641
Views
65
CrossRef citations to date
0
Altmetric
Reviews

Nicotinic acetylcholine receptors: an overview on drug discovery

, PhD &
Pages 395-411 | Published online: 31 Mar 2009

Bibliography

  • Wess J. Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 1996;10(1):69-99
  • Nathanson NM. A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away. Proc Natl Acad Sci USA 2000;97(12):6245-7
  • Lanzafame AA, Christopoulos A, Mitchelson F. Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels 2003;9(4):241-60
  • Hogg RC, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 2003;147:1-46
  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 2009;89(1):73-120
  • Eusebi F, Molinaro M, Zani BM. Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes. J Cell Biol 1985;100(4):1339-42
  • Huganir RL, Delcour AH, Greengard P, Hess GP. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 1986;321(6072):774-6
  • Hopfield JF, Tank DW, Greengard P, Huganir RL. Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation. Nature 1988;336(6200):677-80
  • Wagner K, Edson K, Heginbotham L, et al. Determination of the tyrosine phosphorylation sites of the nicotinic acetylcholine receptor. J Biol Chem 1991;266(35):23784-9
  • Cooper E, Couturier S, Ballivet M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 1991;350(6315):235-8
  • Hogg RC, Bertrand D. Partial agonists as therapeutic agents at neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2007;73(4):459-68
  • Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 2006;27(9):482-91
  • Kuryatov A, Onksen J, Lindstrom J. Roles of accessory subunits in α4β2* nicotinic receptors. Mol Pharmacol 2008;74(1):132-43
  • Maggi L, Sher E, Cherubini E. Regulation of GABA release by nicotinic acetylcholine receptors in the neonatal rat hippocampus. J Physiol 2001;536(Pt 1):89-100
  • Wenningmann I, Dilger JP. The kinetics of inhibition of nicotinic acetylcholine receptors by (+)-tubocurarine and pancuronium. Mol Pharmacol 2001;60(4):790-6
  • Bertrand D, Valera S, Bertrand S, et al. Steroids inhibit nicotinic acetylcholine receptors. Neuroreport 1991;2(5):277-80
  • Hurst RS, Hajos M, Raggenbass M, et al. A novel positive allosteric modulator of the α7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 2005;25(17):4396-405
  • Bertrand D, Bertrand S, Cassar S, et al. Positive allosteric modulation of the α7 nicotinic acetylcholine receptor: ligand interactions with distinct binding sites and evidence for a prominent role of the M2-M3 segment. Mol Pharmacol 2008;74(5):1407-16
  • Jones IW, Wonnacott S. Why doesn't nicotinic ACh receptor immunoreactivity knock out? Trends Neurosci 2005;28(7):343-5
  • Grando SA, Pittelkow MR, Schallreuter KU. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 2006;126(9):1948-65
  • Nguyen VT, Ndoye A, Grando SA. Novel human α9 acetylcholine receptor regulating keratinocyte adhesion is targeted by Pemphigus vulgaris autoimmunity. Am J Pathol 2000;157(4):1377-91
  • Sgard F, Charpantier E, Bertrand S, et al. A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit. Mol Pharmacol 2002;61(1):150-9
  • Elwary SH, Schallreuter KU. m2 muscarinic acetylcholine receptor (mAchR) subtype is present in human epidermal keratinocytes in situ and in vitro. Clin Exp Dermatol 2004;123(6):1206-7
  • Kurzen H, Berger H, Jager C, et al. Phenotypical and molecular profiling of the extraneuronal cholinergic system of the skin. J Invest Dermatol 2004;123(5):937-49
  • Chimienti F, Hogg RC, Plantard L, et al. Identification of SLURP-1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda. Hum Mol Genet 2003;12(22):3017-24
  • Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 2003;421(6921):384-8
  • Eriksson MO, Hagforsen E, Lundin IP, Michaelsson G. Palmoplantar pustulosis: a clinical and immunohistological study. Br J Dermatol 1998;138(3):390-8
  • Hagforsen E, Edvinsson M, Nordlind K, Michaelsson G. Expression of nicotinic receptors in the skin of patients with palmoplantar pustulosis. Br J Dermatol 2002;146(3):383-91
  • Hagforsen E. The cutaneous non-neuronal cholinergic system and smoking related dermatoses: studies of the psoriasis variant palmoplantar pustulosis. Life Sci 2007;80(24-25):2227-34
  • Lindstrom JM. Acetylcholine receptors and myasthenia. Muscle Nerve 2000;23(4):453-77
  • Engel AG, Shen XM, Selcen D, Sine SM. Further observations in congenital myasthenic syndromes. Ann NY Acad Sci 2008;1132:104-13
  • Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis: past, present, and future. J Clin Invest 2006;116(11):2843-54
  • Tzartos SJ, Barkas T, Cung MT, et al. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev 1998;163:89-120
  • Parr JR, Jayawant S. Childhood myasthenia: clinical subtypes and practical management. Dev Med Child Neurol 2007;49(8):629-35
  • Gold R, Schneider-Gold C. Current and future standards in treatment of myasthenia gravis. Neurotherapeutics 2008;5(4):535-41
  • Beeson D, Hantai D, Lochmuller H, Engel AG. 126th International Workshop: congenital myasthenic syndromes, 24-26 September 2004, Naarden, the Netherlands. Neuromuscul Disord 2005;15(7):498-512
