1,018
Views
68
CrossRef citations to date
0
Altmetric
Reviews

Kv1.3 potassium channels as a therapeutic target in multiple sclerosis

, , , PhD &
Pages 909-924 | Published online: 20 Jun 2009

Bibliography

  • Mikol D, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 2008;7(10):903-14
  • Goodin DS, Cohen BA, O'Connor P, et al. Assessment: the use of natalizumab (Tysabri) for the treatment of multiple sclerosis (an evidence-based review): report of the therapeutics and technology assessment subcommittee of the american academy of neurology. Neurology 2008;71(10):766-73
  • Goodin DS. Disease-modifying therapy in multiple sclerosis: update and clinical implications. Neurology 2008;71(24 Suppl 3):S8-13
  • Brandes DW, Callender T, Lathi E, O'Leary S. A review of disease-modifying therapies for MS: maximizing adherence and minimizing adverse events. Curr Med Res Opin 2009;25(1):77-92
  • Menge T, Weber MS, Hemmer B. Disease-modifying agents for multiple sclerosis: recent advances and future prospects. Drugs 2008;68(17):2445-68
  • Linker RA, Kieseier BC, Gold R. Identification and development of new therapeutics for multiple sclerosis. Trends Pharmacol Sci 2008;29(11):558-65
  • Kivisakk P, Mahad DJ, Callahan MK, et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol 2004;55(5):627-38
  • Rus H, Pardo CA, Hu L, et al. The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci USA 2005;102(31):11094-9
  • Sorensen TL, Tani M, Jensen J, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999;103(6):807-15
  • Calabresi PA, Tranquill LR, McFarland HF, Cowan EP. Cytokine gene expression in cells derived from CSF of multiple sclerosis patients. J Neuroimmunol 1998;89(1-2):198-205
  • Plumb J, Armstrong MA, Duddy M, et al. CD83-positive dendritic cells are present in occasional perivascular cuffs in multiple sclerosis lesions. Mult Scler 2003;9(2):142-7
  • Serafini B, Rosicarelli B, Magliozzi R, et al. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol 2006;65(2):124-41
  • Cudrici C, Ito T, Zafranskaia E, et al. Dendritic cells are abundant in non-lesional gray matter in multiple sclerosis. Exp Mol Pathol 2007;83(2):198-206
  • Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol 2006;6(6):476-83
  • Racke MK. The role of B cells in multiple sclerosis: rationale for B-cell-targeted therapies. Curr Opin Neurol 2008;21(Suppl 1):S9-18
  • Corcione A, Casazza S, Ferretti E, et al. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci USA 2004;101(30):11064-9
  • Cepok S, Rosche B, Grummel V, et al. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 2005;128(Pt 7):1667-76
  • Bar-Or A, Oliveira EM, Anderson DE, et al. Immunological memory: contribution of memory B cells expressing costimulatory molecules in the resting state. J Immunol 2001;167(10):5669-77
  • Cahalan MD, Chandy KG, Decoursey TE, Gupta S. A voltage-gated potassium channel in human T lymphocytes. J Physiol 1985;358:197-237
  • DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. Voltage-gated K + channels in human T lymphocytes: a role in mitogenesis? Nature 1984;307(5950):465-8
  • Matteson DR, Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 1984;307(5950):468-71
  • Fukushima Y, Hagiwara S, Henkart M. Potassium current in clonal cytotoxic T lymphocytes from the mouse. J Physiol 1984;351:645-56
  • Chandy KG, Wulff H, Beeton C, et al. K + channels as targets for specific immunomodulation. Trends Pharmacol Sci 2004;25(5):280-9
  • Beeton C, Wulff H, Standifer NE, et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 2006;103(46):17414-9
