196
Views
17
CrossRef citations to date
0
Altmetric
Review

Regeneration following spinal cord injury, from experimental models to humans: where are we?

Pages 363-376 | Published online: 17 May 2006

Bibliography

  • SEKHON LH, FEHLINGS MG: Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (2001) 26(24 Suppl.):S2-S12.
  • BASSO DM, BEATTIE MS, BRESNAHAN JC: Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp. Neurol. (1996) 139(2):244-256.
  • MA M, BASSO DM, WALTERS P, STOKES BT, JAKEMAN LB: Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse. Exp. Neurol. (2001) 169(2):239-254.
  • SROGA JM, JONES TB, KIGERL KA, MCGAUGHY VM, POPOVICH PG: Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J. Comp. Neurol. (2003) 462(2):223-240.
  • SCHWAB ME, BARTHOLDI D: Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. (1996) 76(2):319-70.
  • NORENBERG MD, SMITH J, MARCILLO A: The pathology of human spinal cord injury: defining the problems. J. Neurotrauma (2004) 21(4):429-440.
  • EIDELBERG E, STRAEHLEY D, ERSPAMER R, WATKINS CJ: Relationship between residual hindlimb-assisted locomotion and surviving axons after incomplete spinal cord injuries. Exp. Neurol. (1977) 56(2):312-322.
  • KWON BK, TETZLAFF W, GRAUER JN, BEINER J, VACARO AR: Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. (2004) 4(4):451-464.
  • YAKOVLEV AG, FADEN AI: Caspase-dependent apoptotic pathways in CNS injury. Mol. Neurobiol. (2001) 24(1-3):131-144.
  • PARK E, VELUMIAN AA, FEHLINGS MG: The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J. Neurotrauma (2004) 21(6):754-774.
  • SAVILLE LR, POSPISIL CH, MAWHINNEY LA et al.: A monoclonal antibody to CD11d reduces the inflammatory infiltrate into the injured spinal cord: a potential neuroprotective treatment. J. Neuroimmunol. (2004) 156(1-2):42-57.
  • BARTHOLDI D, SCHWAB ME: Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur. J. Neurosci. (1997) 9(7):1422-1438.
  • POPOVICH PG, VAN ROOIJEN N, HICKEY WF, PREIDIS G, MCGAUGHY V: Hematogenous macrophages express CD8 and distribute to regions of lesion cavitation after spinal cord injury. Exp. Neurol. (2003) 182(2):275-287.
  • BETHEA JR, NAGASHIMA H, ACOSTA MC et al.: Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J. Neurotrauma (1999) 16(10):851-863.
  • BETHEA JR, DIETRICH WD: Targeting the host inflammatory response in traumatic spinal cord injury. Curr. Opin. Neurol. (2002) 15(3):355-360.
  • BRAMBILLA R, BRACCHI-RICARD V, HU WH et al.: Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med. (2005) 202(1):145-156.
  • BAO F, DEKABAN GA, WEAVER L: Anti-CD11d antibody treatment reduces free radical formation and cell death in the injured spinal cord of rats. J. Neurochem. (2005) 94(5):1361-1373.
  • RIBOTTA MG, MENET V, PRIVAT A: Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice. Acta Neurochir. Suppl. (2004) 89:87-92.
  • SILVER J, MILLER JH: Regeneration beyond the glial scar. Nat. Rev. Neurosci. (2004) 5(2):146-56.
  • DREYFUS CF, DAI X, LERCHER LD, RACEY BR, FRIEDMAN WJ, BLACK IB: Expression of neurotrophins in the adult spinal cord in vivo. J. Neurosci. Res. (1999) 56(1):1-7.
  • HSU JY, STEIN SA, XU XM: Temporal and spatial distribution of growth-associated molecules and astroglial cells in the rat corticospinal tract during development. J. Neurosci. Res. (2005) 80(3):330-340.
  • DOUCET G, PETIT A: Seeking axon guidance molecules in the adult rat CNS. Prog. Brain Res. (2002) 137:453-465.
  • DUMONT RJ, OKONKWO DO, VERMA S et al.: Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin. Neuropharmacol. (2001) 24(5):254-264.
  • YAKOVLEV AG, FADEN AI: Molecular biology of CNS injury. J. Neurotrauma (1995) 12(5):767-777.