  • Ohno K, Engel AG, Shen XM, et al. Rapsyn mutations in humans cause endplate acetylcholine-receptor deficiency and myasthenic syndrome. Am J Hum Genet 2002;70(4):875-85
  • Chevessier F, Faraut B, Ravel-Chapuis A, et al. MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet 2004;13(24):3229-40
  • Tracey KJ. The inflammatory reflex. Nature 2002;420(6917):853-9
  • Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405(6785):458-62
  • Borovikova LV, Ivanova S, Nardi D, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci 2000;85(1-3):141-7
  • Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 2004;10(11):1216-21
  • Wang NOUA, Korczyn AD. The role of neuronal nicotinic acetylcholine receptor subunits in autonomic ganglia: lessons from knockout mice. Prog Neurobiol 2002;68(5):341-60
  • Pavlov VA, Ochani M, Yang LH, et al. Selective α7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med 2007;35(4):1139-44
  • Sato KZ, Fujii T, Watanabe Y, et al. Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neurosci Lett 1999;266(1):17-20
  • Kawashima K, Fujii T. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front Biosci 2004;9:2063-85
  • Fujii T, Takada-Takatori Y, Kawashima K. Basic and clinical aspects of non-neuronal acetylcholine: expression of an independent, non-neuronal cholinergic system in lymphocytes and its clinical significance in immunotherapy. J Pharmacol Sci 2008;106(2):186-92
  • Gibbons CH, Freeman R. Antibody titers predict clinical features of autoimmune autonomic ganglionopathy. Auton Neurosci 2009;146:8-12
  • Vernino S. Neuronal acetylcholine receptor autoimmunity. Ann NY Acad Sci 2008;1132:124-8
  • Hayashi M, Ishii Y. A Japanese case of autoimmune autonomic ganglionopathy (AAG) and a review of AAG cases in Japan. Auton Neurosci 2009;146:26-8
  • Singer W, Opfer-Gehrking TL, McPhee BR, et al. Acetylcholinesterase inhibition: a novel approach in the treatment of neurogenic orthostatic hypotension. J Neurol Neurosurg Psychiatry 2003;74(9):1294-8
  • Schroeder C, Vernino S, Birkenfeld AL, et al. Plasma exchange for primary autoimmune autonomic failure. N Engl J Med 2005;353(15):1585-90
  • Gibbons CH, Vernino SA, Kaufmann H, Freeman R. L-DOPS therapy for refractory orthostatic hypotension in autoimmune autonomic neuropathy. Neurology 2005;65(7):1104-6
  • Bien CG, Widman G, Urbach H, et al. The natural history of Rasmussen's encephalitis. Brain 2002;125(Pt8):1751-9
  • Rogers SW, Andrews PI, Gahring LC, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 1994;265(5172):648-51
  • Wiendl H, Bien CG, Bernasconi P, et al. GluR3 antibodies: prevalence in focal epilepsy but no specificity for Rasmussen's encephalitis. Neurology 2001;57(8):1511-4
  • Watson R, Jiang Y, Bermudez I, et al. Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology 2004;63(1):43-50
  • Watson R, Jepson JE, Bermudez I, et al. α7-Acetylcholine receptor antibodies in two patients with Rasmussen encephalitis. Neurology 2005;65(11):1802-4
  • Badio B, Daly JW. Epibatidine, a potent analgetic and nicotinic agonist. Mol Pharmacol 1994;45(4):563-9
  • Sullivan JP, Decker MW, Brioni JD, et al. (+/-)-Epibatidine elicits a diversity of in vitro and in vivo effects mediated by nicotinic acetylcholine receptors. J Pharmacol Exp Ther 1994;271(2):624-31
  • Marubio LM, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 1999;398(6730):805-10
  • Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP. Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol Sci 2000;21(6):211-7
  • Bannon AW, Decker MW, Holladay MW, et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 1998;279(5347):77-81
  • Strauss E. New nonopioid painkiller shows promise in animal tests. Science 1998;279(5347):32-3
  • Holladay MW, Wasicak JT, Lin NH, et al. Identification and initial structure-activity relationships of (R)-5-(2-azetidinylmethoxy)-2-chloropyridine (ABT-594), a potent, orally active, non-opiate analgesic agent acting via neuronal nicotinic acetylcholine receptors. J Med Chem 1998;41(4):407-12
  • Bannon AW, Decker MW, Curzon P, et al. ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine]: a novel, orally effective antinociceptive agent acting via neuronal nicotinic acetylcholine receptors: II. In vivo characterization. J Pharmacol Exp Ther 1998;285(2):787-94
  • Bannon AW, Decker MW, Kim DJ, et al. ABT-594, a novel cholinergic channel modulator, is efficacious in nerve ligation and diabetic neuropathy models of neuropathic pain. Brain Res 1998;801(1-2):158-63
  • Decker MW, Bannon AW, Buckley MJ, et al. Antinociceptive effects of the novel neuronal nicotinic acetylcholine receptor agonist, ABT-594, in mice. Eur J Pharmacol 1998;346(1):23-33
  • Donnelly-Roberts DL, Puttfarcken PS, Kuntzweiler TA, et al. ABT-594 [(R)-5- (2-azetidinylmethoxy)-2-chloropyridine]: a novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I. In vitro characterization. J Pharmacol Exp Ther 1998;285(2):777-86
  • TC-6499. Available from: http://www.targacept.com/wt/page/tc6499.