  • Levite M, Cahalon L, Peretz A, et al. Extracellular K + and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and β1 integrins. J Exp Med 2000;191(7):1167-76
  • Hanada T, Lin L, Chandy KG, et al. Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J Biol Chem 1997;272(43):26899-904
  • Pereira LE, Villinger F, Wulff H, et al. Pharmacokinetics, toxicity, and functional studies of the selective Kv1.3 channel blocker 5-(4-phenoxybutoxy)psoralen in rhesus macaques. Exp Biol Med (Maywood) 2007;232:1338-54
  • Beeton C, Pennington MW, Wulff H, et al. Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol Pharmacol 2005;67(4):1369-81
  • Lewis RS, Cahalan MD. Subset-specific expression of potassium channels in developing murine T lymphocytes. Science 1988;239(4841 Pt 1):771-5
  • Schmitz A, Sankaranarayanan A, Azam P, et al. Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol 2005;68(5):1254-70
  • Grissmer S, Nguyen AN, Cahalan MD. Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology. J Gen Physiol 1993;102(4):601-30
  • Ishii TM, Silvia C, Hirschberg B, et al. A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 1997;94(21):11651-6
  • Joiner WJ, Wang LY, Tang MD, Kaczmarek LK. hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 1997;94(20):11013-8
  • Logsdon NJ, Kang J, Togo JA, et al. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 1997;272(52):32723-6
  • Fanger CM, Ghanshani S, Logsdon NJ, et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem 1999;274(9):5746-54
  • Ghanshani S, Wulff H, Miller MJ, et al. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 2000;275(47):37137-49
  • Grissmer S, Cahalan MD, Chandy KG. Abundant expression of type l K + channels. A marker for lymphoproliferative diseases? J Immunol 1988;141(4):1137-42
  • Decoursey TE, Chandy KG, Gupta S, Cahalan MD. Two types of potassium channels in murine T lymphocytes. J Gen Physiol 1987;89(3):379-404
  • Chandy KG, DeCoursey TE, Fischbach M, et al. Altered K + channel expression in abnormal T lymphocytes from mice with the lpr gene mutation. Science 1986;233(4769):1197-200
  • Grissmer S, Lewis RS, Cahalan MD. Ca2 + -activated K + channels in human leukemic T cells. J Gen Physiol 1992;99(1):63-84
  • Freedman BD, Fleischmann BK, Punt JA, et al. Identification of Kv1.1 expression by murine CD4–CD8– thymocytes. A role for voltage-dependent K + channels in murine thymocyte development. J Biol Chem 1995;270(38):22406-11
  • Liu QH, Fleischmann BK, Hondowicz B, et al. Modulation of Kv channel expression and function by TCR and costimulatory signals during peripheral CD4 + lymphocyte differentiation. J Exp Med 2002;196(7):897-909
  • Jager H, Adelman JP, Grissmer S. SK2 encodes the apamin-sensitive Ca2 + -activated K + channels in the human leukemic T cell line, Jurkat. FEBS Lett 2000;469(2-3):196-202
  • Fanger CM, Neben AL, Cahalan MD. Differential Ca2 + influx, KCa channel activity, and Ca2 + clearance distinguish Th1 and Th2 lymphocytes. J Immunol 2000;164(3):1153-60
  • Pottosin II, Bonales-Alatorre E, Valencia-Cruz G, et al. TRESK-like potassium channels in leukemic T cells. Pflugers Arch 2008;456(6):1037-48
  • Lee SC, Levy DI, Deutsch C. Diverse K + channels in primary human T lymphocytes. J Gen Physiol 1992;99(5):771-93
  • Meuth SG, Bittner S, Meuth P, et al. TWIK-related acid-sensitive K + channel 1 (TASK1) and TASK3 critically influence T lymphocyte effector functions. J Biol Chem 2008;283(21):14559-70
  • Kim Y, Bang H, Kim D. TASK-3, a new member of the tandem pore K + channel family. J Biol Chem 2000;275(13):9340-7
  • Poling JS, Rogawski MA, Salem N Jr, Vicini S. Anandamide, an endogenous cannabinoid, inhibits Shaker-related voltage-gated K + channels. Neuropharmacology 1996;35(7):983-91