  • FOURNIER AE, STRITTMATTER SM: Regenerating nerves follow the road more traveled. Nat. Neurosci. (2002) 5(9):821-822.
  • MAKWANA M, RAIVICH G: Molecular mechanisms in successful peripheral regeneration. FEBS J. (2005) 272(11):2628-2638.
  • HE Z, KOPRIVICA V: The Nogo signaling pathway for regeneration block. Ann. Rev. Neurosci. (2004) 27:341-368.
  • CHEN MS, HUBER AB, VAN DER HAAR ME et al.: Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature (2000) 403(6768):434-439.
  • GRANDPRE T, NAKAMURA F, VARTANIAN T, STRITTMATTER SM: Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature (2000) 403(6768):439-444.
  • DEBELLARD ME, TANG S, MUKHOPADHYAY G, SHEN YJ, FILBIN MT: Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol. Cell. Neurosci. (1996) 7(2):89-101.
  • MUKHOPADHYAY G, DOHERTY P, WALSH FS, CROCKER PR, FILBIN MT: A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron (1994) 13(3):757-767.
  • DOMENICONI M, FILBIN MT: Overcoming inhibitors in myelin to promote axonal regeneration. J. Neurol. Sci (2005) 233(1-2):43-47.
  • YIU G, HE Z: Signaling mechanisms of the myelin inhibitors of axon regeneration. Curr. Opin. Neurobiol. (2003) 13(5):545-551.
  • MI S, LEE X, SHAO Z et al.: LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci. (2004) 7(3):221-228.
  • WANG KC, KIM JA, SIVASANKARAN R, SEGAL R, HE Z: P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature (2002) 420(6911):74-78.
  • WANG KC, KOPRIVICA V, KIM JA et al.: Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature (2002) 417(6892):941-944.
  • WONG ST, HENLEY JR, KANNING KC, HUANG KH, BOTHWELL M, POO MM: A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat. Neurosci. (2002) 5(12):1302-1308.
  • NIEDEROST B, OERTLE T, FRITSCHE J, MCKINNEY RA, BANDTLOW CE: Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J. Neurosci. (2002) 22(23):10368-10376.
  • ALABED YZ, GRADOS-MUNRO E, FERRARO GB, HSIEH SH, FOURNIER AE: Neuronal responses to myelin are mediated by rho kinase. J. Neurochem. (2006) 96(6):1616-1625.
  • OERTLE T, VAN DER HAAR ME, BANDTLOW CE et al.: Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J. Neurosci. (2003) 23(13):5393-5406.
  • HUBER AB, SCHWAB ME: Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol. Chem. (2000) 381(5-6):407-419.
  • POT C, SIMONEN M, WEINMANN O et al.: Nogo-A expressed in Schwann cells impairs axonal regeneration after peripheral nerve injury. J. Cell Biol. (2002) 159(1):29-35.
  • SIMONEN M, PEDERSEN V, WEINMANN O et al.: Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron (2003) 38(2):201-211.
  • ZHENG B, HO C, LI S, KEIRSTEAD H, STEWARD O, TESSIER-LAVIGNE M: Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron (2003) 38(2):213-224.
  • KIM JE, LI S, GRANDPRE T, QIU D, STRITTMATTER SM: Axon regeneration in young adult mice lacking Nogo-A/B. Neuron (2003) 38(2):187-199.
  • ZHENG B, ATWAL J, HO C et al.: Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc. Natl. Acad. Sci. USA (2005) 102(4):1205-1210.
  • SCHAFER M, FRUTTIGER M, MONTAG D, SCHACHNER M, MARTINI R: Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wlds mice. Neuron (1996) 16(6):1107-1113.
  • BARTSCH U, BANDTLOW CE, SCHNELL L et al.: Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron (1995) 15(6):1375-1381.
  • SHEN YJ, DEBELLARD ME, SALZER JL, RODER J, FILBIN MT: Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibits axonal regeneration and branching. Mol. Cell. Neurosci. (1998) 12(1-2):79-91.
  • BARTON WA, LIU BP, TZVETKOVA D et al.: Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins. EMBO J. (2003) 22(13):3291-3302.
  • KOTTIS V, THIBAULT P, MIKOL D et al.: Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J. Neurochem. (2002) 82(6):1566-1569.
  • BENSON MD, ROMERO MI, LUSH ME, LU QR, HENKEMEYER M, PARADA LF: Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc. Natl. Acad. Sci. USA (2005) 102(30):10694-10699.