  • ABT-894. Available from: http://www.neurosearch.com/Defaultaspx?ID=3& M=News&PID=91&NewsID=15702.
  • Brezenoff HE, Jenden DJ. Changes in arterial blood pressure after microinjections of carbachol into the medulla and IVth ventricle of the rat brain. Neuropharmacology 1970;9(4):341-8
  • Kubo T, Misu Y. Changes in arterial blood pressure after microinjections of nicotine into the dorsal area of the medulla oblongata of the rat. Neuropharmacology 1981;20(5):521-4
  • Su C. Actions of nicotine and smoking on circulation. Pharmacol Ther 1982;17(1):129-41
  • Tseng CJ, Appalsamy M, Robertson D, Mosqueda-Garcia R. Effects of nicotine on brain stem mechanisms of cardiovascular control. J Pharmacol Exp Ther 1993;265(3):1511-8
  • Robertson D, Tseng CJ, Appalsamy M. Smoking and mechanisms of cardiovascular control. Am Heart J 1988;115(1 Pt 2):258-63
  • Criscione LRD, Talman WT. Cholinergic mechanisms in the nucleus tractus solitarii and cardiovascular regulation in the rat. Eur J Pharmacol 1983;88(1):47-55
  • Wada E, Wada K, Boulter J, et al. Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 1989;284(2):314-35
  • Dominguez del Toro E, Juiz JM, Peng X, et al. Immunocytochemical localization of the α7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system. J Comp Neurol 1994;349(3):325-42
  • Ferreira M Jr, Sahibzada N, Shi M, et al. CNS site of action and brainstem circuitry responsible for the intravenous effects of nicotine on gastric tone. J Neurosci 2002;22(7):2764-79
  • Moore C, Wang Y, Ramage AG. Cardiovascular effects of activation of central α7 and α4β2 nAChRs: a role for vasopressin in anaesthetized rats. Br J Pharmacol 2008;153(8):1728-38
  • Elgoyhen AB, Vetter DE, Katz E, et al. α10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 2001;98(6):3501-6
  • Vincler M, McIntosh JM. Targeting the α9α10 nicotinic acetylcholine receptor to treat severe pain. Expert Opin Ther Targets 2007;11:891-7
  • Benowitz NL. Cigarette smoking and nicotine addiction. Med Clin North Am 1992;76(2):415-37
  • Henningfield JE, Fant RV, Tomar SL. Smokeless tobacco: an addicting drug. Adv Dent Res 1997;11(3):330-5
  • Hatsukami D, Fletcher L, Morgan S, et al. The effects of varying cigarette deprivation duration on cognitive and performance tasks. J Subst Abuse 1989;1(4):407-16
  • Pritchard WS, Robinson JH, Guy TD. Enhancement of continuous performance task reaction time by smoking in non-deprived smokers. Psychopharmacology (Berl) 1992;108(4):437-42
  • Parrott AC, Kaye FJ. Daily uplifts, hassles, stresses and cognitive failures: in cigarette smokers, abstaining smokers, and non-smokers. Behav Pharmacol 1999;10(6-7):639-46
  • Powell J, Dawkins L, Davis RE. Smoking, reward responsiveness, and response inhibition: tests of an incentive motivational model. Biol Psychiatry 2002;51(2):151-63
  • Newhouse PA, Potter A, Singh A. Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 2004;4(1):36-46
  • Brody AL. Functional brain imaging of tobacco use and dependence. J Psychiatr Res 2006;40(5):404-18
  • Rapier C, Lunt GG, Wonnacott S. Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem 1990;54(3):937-45
  • Clarke PB. Nicotinic receptor blockade therapy and smoking cessation. Br J Addict 1991;86(5):501-5
  • Corrigall WA, Frankin KB, Coen KM, Clarke PB. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 1992;107(2-3):285-9
  • Benwell ME, Balfour DJ. The influence of lobeline on nucleus accumbens dopamine and locomotor responses to nicotine in nicotine-pretreated rats. Br J Pharmacol 1998;125(6):1115-9
  • Nisell M, Nomikos GG, Svensson TH. Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 1994;16(1):36-44
  • Pontieri FE, Tanda G, Orzi F, Di Chiara G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996;382(6588):255-7
  • Balfour DJ, Benwell ME, Birrell CE, et al. Sensitization of the mesoaccumbens dopamine response to nicotine. Pharmacol Biochem Behav 1998;59(4):1021-30
  • Spanagel R, Weiss F. The dopamine hypothesis of reward: past and current status. Trends Neurosci 1999;22(11):521-7