  • Yang YY, Lin HC, Huang YT, et al. Role of Ca2+ -dependent potassium channels in in vitro anandamide-mediated mesenteric vasorelaxation in rats with biliary cirrhosis. Liver Int 2007;27(8):1045-55
  • Calloway N, Vig M, Kinet JP, et al. Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2 + stores and on electrostatic interactions. Mol Biol Cell 2009;20(1):389-99
  • Cahalan MD, Wulff H, Chandy KG. Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol 2001;21(4):235-52
  • Oh-Hora M, Rao A. Calcium signaling in lymphocytes. Curr Opin Immunol 2008;20(3):250-8
  • Vig M, Kinet JP. Calcium signaling in immune cells. Nat Immunol 2009;10(1):21-7
  • Lioudyno MI, Kozak JA, Penna A, et al. Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc Natl Acad Sci USA 2008;105(6):2011-6
  • Roos J, DiGregorio PJ, Yeromin AV, et al. STIM1, an essential and conserved component of store-operated Ca2 + channel function. J Cell Biol 2005;169(3):435-45
  • Zhang SL, Yu Y, Roos J, et al. STIM1 is a Ca2 + sensor that activates CRAC channels and migrates from the Ca2 + store to the plasma membrane. Nature 2005;437(7060):902-5
  • Prakriya M, Feske S, Gwack Y, et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 2006;443(7108):230-3
  • Luik RM, Wu MM, Buchanan J, Lewis RS. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 2006;174(6):815-25
  • Peinelt C, Vig M, Koomoa DL, et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 2006;8(7):771-3
  • Vig M, Beck A, Billingsley JM, et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 2006;16(20):2073-9
  • Luik RM, Wang B, Prakriya M, et al. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 2008;454(7203):538-42
  • Chandy KG, Wulff H, Beeton C, et al. Kv1.3 Potassium channel: physiology, pharmacology and therapeutic indications. In: Triggle DJ, Gopalakrishnan M, Rampe D, Zheng W, editors, Voltage-gated ion channels as drug targets. Weinheim: Wiley-VCH Verlag GmbH & co. KGaA. 2006. p. 214-74
  • Tatham PE, O'Flynn K, Linch DC. The relationship between mitogen-induced membrane potential changes and intracellular free calcium in human T-lymphocytes. Biochim Biophys Acta 1986;856(2):202-11
  • Ishida Y, Chused TM. Heterogeneity of lymphocyte calcium metabolism is caused by T cell-specific calcium-sensitive potassium channel and sensitivity of the calcium ATPase pump to membrane potential. J Exp Med 1988;168(3):839-52
  • Hess SD, Oortgiesen M, Cahalan MD. Calcium oscillations in human T and natural killer cells depend upon membrane potential and calcium influx. J Immunol 1993;150(7):2620-33
  • Leonard RJ, Garcia ML, Slaughter RS, Reuben JP. Selective blockers of voltage-gated K + channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci USA 1992;89(21):10094-8
  • Verheugen JA, Vijverberg HP, Oortgiesen M, Cahalan MD. Voltage-gated and Ca2+ -activated K + channels in intact human T lymphocytes. Noninvasive measurements of membrane currents, membrane potential, and intracellular calcium. J Gen Physiol 1995;105(6):765-94
  • Verheugen JA, Vijverberg HP. Intracellular Ca2+ oscillations and membrane potential fluctuations in intact human T lymphocytes: role of K+ channels in Ca2+ signaling. Cell Calcium 1995;17(4):287-300
  • Mello de Queiroz F, Ponte CG, Bonomo A, et al. Study of membrane potential in T lymphocytes subpopulations using flow cytometry. BMC Immunol 2008;9:63. Published online3 November 2008, doi:10.1186/1471-2172-9-63
  • Panyi G, Bagdány M, Bodnár A, et al. Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci USA 2003;100(5):2592-7
  • Panyi G, Vámosi G, Bacsó Z, et al. Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci USA 2004;101(5):1285-90