  • YAMASHITA T, TUCKER KL, BARDE YA: Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron (1999) 24(3):585-593.
  • YAMASHITA T, TOHYAMA M: The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat. Neurosci. (2003) 6(5):461-467.
  • DUBREUIL CI, WINTON MJ, MCKERRACHER L: Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J. Cell Biol. (2003) 162(2):233-243.
  • SHAO Z, BROWNING JL, LEE X et al.: TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron (2005) 45(3):353-359.
  • PARK JB, YIU G, KANEKO S et al.: A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron (2005) 45(3):345-351.
  • BERTRAND J, WINTON MJ, RODRIGUEZ-HERNANDEZ N, CAMPENOT RB, MCKERRACHER L: Application of Rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats. J. Neurosci. (2005) 25(5):1113-1121.
  • LEHMANN M, FOURNIER A, SELLES-NAVARRO I et al.: Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. (1999) 19(17):7537-7547.
  • FOURNIER AE, TAKIZAWA BT, STRITTMATTER SM: Rho kinase inhibition enhances axonal regeneration in the injured CNS. J. Neurosci. (2003) 23(4):1416-1423.
  • CHAN CC, KHODARAHMI K, LIU J et al.: Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp. Neurol. (2005) 196(2):352-364.
  • MORGENSTERN DA, ASHER RA, FAWCETT JW: Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain Res. (2002) 137:313-332.
  • JONES LL, MARGOLIS RU, TUSZYNSKI MH: The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp. Neurol. (2003) 182(2):399-411.
  • KRAUTSTRUNK M, SCHOLTES F, MARTIN D et al.: Increased expression of the putative axon growth-repulsive extracellular matrix molecule, keratan sulphate proteoglycan, following traumatic injury of the adult rat spinal cord. Acta Neuropathol. (Berl) (2002) 104(6):592-600.
  • LEMONS ML, HOWLAND DR, ANDERSON DK: Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp. Neurol. (1999) 160(1):51-65.
  • JONES LL, SAJED D, TUSZYNSKI MH: Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J. Neurosci. (2003) 23(28):9276-9288.
  • CAMAND E, MOREL MP, FAISSNER A, SOTELO C, DUSART I: Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord. Eur. J. Neurosci. (2004) 20(5):1161-1176.
  • MENET V, PRIETO M, PRAVAT A: Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc. Natl. Acad. Sci. USA (2003) 100(15):8999-9004.
  • KOPRIVICA V, CHO K-S, PARK JB et al.: EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science (2005) 310(5745):106-110.
  • RAIVICH G, BOHATSCHEK M, DA COSTA C et al.: The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron (2004) 43(1):57-67.
  • ZHOU FQ, WALZER MA, SNIDER WD: Turning on the machine: genetic control of axon regeneration by c-Jun. Neuron (2004) 43(1):1-2.
  • KNOOPS B, OCTAVE JN: Alpha 1-tubulin mRNA level is increased during neurite outgrowth of NG 108-15 cells but not during neurite outgrowth inhibition by CNS myelin. Neuroreport (1997) 8(3):795-798.
  • GLOSTER A, WU W, SPEELMAN A et al.: The T alpha 1 alpha-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. J. Neurosci. (1994) 14(12):7319-7330.
  • DI GIOVANNI S, DE BIASE A, YAKOVLEV A et al.: In vivo and in vitro characterization of novel neuronal plasticity factors identified following spinal cord injury. J. Biol. Chem. (2005) 280(3):2084-2091.
  • TUCKER RP: The roles of microtubule-associated proteins in brain morphogenesis: a review. Brain Res. Brain Res. Rev. (1990) 15(2):101-120.
  • LAUX T, FUKAMI K, THELEN M, GOLUB T, FREY D, CARONI P: GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. (2000) 149(7):1455-1472.
  • FREY D, LAUX T, XU L, SCHNEIDER C, CARONI P: Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J. Cell Biol. (2000) 149(7):1443-1454.
  • CARONI P, GRANDES P: Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J. Cell Biol. (1990) 110(4):1307-1317.
  • AIGNER L, ARBER S, KAPFHAMMER JP et al.: Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell (1995) 83(2):269-278.
  • AIGNER L, CARONI P: Depletion of 43-kD growth-associated protein in primary sensory neurons leads to diminished formation and spreading of growth cones. J. Cell Biol. (1993) 123(2):417-29.