  • Kenny PJ, Markou A. Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 2001;70(4):531-49
  • Cousins MS, Roberts DC, de Wit H. GABAB receptor agonists for the treatment of drug addiction: a review of recent findings. Drug Alcohol Depend 2002;65(3):209-20
  • Fowler JS, Volkow ND, Wang GJ, et al. Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci USA 1996;93(24):14065-9
  • Fowler JS, Volkow ND, Wang GJ, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996;379(6567):733-6
  • Fowler JS, Volkow ND, Wang GJ, et al. Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition. J Addict Dis 1998;17(1):23-34
  • Fowler JS, Wang GJ, Volkow ND, et al. Maintenance of brain monoamine oxidase B inhibition in smokers after overnight cigarette abstinence. Am J Psychiatry 2000;157(11):1864-6
  • Benowitz NL. Nicotine addiction. Prim Care 1999;26(3):611-31
  • Benwell ME, Balfour DJ, Anderson JM. Evidence that tobacco smoking increases the density of (–)-[3H]nicotine binding sites in human brain. J Neurochem 1988;50(4):1243-7
  • Yates SL, Bencherif M, Fluhler EN, Lippiello PM. Up-regulation of nicotinic acetylcholine receptors following chronic exposure of rats to mainstream cigarette smoke or α4β2 receptors to nicotine. Biochem Pharmacol 1995;50(12):2001-8
  • Pauly JR, Marks MJ, Robinson SF, et al. Chronic nicotine and mecamylamine treatment increase brain nicotinic receptor binding without changing alpha 4 or beta 2 mRNA levels. J Pharmacol Exp Ther 1996;278(1):361-9
  • Breese CR, Marks MJ, Logel J, et al. Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther 1997;282(1):7-13
  • Zhang X, Tian JY, Svensson AL, et al. Chronic treatments with tacrine and (–)-nicotine induce different changes of nicotinic and muscarinic acetylcholine receptors in the brain of aged rat. J Neural Transm 2002;109(3):377-92
  • Chefer SI, Horti AG, Koren AO, et al. 2-[18F]F-A-85380: a PET radioligand for α4β2 nicotinic acetylcholine receptors. Neuroreport 1999;10(13):2715-21
  • Picciotto MR, Zoli M, Rimondini R, et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 1998;391(6663):173-7
  • Marubio LM, Gardier AM, Durier S, et al. Effects of nicotine in the dopaminergic system of mice lacking the α4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 2003;17(7):1329-37
  • Brody AL, Mandelkern MA, Costello MR, et al. Brain nicotinic acetylcholine receptor occupancy: effect of smoking a denicotinized cigarette. Int J Neuropsychopharmacol 2009;12(3):305-16
  • Bierut LJ, Madden PA, Breslau N, et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 2007;16(1):24-35
  • Saccone SF, Hinrichs AL, Saccone NL, et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 2007;16(1):36-49
  • Weiss RB, Baker TB, Cannon DS, et al. A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 2008;4(7):e1000125. Published online 11 July 2008, doi:10.1371/journal.pgen.1000125
  • Portugal GS, Gould TJ. Genetic variability in nicotinic acetylcholine receptors and nicotine addiction: converging evidence from human and animal research. Behav Brain Res 2008;193(1):1-16
  • Mitrouska I, Bouloukaki I, Siafakas NM. Pharmacological approaches to smoking cessation. Pulm Pharmacol Ther 2007;20(3):220-32
  • Rose JE, Behm FM, Westman EC, et al. Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clin Pharmacol Ther 1994;56(1):86-99
  • Ascher JACJ, Colin JN, Feighner JP, et al. Bupropion: a review of its mechanism of antidepressant activity. J Clin Psychiatry 1995;56(9):395-401
  • Mihalak KB, Carroll FI, Luetje CW. Varenicline is a partial agonist at α4β2 and a full agonist at α7 neuronal nicotinic receptors. Mol Pharmacol 2006;70(3):801-5
  • Coe JW, Brooks PR, Vetelino MG, et al. Varenicline: an α4β2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 2005;48(10):3474-7
  • Rollema H, Chambers LK, Coe JW, et al. Pharmacological profile of the α4β2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 2007;52(3):985-94
  • Reus VI, Obach RS, Coe JW, et al. Varenicline: new treatment with efficacy in smoking cessation. Drugs Today (Barc) 2007;43(2):65-75