  • Nicolaou SA, Neumeier L, Peng Y, et al. The Ca2+ -activated K + channel KCa3.1 compartmentalizes in the immunological synapse of human T lymphocytes. Am J Physiol Cell Physiol 2007;292(4):C1431-9
  • Wulff H, Calabresi PA, Allie R, et al. The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. J Clin Invest 2003;111(11):1703-13
  • Sallusto F, Langenkamp A, Geginat J, Lanzavecchia A. Functional subsets of memory T cells identified by CCR7 expression. Curr Top Microbiol Immunol 2000;251:167-71
  • Mullen KM, Rozycka M, Rus H, et al. Potassium channels Kv1.3 and Kv1.5 are expressed on blood-derived dendritic cells in the central nervous system. Ann Neurol 2006;60(1):118-27
  • Vicente R, Escalada A, Villalonga N, et al. Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem 2006;281(49):37675-85
  • Vicente R, Villalonga N, Calvo M, et al. Kv1.5 association modifies Kv1.3 traffic and membrane localization. J Biol Chem 2008;283(13):8756-64
  • Villalonga N, Escalada A, Vicente R, et al. Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem Biophys Res Commun 2007;352(4):913-8
  • Matzner N, Zemtsova IM, Nguyen TX, et al. Ion channels modulating mouse dendritic cell functions. J Immunol 2008;181(10):6803-9
  • Fordyce CB, Jagasia R, Zhu X, Schlichter LC. Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 2005;25(31):7139-49
  • Pannasch U, Färber K, Nolte C, et al. The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia. Mol Cell Neurosci 2006;33(4):401-11
  • Breland AE, Currier RD. Scorpion venom and multiple sclerosis. Lancet 1983;2(8357):1021
  • Sands SB, Lewis RS, Cahalan MD. Charybdotoxin blocks voltage-gated K + channels in human and murine T lymphocytes. J Gen Physiol 1989;93(6):1061-74
  • Deutsch C, Price M, Lee S, et al. Characterization of high affinity binding sites for charybdotoxin in human T lymphocytes. Evidence for association with the voltage-gated K + channel. J Biol Chem 1991;266(6):3668-74
  • Price M, Lee SC, Deutsch C. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc Natl Acad Sci USA 1989;86(24):10171-5
  • Koo GC, Blake JT, Talento A, et al. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol 1997;158(11):5120-8
  • Beeton C, Wulff H, Barbaria J, et al. Selective blockade of T lymphocyte K + channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci USA 2001;98(24):13942-7
  • Aiyar J, Withka JM, Rizzi JP, et al. Topology of the pore-region of a K + channel revealed by the NMR-derived structures of scorpion toxins. Neuron 1995;15(5):1169-81
  • Aiyar J, Rizzi JP, Gutman GA, Chandy KG. The signature sequence of voltage-gated potassium channels projects into the external vestibule. J Biol Chem 1996;271(49):31013-6
  • Rauer H, Pennington M, Cahalan M, Chandy KG. Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. J Biol Chem 1999;274(31):21885-92
  • Doyle DA, Morais Cabral J, Pfuetzner RA. The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science 1998;280(5360):69-77
  • MacKinnon R, Cohen SL, Kuo A, et al. Structural conservation in prokaryotic and eukaryotic potassium channels. Science 1998;280(5360):106-9
  • Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K + channel. Science 2005;309(5736):897-903
  • Castaneda O, Sotolongo V, Amor AM, et al. Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. Toxicon 1995;33(5):603-13
  • Cotton J, Crest M, Bouet F, et al. A potassium-channel toxin from the sea anemone Bunodosoma granulifera, an inhibitor for Kv1 channels. Revision of the amino acid sequence, disulfide-bridge assignment, chemical synthesis, and biological activity. Eur J Biochem 1997;244(1):192-202