  • JUNG M, PETRAUSCH B, STUERMER CA: Axon-regenerating retinal ganglion cells in adult rats synthesize the cell adhesion molecule L1 but not TAG-1 or SC-1. Mol. Cell. Neurosci. (1997) 9(2):116-131.
  • KLOCKER N, JUNG M, STUERMER CAO, BAHR M: BDNF increases the number of axotomized rat retinal ganglion cells expressing GAP-43, L1, and TAG-1 mRNA-a supportive role for nitric oxide? Neurobiol. Dis. (2001) 8(1):103-113.
  • DI GIOVANNI S, FADEN AI, YAKOVLEV A et al.: Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. FASEB J. (2005) 19(1):153-154.
  • NAEVE GS, RAMAKRIHNAN M, KRAMER R, HEVRONI D, CITRI Y, THEILL LE: Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc. Natl. Acad. Sci. USA (1997) 94(6):2648-2653.
  • KIMURA K, MIZOGUCHI A, IDE C: Regulation of growth cone extension by SNARE proteins. J. Histochem. Cytochem. (2003) 51(4):429-433.
  • CARONI P: New EMBO members’ review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. EMBO J. (2001) 20(16):4332-4336.
  • BOMZE HM, BULSARA KR, ISKANDAR BJ, CARONI P, SKENE JH et al.: Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat. Neurosci. (2001) 4(1):38-43.
  • BENOWITZ LI, GOLDBERG DE, IRWIN N: Inosine stimulates axon growth in vitro and in the adult CNS. Prog. Brain Res. (2002) 137:389-399.
  • TESSLER A: Neurotrophic effects on dorsal root regeneration into the spinal cord. Prog. Brain Res. (2004) 143:147-154.
  • BREGMAN BS, COUMANS JV, DAI HN et al.: Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog. Brain Res. (2002) 137:257-273.
  • PLUNET W, KWON BK, TETZLAFF W: Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J. Neurosci. Res. (2002) 68(1):1-6.
  • WIDENFALK J, LUNDSTROMER K, JUBRAN M, BRENE S, OLSON L: Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J. Neurosci. (2001) 21(10):3457-3475.
  • FERNANDEZ E, PALLINI R, MERCANTI D: Effects of topically administered nerve growth factor on axonal regeneration in peripheral nerve autografts implanted in the spinal cord of rats. Neurosurgery (1990) 26(1):37-42.
  • COUMANS JV, LIN TTS, DAI HN et al.: Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J. Neurosci. (2001) 21(23):9334-9344.
  • LIU Y, HIMES BT, MURRAY M, TESSLAR A, FISCHER I: Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy. Exp. Neurol. (2002) 178(2):150-164.
  • LIU Y, KIM D, HIMES BT et al.: Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J. Neurosci. (1999) 19(11):4370-4387.
  • KIM D, SCHALLERT T, LIU Y et al.: Transplantation of genetically modified fibroblasts expressing BDNF in adult rats with a subtotal hemisection improves specific motor and sensory functions. Neurorehabil. Neural. Repair (2001) 15(2):141-150.
  • GRILL R, MURAI K, BLESCH A, GAGE FH, TUSZYNSKI MH: Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. (1997) 17(14):5560-5572.
  • APFEL SC: Is the therapeutic application of neurotrophic factors dead? Ann. Neurol. (2002) 51(1):8-11.
  • CONTI M, RICHTER W, MEHATS C, LIVERA G, PARK JY, JIN C: Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J. Biol. Chem. (2003) 278(8):5493-5496.
  • SUNAHARA RK, TAUSSIG R: Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol. Interv. (2002) 2(3):168-184.
  • SHAYWITZ AJ, GREENBERG ME: CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Ann. Rev. Biochem. (1999) 68:821-861.
  • CONKRIGHT MD, MONTMINY M: CREB: the unindicted cancer co-conspirator. Trends Cell Biol. (2005) 15(9):457-459.
  • LIU HH, BRADY ST: cAMP, tubulin, axonal transport, and regeneration. Exp. Neurol. (2004) 189(2):199-203.
  • CAI D, SHEN Y, DE BELLARD M, TANG S, FILBIN MT: Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron (1999) 22(1):89-101.
  • SONG H, MING G, HE Z et al.: Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science (1998) 281(5382):1515-1518.