  • Gonzales D, Rennard SI, Nides M, et al. Varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA 2006;296(1):47-55
  • Jorenby DE, Hays JT, Rigotti NA, et al. Efficacy of varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA 2006;296(1):56-63
  • Tonstad S, Tonnesen P, Hajek P, et al. Effect of maintenance therapy with varenicline on smoking cessation: a randomized controlled trial. JAMA 2006;296(1):64-71
  • Cornuz J, Zwahlen S, Jungi WF, et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS ONE 2008;3(6):e2547. Published online 25 June 2008, doi:10.1371/journal.pone.0002547
  • Scheffer IE, Bhatia KP, Lopes-Cendes I, et al. Autosomal dominant nocturnal frontal lobe epilepsy. A distinctive clinical disorder. Brain 1995;118( Pt 1):61-73
  • Agulhon C, Charnay Y, Vallet P, et al. Distribution of mRNA for the α4 subunit of the nicotinic acetylcholine receptor in the human fetal brain. Brain Res Mol Brain Res 1998;58(1-2):123-31
  • Moulard B, Picard F, le Hellard S, et al. Ion channel variation causes epilepsies. Brain Res Brain Res Rev 2001;36(2-3):275-84
  • Phillips HA, Scheffer IE, Berkovic SF, et al. Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q 13.2. Nat Genet 1995;10(1):117-8
  • Steinlein OK, Mulley JC, Propping P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 1995;11(2):201-3
  • Steinlein OK, Magnusson A, Stoodt J, et al. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet 1997;6(6):943-7
  • De Fusco M, Becchetti A, Patrignani A, et al. The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet 2000;26(3):275-6
  • Steinlein OK, Stoodt J, Mulley J, et al. Independent occurrence of the CHRNA4 Ser248Phe mutation in a Norwegian family with nocturnal frontal lobe epilepsy. Epilepsia 2000;41(5):529-35
  • Phillips HA, Favre I, Kirkpatrick M, et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 2001;68(1):225-31
  • Hoda JC, Gu W, Friedli M, et al. Human nocturnal frontal lobe epilepsy: pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor β-subunit mutations outside the ion channel pore. Mol Pharmacol 2008;74(2):379-91
  • Revah F, Bertrand D, Galzi JL, et al. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 1991;353(6347):846-9
  • Bertrand D, Devillers-Thiery A, Revah F, et al. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc Natl Acad Sci USA 1992;89(4):1261-5
  • Weiland S, Witzemann V, Villarroel A, et al. An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics. FEBS Lett 1996;398(1):91-6
  • Rush R, Kuryatov A, Nelson ME, Lindstrom J. First and second transmembrane segments of α3, α4, β2, and β4 nicotinic acetylcholine receptor subunits influence the efficacy and potency of nicotine. Mol Pharmacol 2002;61(6):1416-22
  • Steinlein OK. Nicotinic acetylcholine receptors and epilepsy. Curr Drug Targets CNS Neurol Disord 2002;1(4):443-8
  • Steinlein OK, Bertrand D. Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases. Biochem Pharmacol 2008;76(10):1175-83
  • Rodrigues-Pinguet N, Jia L, Li M, et al. Five ADNFLE mutations reduce the Ca2+ dependence of the mammalian α4β2 acetylcholine response. J Physiol 2003;550(Pt 1):11-26
  • Rodrigues-Pinguet NO, Pinguet TJ, Figl A, et al. Mutations linked to autosomal dominant nocturnal frontal lobe epilepsy affect allosteric Ca2+ activation of the α4β2 nicotinic acetylcholine receptor. Mol Pharmacol 2005;68(2):487-501
  • Mann EO, Mody I. The multifaceted role of inhibition in epilepsy: seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy. Curr Opin Neurol 2008;21(2):155-60
  • Picard F, Bertrand S, Steinlein OK, Bertrand D. Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 1999;40(9):1198-209
  • Varadkar S, Duncan JS, Cross JH. Acetazolamide and autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia 2003;44(7):986-7
  • Willoughby JO, Pope KJ, Eaton V. Nicotine as an antiepileptic agent in ADNFLE: an N-of-one study. Epilepsia 2003;44(9):1238-40
  • Mueser KT, McGurk SR. Schizophrenia. Lancet 2004;363(9426):2063-72
  • Austin J. Schizophrenia: an update and review. J Genet Couns 2005;14(5):329-40
  • Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA. Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 1986;143(8):993-7
  • Dalack GW, Healy DJ, Meador-Woodruff JH. Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry 1998;155(11):1490-501
  • Greeman M, McClellan TA. Negative effects of a smoking ban on an inpatient psychiatry service. Hosp Community Psychiatry 1991;42(4):408-12
  • Adler LE, Pachtman E, Franks RD, et al. Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 1982;17(6):639-54
  • Clementz BA, Geyer MA, Braff DL. P50 suppression among schizophrenia and normal comparison subjects: a methodological analysis. Biol Psychiatry 1997;41(10):1035-44
  • Clementz BA, Geyer MA, Braff DL. Poor P50 suppression among schizophrenia patients and their first-degree biological relatives. Am J Psychiatry 1998;155(12):1691-4
  • Evans LH, Gray NS, Snowden RJ. Reduced P50 suppression is associated with the cognitive disorganisation dimension of schizotypy. Schizophr Res 2007;97(1-3):152-62
  • Adler LE, Hoffer LJ, Griffith J, et al. Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiatry 1992;32(7):607-16
  • Adler LE, Hoffer LD, Wiser A, Freedman R. Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 1993;150(12):1856-61
  • Lindstrom J, Anand R, Peng X, et al. Neuronal nicotinic receptor subtypes. Ann NY Acad Sci 1995;757:100-16
  • Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 1995;38(1):22-33
  • Court J, Spurden D, Lloyd S, et al. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: α-bungarotoxin and nicotine binding in the thalamus. J Neurochem 1999;73(4):1590-7
  • Guan ZZ, Zhang X, Blennow K, Nordberg A. Decreased protein level of nicotinic receptor α7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 1999;10(8):1779-82
  • Marutle A, Zhang X, Court J, et al. Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat 2001;22(1-2):115-26
  • Martin-Ruiz CM, Haroutunian VH, Long P, et al. Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry 2003;54(11):1222-33
  • Breese CR, Lee MJ, Adams CE, et al. Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology 2000;23(4):351-64
  • Court JA, Piggott MA, Lloyd S, et al. Nicotine binding in human striatum: elevation in schizophrenia and reductions in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease and in relation to neuroleptic medication. Neuroscience 2000;98(1):79-87
  • Olincy A, Harris JG, Johnson LL, et al. Proof-of-concept trial of an α7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 2006;63(6):630-8
  • ABT-107. Available from: http://www.neurosearch.com/Defaultaspx?ID=1799.
  • TC-5619. Available from: http://www.targacept.com/wt/page/tc_5619.
  • Wishka DG, Walker DP, Yates KM, et al. Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the α7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure-activity relationship. J Med Chem 2006;49(14):4425-36
  • Walker DP, Wishka DG, Piotrowski DW, et al. Design, synthesis, structure–activity relationship, and in vivo activity of azabicyclic aryl amides as α7 nicotinic acetylcholine receptor agonists. Bioorg Med Chem 2006;14(24):8219-48
  • Acker BA, Jacobsen EJ, Rogers BN, et al. Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide as an agonist of the alpha7 nicotinic acetylcholine receptor: in vitro and in vivo activity. Bioorg Med Chem Lett 2008;18(12):3611-5
  • Huang M, Li Z, Prus AJ et al. The nicotinic Alpha7 receptor agonist MEM 3454 increases dopamine and acetylcholine release in rat medial prefrontal cortex and hippocampus alone and in combination with risperidone. Neuropsychopharmacology 2006;31:S185
  • Boess FG, De Vry J, Erb C, et al. The novel α7 nicotinic acetylcholine receptor agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-7-[2-(methoxy)phenyl]- 1-benzofuran-2- carboxamide improves working and recognition memory in rodents. J Pharmacol Exp Ther 2007;321(2):716-25
  • Pichat P, Bergis OE, Terranova JP, et al. SSR180711, a novel selective α7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 2007;32(1):17-34
  • AZD3480. Available from: http://www.targacept.com/wt/page/pr_1228768541.