  • Alessandri-Haber N, Lecoq A, Gasparini S, et al. Mapping the functional anatomy of BgK on Kv1.1, Kv1.2, and Kv1.3. Clues to design analogs with enhanced selectivity. J Biol Chem 1999;274(50):35653-61
  • Kalman K, Pennington MW, Lanigan MD, et al. ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem 1998;273(49):32697-707
  • Beeton C, Wulff H, Singh S, et al. A novel fluorescent toxin to detect and investigate Kv1.3 channel up-regulation in chronically activated T lymphocytes. J Biol Chem 2003;278(11):9928-37
  • Pennington MW, Beeton C, Galea CA, et al. Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes. Mol Pharmacol 2009;75(4):762-73
  • Michne WF, Guiles JW, Treasurywala AM, et al. Novel inhibitors of potassium ion channels on human T lymphocytes. J Med Chem 1995;38(11):1877-83
  • Hill RJ, Grant AM, Volberg W, et al. WIN 17317-3: novel nonpeptide antagonist of voltage-activated K+ channels in human T lymphocytes. Mol Pharmacol 1995;48(1):98-104
  • Nguyen A, Kath JC, Hanson DC, et al. Novel nonpeptide agents potently block the C-type inactivated conformation of Kv1.3 and suppress T cell activation. Mol Pharmacol 1996;50(6):1672-9
  • Wanner SG, Glossmann H, Knaus HG, et al. WIN 17317-3, a new high-affinity probe for voltage-gated sodium channels. Biochemistry 1999;38(34):11137-46
  • Hanson DC, Nguyen A, Mather RJ, et al. UK-78,282, a novel piperidine compound that potently blocks the Kv1.3 voltage-gated potassium channel and inhibits human T cell activation. Br J Pharmacol 1999;126(8):1707-16
  • Koo GC, Blake JT, Shah K, et al. Correolide and derivatives are novel immunosuppressants blocking the lymphocyte Kv1.3 potassium channels. Cell Immunol 1999;197(2):99-107
  • Bohuslavizki KH, Hänsel W, Kneip A, et al. Potassium channel blockers from Ruta–a new approach for the treatment of multiple sclerosis. Gen Physiol Biophys 1992;11(5):507-12
  • Bohuslavizki KH, Hinck-Kneip C, Kneip A. Koppenh reduction of MS-related scotomata by a new class of potassium channel blockers from Ruta graveolens. Neuro Opthalmol 1993;13:191-8
  • Vennekamp J, Wulff H, Beeton C, et al. Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol Pharmacol 2004;65(6):1364-74
  • Ren YR, Pan F, Parvez S, et al. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes. PLoS ONE 2008;3(12):e4009. Publiashed online 23 December 2008, doi:10.1371/journal.pone.0004009
  • Available from: http://www.bionomics.com.au
  • Merck Serono and Bionomics Announce Multiple Sclerosis Development and Licensing Agreement. Pharmalicensing Ltd 2008. Available from: http://pharmalicensing.com/public/news/viewNewsML/1237/Merck%20Serono_and_Bionomics_Announce_Multiple_Sclerosis_Development_and_Licensing_Agreement [Last accessed 14 May 2009]
  • Lin CS, Boltz RC, Blake JT, et al. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med 1993;177(3):637-45
  • Verheugen JA, Le Deist F, Devignot V, Korn H. Enhancement of calcium signaling and proliferation responses in activated human T lymphocytes. Inhibitory effects of K + channel block by charybdotoxin depend on the T cell activation state. Cell Calcium 1997;21(1):1-17
  • Matheu MP, Beeton C, Garcia A, et al. Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 2008;29(4):602-14
  • Hu L, Pennington M, Jiang Q, et al. Characterization of the functional properties of the voltage-gated potassium channel Kv1.3 in human CD4 + T lymphocytes. J Immunol 2007;179(7):4563-70
  • Matheu MP, Beeton C, Garcia A, et al. Effector memory T cell in contact with an antigen presenting cell 3 hours after antigen challenge during DTH. Veomed 2008. Available from: http://www.veomed.com/?q = node/8647 [Last accessed 14 May 2009]