  • MING GL, SONG HJ, BERNINGER B, HOLT CE, TESSIER-LAVIGNE M, POO MM: cAMP-dependent growth cone guidance by netrin-1. Neuron (1997) 19(6):1225-1235.
  • QIU J, CAI D, DAI H et al.: Spinal axon regeneration induced by elevation of cyclic AMP. Neuron (2002) 34(6):895-903.
  • NEUMANN S, BRADKE F, TESSIER-LAVIGNE M, BASBAUM AI: Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron (2002) 34(6):885-893.
  • CAI D, QIU J, CAO Z, MCATEE M, BREGMAN BS, FILBIN MT: Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J. Neurosci. (2001) 21(13):4731-4739.
  • NIKULINA E, TIDWELL JL, DAI HN, BREGMAN BS, FILBIN MT: The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc. Natl Acad. Sci. USA (2004) 101(23):8786-8790.
  • WONG LF, YIP PK, BATTAGLIA A et al.: Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat. Neurosci. (2006) 9(2):243-250.
  • HIEBERT GW, KHODARAHMI K, MCGRAW J, STEEVES JD, TETZLAFF W: Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J. Neurosci. Res. (2002) 69(2):160-168.
  • RICHARDSON PM, MCGUINNESS UM, AGUAYO AJ: Peripheral nerve autografts to the rat spinal cord: studies with axonal tracing methods. Brain Res. (1982) 237(1):147-162.
  • TETZLAFF W, KOBAYASHI NR, GIEHL KM, TSUI BJ, CASSAR SL, BEDARD AM: Response of rubrospinal and corticospinal neurons to injury and neurotrophins. Prog. Brain Res. (1994) 103:271-286.
  • CHENG H, ALMSTROM S, GIMENEZ-LLORT L et al.: Gait analysis of adult paraplegic rats after spinal cord repair. Exp. Neurol. (1997) 148(2):544-557.
  • CHENG H, CAO Y, OLSON L: Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science (1996) 273(5274):510-513.
  • XU XM, CHEN A, GUENARD V, KLEITMAN N, BUNGE MB: Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. (1997) 26(1):1-16.
  • TAKAMI T, OUDEGA M, BATES ML, WOOD PM, KLEITMAN N, BUNGE MB: Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J. Neurosci. (2002) 22(15):6670-6681.
  • BAMBER NI, LI H, LU X, OUDEGA M, AEBISCHER P, XU XM: Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur. J. Neurosci. (2001) 13(2):257-268.
  • GIRARD C, BEMELMANS AP, DUFOUR N et al.: Grafts of brain-derived neurotrophic factor and neurotrophin 3-transduced primate Schwann cells lead to functional recovery of the demyelinated mouse spinal cord. J. Neurosci. (2005) 25(35):7924-7933.
  • GUEST JD, RAO A, OLSON L, BUNGE MB, BUNGE RP: The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp. Neurol. (1997) 148(2):502-522.
  • MORENO-FLORES MT, DIAZ-NIDO J, WANDOSELL F, AVILA J: Olfactory ensheathing glia: drivers of axonal regeneration in the central nervous system? J. Biomed. Biotechnol. (2002) 2(1):37-43.
  • RAMON-CUETO A, CORDERO MI, SANTOS-BENITO FF, AVILA J: Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron (2000) 25(2):425-435.
  • LU J, FERON F, HO SM, MACKAY-SIM A, WAITE PM: Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res. (2001) 889(1-2):344-357.
  • LU J, FERON F, MACKAY-SIM A, WAITE PM: Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain (2002) 125(Pt 1):14-21.
  • RUITENBERG MJ, LEVISON DB, LEE SV, VERHAAGEN J, HARVEY AR, PLANT GW: NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration. Brain (2005) 128(Pt 4):839-853.
  • CAO L, LIU L, CHEN Z-Y et al.: Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain (2004) 127(Pt 3):535-549.
  • LOPEZ-VALES R, FORES J, VERDU E, NAVARRO X: Acute and delayed transplantation of olfactory ensheathing cells promote partial recovery after complete transection of the spinal cord. Neurobiol. Dis. (2006) 21(1):57-68.
  • LI Y, FIELD PM, RAISMAN G: Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J. Neurosci. (1998) 18(24):10514-10524.
  • KEYVAN-FOULADI N, RAISMAN G, LI Y: Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J. Neurosci. (2003) 23(28):9428-9434.