  • Uhl GR, Hedreen JC, Price DL. Parkinson's disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 1985;35(8):1215-8
  • Yoshikawa K, Nakata Y, Yamada K, Nakagawa M. Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiatry 2004;75(3):481-4
  • Thomas B, Beal MF. Parkinson's disease. Hum Mol Genet 2007;16 Spec No. 2:R183-94
  • Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276(7):374-9
  • Hornykiewicz O. Dopamine miracle: from brain homogenate to dopamine replacement. Mov Disord 2002;17(3):501-8
  • Hornykiewicz O. L-DOPA: from a biologically inactive amino acid to a successful therapeutic agent. Amino Acids 2002;23(1-3):65-70
  • Olanow CW, Agid Y, Mizuno Y, et al. Levodopa in the treatment of Parkinson's disease: current controversies. Mov Disord 2004;19(9):997-1005
  • Morens DM, Grandinetti A, Reed D, et al. Cigarette smoking and protection from Parkinson's disease: false association or etiologic clue? Neurology 1995;45(6):1041-51
  • Gorell JM, Rybicki BA, Johnson CC, Peterson EL. Smoking and Parkinson's disease: a dose-response relationship. Neurology 1999;52(1):115-9
  • Allam MF, Campbell MJ, Hofman A, et al. Smoking and Parkinson's disease: systematic review of prospective studies. Mov Disord 2004;19(6):614-21
  • Fratiglioni L, Wang HX. Smoking and Parkinson's and Alzheimer's disease: review of the epidemiological studies. Behav Brain Res 2000;113(1-2):117-20
  • Han ZY, Le Novere N, Zoli M, et al. Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur J Neurosci 2000;12(10):3664-74
  • Zoli M, Moretti M, Zanardi A, et al. Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 2002;22(20):8785-9
  • Champtiaux N, Gotti C, Cordero-Erausquin M, et al. Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 2003;23(21):7820-9
  • Quik M, Vailati S, Bordia T, et al. Subunit composition of nicotinic receptors in monkey striatum: effect of treatments with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine or L-DOPA. Mol Pharmacol 2005;67(1):32-41
  • Kulak JM, McIntosh JM, Quik M. Loss of nicotinic receptors in monkey striatum after 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine treatment is due to a decline in α-conotoxin MII sites. Mol Pharmacol 2002;61(1):230-8
  • Kulak JM, Musachio JL, Mcintosh JM, Quik M. Declines in different β2* nicotinic receptor populations in monkey striatum after nigrostriatal damage. J Pharmacol Exp Ther 2002;303(2):633-9
  • Quik M, Sum JD, Whiteaker P, et al. Differential declines in striatal nicotinic receptor subtype function after nigrostriatal damage in mice. Mol Pharmacol 2003;63(5):1169-79
  • McCallum SE, Parameswaran N, Bordia T, et al. Decrease in α3*/α6* nicotinic receptors but not nicotine-evoked dopamine release in monkey brain after nigrostriatal damage. Mol Pharmacol 2005;68(3):737-46
  • Gotti C, Moretti M, Bohr I, et al. Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer's disease, Parkinson's disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol Dis 2006;23(2):481-9
  • Quik M, McIntosh JM. Striatal α6* nicotinic acetylcholine receptors: potential targets for Parkinson's disease therapy. J Pharmacol Exp Ther 2006;316(2):481-9
  • Grady SR, Salminen O, Laverty DC, et al. The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem Pharmacol 2007;74(8):1235-46
  • Exley R, Clements MA, Hartung H, et al. α6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 2008;33(9):2158-66
  • Perez XA, Bordia T, McIntosh JM, et al. Long-term nicotine treatment differentially regulates striatal α6α4β2* and α6(nonα4)β2* nAChR expression and function. Mol Pharmacol 2008;74(3):844-53
  • Bencherif M, Schmitt JD, Bhatti BS, et al. The heterocyclic substituted pyridine derivative (±)-2-(-3-pyridinyl)-1-azabicyclo[2.2.2]octane (RJR-2429): a selective ligand at nicotinic acetylcholine receptors. J Pharmacol Exp Ther 1998;284(3):886-94
  • Grinevich VP, Letchworth SR, Lindenberger KA, et al. Heterologous expression of human α6β43α5 nicotinic acetylcholine receptors: binding properties consistent with their natural expression require quaternary subunit assembly including the α5 subunit. J Pharmacol Exp Ther 2005;312(2):619-26
  • Drenan RM, Grady SR, Whiteaker P, et al. In vivo activation of midbrain dopamine neurons via sensitized, high-affinity α6 nicotinic acetylcholine receptors. Neuron 2008;60(1):123-36
  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA. Nicotine activates and desensitizes midbrain dopamine neurons. Nature 1997;390(6658):401-4
  • Klink R, de Kerchove d'Exaerde A, Zoli M, Changeux JP. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 2001;21(5):1452-63
  • Kuryatov A, Olale F, Cooper J, et al. Human α6 AChR subtypes: subunit composition, assembly, and pharmacological responses. Neuropharmacology 2000;39(13):2570-90
  • McIntosh JM, Azam L, Staheli S, et al. Analogs of α-conotoxin MII are selective for α6-containing nicotinic acetylcholine receptors. Mol Pharmacol 2004;65(4):944-52
