDF Zucker rat: a euglycemic-hyperinsulinemic clamp study. Diabetes (2002) 51(9):2677–2683.
  • ZANDER M, TASKIRAN M, TOFT-NIELSEN MB, MADSBAD S, HOLST JJ: Additive glucose-lowering effects of glucagon-like peptide-1 and metformin in Type 2 diabetes. Diabetes Care (2001) 24(4):720–725.
  • TOFT-NIELSEN MB, DAMHOLT MB, MADSBAD S et al.: Determinants of the impaired secretion of glucagon-like peptide-1 in Type 2 diabetic patients. J. Cita Endocrinol. Metab. (2001) 86(8):3717–3723.
  • DEACON CE WAMBERG S, BIE P, HUGHES TE, HOLST JJ: Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV suppresses meal-induced incretin secretion in dogs. Endocrinol (2002) 172(2):355–362.
  • KJEMS LL, HOLST JJ, VOLUND A, MADSBAD S: The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in Type 2 and nondiabetic subjects. Diabetes (2003) 52 (2) :380–386.

Websites

  • http://www.amylin.comidefaulf.cfm Amylin pharmaceuticals homepage.
  • http://www.novertis.comi Novartis homepage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.