  • HUANG H, CHEN L, WANG H et al.: Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin. Med. J. (Engl) (2003) 116(10):1488-1491.
  • RAPALINO O, LAZAROV-SPIEGLER O, AGRANOV E et al.: Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. (1998) 4(7):814-821.
  • POPOVICH PG, GUAN Z, MCGAUGHY V, FISHER L, HICKEY WF, BASSO DM: The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J. Neuropathol. Exp. Neurol. (2002) 61(7):623-633.
  • CERNAK I, STOICA B, BYRNES KR, DI GIOVANNI S, FADEN AI et al.: Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle (2005) 4(9):1286-1293.
  • DI GIOVANNI S, MOVSESYAN V, AHMED F et al.: Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc. Natl. Acad. Sci. USA (2005) 102(23):8333-8338.
  • POPOVICH PG, GUAN Z, WEI P, HUITINGA I, VAN ROOIJEN N, STOKES BT: Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. (1999) 158(2):351-365.
  • KNOLLER N, ANERBACH G, FULGA V et al.: Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: Phase I study results. J. Neurosurg. Spine (2005) 3(3):173-181.
  • TESSLER A, FISCHER I, GISZTER S et al.: Embryonic spinal cord transplants enhance locomotor performance in spinalized newborn rats. Adv. Neurol. (1997) 72:291-303.
  • BREGMAN BS, KUNKEL-BAGDEN E, REIER PJ, DAI HN, MCATEE M, GAO D: Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp. Neurol. (1993) 123(1):3-16.
  • WEISSMAN IL, ANDERSON DJ, GAGE F: Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Ann. Rev. Cell Dev. Biol. (2001) 17:387-403.
  • MAYER-PROSCHEL M, KALYANI AJ, MUJTABA T, RAO MS: Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron (1997) 19(4):773-785.
  • KALYANI A, HOBSON K, RAO MS: Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev. Biol. (1997) 186(2):202-223.
  • MUJTABA T, PIPER DR, KALYANI A, GROVES AK, LUCERO MT, RAO MS: Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev. Biol. (1999) 214(1):113-127.
  • EMSLEY JG, MITCHELL BD, MAGAVI SS, ARLOTTA PP, MACKLIS JD: The repair of complex neuronal circuitry by transplanted and endogenous precursors. NeuroRx (2004) 1(4):452-471.
  • MITCHELL BD, EMSLEY JG, MAGAVI SS, ARLOTTA P, MACKLIS JD et al.: Constitutive and induced neurogenesis in the adult mammalian brain: manipulation of endogenous precursors toward CNS repair. Dev. Neurosci. (2004) 26(2-4):101-117.
  • EMSLEY JG, MITCHELL BD, KEMPERMANN G, MACKLIS JD: Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog. Neurobiol. (2005) 75(5):321-341.
  • GOLDMAN S: Stem and progenitor cell-based therapy of the human central nervous system. Nat. Biotechnol. (2005) 23(7):862-871.
  • HOFSTETTER CP, HOLMSTROM NA, LILJA JA et al.: Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci. (2005) 8(3):346-353.
  • LIU Y, HIMES BT, SOLOWSKA J et al.: Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp. Neurol. (1999) 158(1):9-26.
  • OGAWA Y, SAWAMOTO K, MIYATA T et al.: Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res. (2002) 69(6):925-933.
  • OUREDNIK J, OUREDNIK V, LYNCH WP, SCHACHNER M SNYDER EY: Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol. (2002) 20(11):1103-1110.
  • MCDONALD JW, LIU XZ, QU Y et al.: Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. (1999) 5(12):1410-1412.
  • LIU S, QU Y, STEWART TJ et al.: Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. USA (2000) 97(11):6126-6131.
  • KEIRSTEAD HS, NISTOR G, BERNAL G et al.: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. (2005) 25(19):4694-4705.
  • YAN J, WELSH AM, BORA SH, SNYDER EY, KOLIATSOV VE: Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J. Comp. Neurol. (2004) 480(1):101-114.
  • CUMMINGS BJ, UCHIDA N, TAMAKI SJ et al.: Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc. Natl. Acad. Sci. USA (2005) 102(39):14069-14074.
  • IWANAMI A, KANEKO S, NAKAMURA M et al.: Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res. (2005) 80(2):182-190.