  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer's disease. Johns Hopkins University, Dept. of Biostatistics Working Papers 2007. Paper 130. Available from: http://works.bepress.com/rbrookmeyer/23/ [Last accessed 28 February 2009]
  • Ulrich J, Johannson-Locher G, Seiler WO, Stahelin HB. Does smoking protect from Alzheimer's disease? Alzheimer-type changes in 301 unselected brains from patients with known smoking history. Acta Neuropathol 1997;94(5):450-4
  • Perry E, Martin-Ruiz C, Lee M, et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 2000;393(1-3):215-22
  • Ono K, Hasegawa K, Yamada M, Naiki H. Nicotine breaks down preformed Alzheimer's β-amyloid fibrils in vitro. Biol Psychiatry 2002;52(9):880-6
  • Utsuki T, Shoaib M, Holloway HW, et al. Nicotine lowers the secretion of the Alzheimer's amyloid β-protein precursor that contains amyloid β-peptide in rat. J Alzheimers Dis 2002;4(5):405-15
  • Hellstrom-Lindahl E, Mousavi M, Ravid R, Nordberg A. Reduced levels of Aβ40 and Aβ42 in brains of smoking controls and Alzheimer's patients. Neurobiol Dis 2004;15(2):351-60
  • White HK, Levin ED. Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment. Psychopharmacology (Berl) 2004;171(4):465-71
  • Ott A, Slooter AJ, Hofman A, et al. Smoking and risk of dementia and Alzheimer's disease in a population-based cohort study: the Rotterdam Study. Lancet 1998;351(9119):1840-3
  • Tyas SL, White LR, Petrovitch H, et al. Mid-life smoking and late-life dementia: the Honolulu–Asia Aging Study. Neurobiol Aging 2003;24(4):589-96
  • Almeida OP, Garrido GJ, Lautenschlager NT, et al. Smoking is associated with reduced cortical regional gray matter density in brain regions associated with incipient Alzheimer disease. Am J Geriatr Psychiatry 2008;16(1):92-8
  • Nordberg A. Neuroreceptor changes in Alzheimer disease. Cerebrovasc Brain Metab Rev 1992Winter;4(4):303-28
  • Nordberg A, Lundqvist H, Hartvig P, et al. Imaging of nicotinic and muscarinic receptors in Alzheimer's disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 1997;8(2):78-84
  • Zamani MR, Allen YS, Owen GP, Gray JA. Nicotine modulates the neurotoxic effect of β-amyloid protein(25–35) in hippocampal cultures. Neuroreport 1997;8(2):513-7
  • Kihara T, Shimohama S, Urushitani M, et al. Stimulation of α4β2 nicotinic acetylcholine receptors inhibits β-amyloid toxicity. Brain Res 1998;792(2):331-4
  • Liu Q, Zhao B. Nicotine attenuates β-amyloid peptide-induced neurotoxicity, free radical and calcium accumulation in hippocampal neuronal cultures. Br J Pharmacol 2004;141(4):746-54
  • Guan ZZ, Zhang X, Ravid R, Nordberg A. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease. J Neurochem 2000;74(1):237-43
  • Mousavi M, Hellstrom-Lindahl E, Guan ZZ, et al. Protein and mRNA levels of nicotinic receptors in brain of tobacco using controls and patients with Alzheimer's disease. Neuroscience 2003;122(2):515-20
  • Terzano S, Court JA, Fornasari D, et al. Expression of the α3 nicotinic receptor subunit mRNA in aging and Alzheimer's disease. Brain Res Mol Brain Res 1998;63(1):72-8
  • Qi XL, Nordberg A, Xiu J, Guan ZZ. The consequences of reducing expression of the α7 nicotinic receptor by RNA interference and of stimulating its activity with an α7 agonist in SH-SY5Y cells indicate that this receptor plays a neuroprotective role in connection with the pathogenesis of Alzheimer's disease. Neurochem Int 2007;51(6-7):377-83
  • Obinu MC, Reibaud M, Miquet JM, et al. Brain-selective stimulation of nicotinic receptors by TC-1734 enhances ACh transmission from frontoparietal cortex and memory in rodents. Prog Neuropsychopharmacol Biol Psychiatry 2002;26(5):913-8
  • Dunbar G, Demazieres A, Monreal A, et al. Pharmacokinetics and safety profile of ispronicline (TC-1734), a new brain nicotinic receptor partial agonist, in young healthy male volunteers. J Clin Pharmacol 2006;46(7):715-26
  • Raskind MA, Peskind ER, Wessel T, Yuan W. Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology 2000;54(12):2261-8
  • Farlow M, Anand R, Messina J Jr, et al. A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer's disease. Eur Neurol 2000;44(4):236-41
  • Coyle JT, Geerts H, Sorra K, Amatniek J. Beyond in vitro data: a review of in vivo evidence regarding the allosteric potentiating effect of galantamine on nicotinic acetylcholine receptors in Alzheimer's neuropathology. J Alzheimers Dis 2007;11(4):491-507
  • Guay DR. Rivastigmine transdermal patch: role in the management of Alzheimer's disease. Consult Pharm 2008;23(8):598-609
  • Doody RS, Ferris SH, Salloway S, et al. Donepezil treatment of patients with MCI. A 48-week randomized, placebo-controlled trial. Neurology 2009; published online 28 January, 2009, doi:10.1212/01.wnl.0000344650.95823.03
  • Albuquerque EX, Pereira EF, Aracava Y, et al. Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents. Proc Natl Acad Sci USA 2006;103(35):13220-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.