  • Matheu MP, Beeton C, Garcia A, et al. Effector memory T cells moving in inflamed tissue 24 hours after antigen challenge during delayed type hypersensitivity. Veomed 2008. Available from: http://www.veomed.com/?q = node/8580 [Last accessed 14 May 2009]
  • Matheu MP, Beeton C, Garcia A, et al. Effector memory T cells paralyzed in inflamed tissue by ShK-186 treatment: visualization by two-photon imaging. Veomed 2008. Available from: http://www.veomed.com/?q = node/8159 [Last accessed 14 May 2009]
  • Matheu MP, Beeton C, Garcia A, et al. Effector memory T cells moving along collagen fibers in inflamed tissue 24 hours after antigen challenge during DTH. Veomed 2008. Available from: http://www.veomed.com/?q = node/2843 [Last accessed 14 May 2009]
  • Fdez-Freire LR, Serrano Gotarredona A, Bernabeu Wittel J, et al. Clofazimine as elective treatment for granulomatous cheilitis. J Drugs Dermatol 2005;4(3):374-7
  • Bezerra EL, Vilar MJ, da Trindade Neto PB, Sato EI et al. Double-blind, randomized, controlled clinical trial of clofazimine compared with chloroquine in patients with systemic lupus erythematosus. Arthritis Rheum 2005;52(10):3073-8
  • Nair LV, Shereef PH. Successful treatment of generalized pustular psoriasis with clofazimine. Int J Dermatol 1991;30(2):151
  • Chuaprapaisilp T. Piamphongsant T. Treatment of pustular psoriasis with clofazimine. Br J Dermatol 1978;99(3):303-5
  • Lee SJ, Wegner SA, McGarigle CJ, et al. Treatment of chronic graft-versus-host disease with clofazimine. Blood 1997;89(7):2298-302
  • Matheu MP, Beeton C, Garcia A, et al. Chronic relapsing-remitting experimental autoimmune encephalomyelitis (CR-EAE) in Dark Agouti rats Treatment of chronic relapsing-remitting experimental autoimmune encephalomyelitis by ShK-186. Veomed 2009; Available from: http://www.veomed.com/?q = node/8896 [Last accessed 14 May 2009]
  • Matheu MP, Beeton C, Garcia A, et al. Treatment of chronic relapsing-remitting EAE in rats with ShK-186, an inhibitor of Kv1.3 channels in effector memory T cells. Available from: http://www.veomed.com/?q = node/2841 [Last accessed 14 May 2009]
  • Azam P, Sankaranarayanan A, Homerick D, et al. Targeting effector memory T cells with the small molecule Kv1.3 blocker PAP-1 suppresses allergic contact dermatitis. J Invest Dermatol 2007;127(6):1419-29
  • Valverde P, Kawai T, Taubman MA. Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J Bone Miner Res 2004;19(1):155-64
  • Taubman MA, Valverde P, Han X, Kawai T. Immune response: the key to bone resorption in periodontal disease. J Periodontol 2005;76(11 Suppl):2033-41
  • Arkett S, Dixon J, Yang JN, et al. Mammalian osteoclasts express a transient potassium channel with properties of Kv1.3. Receptors Channels 1994;2(4):281-93
  • Jacob A, Hurley IR, Goodwin LO, et al. Molecular characterization of a voltage-gated potassium channel expressed in rat testis. Mol Hum Reprod 2000;6(4):303-13
  • Manabe I, Tsuboi M, Ahmmed GU, et al. Expression of Shaker-type voltage-gated potassium channel genes in the guinea-pig. Res Commun Mol Pathol Pharmacol 1998;99(1):33-40
  • Vautier F, Belachew S, Chittajallu R, Gallo V. Shaker-type potassium channel subunits differentially control oligodendrocyte progenitor proliferation. Glia 2004;48(4):337-45
  • Grunnet M, Rasmussen HB, Hay-Schmidt A, Klaerke DA. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia. Biochim Biophys Acta 2003;1616(1):85-94
  • Xu J, Koni PA, Wang P, et al. The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet 2003;12(5):551-9
  • Xu J, Wang P, Li Y, et al. The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad Sci USA 2004;101(9):3112-7