  • LEE VM, HARTLEY RS, TROJANOWSKI JQ: Neurobiology of human neurons (NT2N) grafted into mouse spinal cord: implications for improving therapy of spinal cord injury. Prog. Brain Res. (2000) 128:299-307.
  • IKEDA R, KUROKAWA MS, CHIBA S et al.: Transplantation of neural cells derived from retinoic acid-treated cynomolgus monkey embryonic stem cells successfully improved motor function of hemiplegic mice with experimental brain injury. Neurobiol. Dis. (2005) 20(1):38-48.
  • NEWMAN MB, MISIUTA I, WILLING AE et al.: Tumorigenicity issues of embryonic carcinoma-derived stem cells: relevance to surgical trials using NT2 and hNT neural cells. Stem Cells Dev. (2005) 14(1):29-43.
  • HARTLEY RS, MARGULIS M, FISHMAN PS, LEE VM, TANG CM: Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes. J. Comp. Neurol. (1999) 407(1):1-10.
  • PEARSE DD, PEREIRA FC, MARCILLO AE et al.: cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. (2004) 10(6):610-616.
  • LIEBSCHER T, SCHNELL L, SCHNELL D et al.: Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann. Neurol. (2005) 58(5):706-719.
  • MERKLER D, METZ GA, RAINETEAU O, DIETZ V SCHWAB ME, FOUAD K: Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J. Neurosci. (2001) 21(10):3665-3673.
  • GRANDPRE T, LI S, STRITTMATTER SM: Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature (2002) 417(6888):547-551.
  • FOUAD K, KLUSMAN I, SCHWAB ME: Regenerating corticospinal fibers in the Marmoset (Callitrix jacchus) after spinal cord lesion and treatment with the anti-Nogo-A antibody IN-1. Eur. J. Neurosci. (2004) 20(9):2479-2482.
  • DERGHAM P, ELLEZAM B, ESSAGIAN C, AVEDISSIAN H, LUBELL WD, MCKERRACHER L: Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. (2002) 22(15):6570-6577.
  • FOUAD K, SCHNELL L, BUNGE MB et al.: Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci. (2005) 25(5):1169-1178.
  • BRADBURY EJ, MOON LD, POPAT RJ et al.: Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature (2002) 416(6881):636-640.
  • CAGGIANO AO, ZIMBER MP, GANGULY A, BLIGHT AR, GRUSKIN EA: Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord. J. Neurotrauma (2005) 22(2):226-239.
  • HALL ED, SPRINGER JE: Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx (2004) 1(1):80-100.
  • LAMMERTSE DP: Update on pharmaceutical trials in acute spinal cord injury. J. Spinal Cord Med. (2004) 27(4):319-325.
  • GEISLER FH, DORSEY FC, COLEMAN WP: Past and current clinical studies with GM-1 ganglioside in acute spinal cord injury. Ann. Emerg. Med. (1993) 22(6):1041-1047.
  • GEISLER FH, DORSEY FC, COLEMAN WP: GM-1 ganglioside in human spinal cord injury. J. Neurotrauma (1992) 9(Suppl. 2):S517-S530.
  • GEISLER FH, DORSEY FC, COLEMAN WP: GM-1 ganglioside in human spinal cord injury. J. Neurotrauma (1992) 9(Suppl. 1):S407-S416.
  • GEISLER FH, DORSEY FC, COLEMAN WP: Recovery of motor function after spinal-cord injury-a randomized, placebo-controlled trial with GM-1 ganglioside. N. Engl. J. Med. (1991) 324(26):1829-1838.
  • THOMPSON FJ, REIER PJ, UTHMAN B et al.: Neurophysiological assessment of the feasibility and safety of neural tissue transplantation in patients with syringomyelia. J. Neurotrauma (2001) 18(9):931-945.
  • WIRTH ED 3rd, REIER PJ, FESSLER RG et al.: Feasibility and safety of neural tissue transplantation in patients with syringomyelia. J. Neurotrauma (2001) 18(9):911-929.
  • DOBKIN BH, HAVTON LA: Basic advances and new avenues in therapy of spinal cord injury. Ann. Rev. Med. (2004) 55:255-282.
  • AMADOR MJ, GUEST JD: An appraisal of ongoing experimental procedures in human spinal cord injury. J. Neurol. Phys. Ther. (2005) 29(2):70-86.

Wesbite

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.