  • Parizhskaya M, Youssef NN, Di Lorenzo C, Goyal RK. Clofazimine enteropathy in a pediatric bone marrow transplant recipient. J Pediatr 2001;138(4):574-6
  • Mathew BS, Pulimood AB, Prasanna CG, et al. Clofazimine induced enteropathy–a case highlighting the importance of drug induced disease in differential diagnosis. Trop Gastroenterol 2006;27(2):87-8
  • Craythorn JM, Swartz M, Creel DJ. Clofazimine-induced bull's-eye retinopathy. Retina 1986;6(1):50-2
  • McDougall AC, Horsfall WR, Hede JE, Chaplin AJ. Splenic infarction and tissue accumulation of crystals associated with the use of clofazimine (Lamprene; B663) in the treatment of pyoderma gangrenosum. Br J Dermatol 1980;102(2):227-30
  • Gegg CV, Walker KW, Miranda LP, Xiong F. Modified Fc molecules. USPTO Application Number 20070269369; 2007
  • Markovic-Plese S, Cortese I, Wandinger KP, et al. CD4+CD28- costimulation-independent T cells in multiple sclerosis. J Clin Invest 2001;108:1185-94
  • Viglietta V, Kent SC, Orban T, et al. GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest 2002;109:895-903
  • Ellis CN, Krueger GG. Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N Engl J Med 2001;345:248-55
  • Chamian F, Lin SL, Lee E, et al. Alefacept (anti-CD2) causes a selective reduction in circulating effector memory T cells (Tem) and relative preservation of central memory T cells (Tcm) in psoriasis. J Transl Med 2007;5:27
  • Abdulahad WH, Stegeman CA, Limburg PC, et al. CD4-positive effector memory T cells participate in disease expression in ANCA-associated vasculitis. Ann N Y Acad Sci 2007;1107:22-31
  • Lamprecht P, Mueller A, Gross WL. CD28- T cells display features of effector memory T cells in Wegener's granulomatosis. Kidney Int 2004;65:1113; author reply -4
  • Abdulahad WH, van der Geld YM, Stegeman CA, et al. Persistent expansion of CD4+ effector memory T cells in Wegener's granulomatosis. Kidney Int 2006;70:938-47
  • Capraru D, Muller A, Csernok E, et al. Expansion of circulating NKG2D+ effector memory T-cells and expression of NKG2D-ligand MIC in granulomaous lesions in Wegener's granulomatosis. Clin Immunol 2008;127:144-50
  • Guida G, Vallario A, Stella S, et al. Clonal CD8+ TCR-Vbeta expanded populations with effector memory phenotype in Churg Strauss syndrome. Clin Immunol 2008;128:94-102
  • Mizuno K, Yachie A, Nagaoki S, et al. Oligoclonal expansion of circulating and tissue-infiltrating CD8+ T cells with killer/effector phenotypes in juvenile dermatomyositis syndrome. Clin Exp Immunol 2004;137:187-94
  • Minetti C, Gattorno M, Repetto S, et al. Chemokine receptor CCR7 is expressed in muscle fibers in juvenile dermatomyositis. Biochem Biophys Res Commun 2005;333:540-3
  • Warrington KJ, Nair U, Carbone LD, et al. Characterisation of the immune response to type I collagen in scleroderma. Arthritis Res Ther 2006;8:R136
  • Wells AU, Lorimer S, Majumdar S, et al. Fibrosing alveolitis in systemic sclerosis: increase in memory T-cells in lung interstitium. Eur Respir J 1995;8:266-71
  • Lin MS, Fu CL, Aoki V, et al. Desmoglein-1-specific T lymphocytes from patients with endemic pemphigus foliaceus (fogo selvagem). J Clin Invest 2000;105:207-13
  • Valverde P, Kawai T, Taubman MA. Potassium channel-blockers as therapeutic agents to interfere with bone resorption of periodontal disease. J Dent Res 2005;84:488-99
  • Yamashita K, Choi U, Woltz PC, et al. Severe chronic graft-versus-host disease is characterized by a preponderance of CD4(+) effector memory cells relative to central memory cells. Blood 2004;103:3986-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.