132
Views
29
CrossRef citations to date
0
Altmetric
Review

Targeting glycogen synthase kinase-3 as an approach to develop novel mood-stabilising medications

Pages 377-392 | Published online: 17 May 2006

Bibliography

  • GRANT BF, STINSON FS, HASIN DS et al.: Prevalence, correlates, and comorbidity of bipolar I disorder and axis I and II disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J. Clin. Psychiatry (2005) 66(10):1205-1215.
  • KESSLER RC, CHIU WT, DEMLER O, MERIKANGAS KR, WALTERS EE: Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry (2005) 62(6):617-627.
  • EVANS DL, CHARNEY DS, LEWIS L et al.: Mood disorders in the medically ill: scientific review and recommendations. Biol. Psychiatry (2005) 58(3):175-189.
  • MICHAUD CM, MURRAY CJ, BLOOM BR: Burden of disease – implications for future research. JAMA (2001) 285(5):535-539.
  • CALABRESE JR, HIRSCHFELD RM, REED M et al.: Impact of bipolar disorder on a US community sample. J. Clin. Psychiatry (2003) 64(4):425-432.
  • WOODS SW: The economic burden of bipolar disease. J. Clin. Psychiatry (2000) 61(Suppl. 13):38-41.
  • CRADDOCK N, JONES I: Genetics of bipolar disorder. J. Med. Genet. (1999) 36(8):585-594.
  • SULLIVAN PF, NEALE MC, KENDLER KS: Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry (2000) 157(10):1552-1562.
  • CARDNO AG, MARSHALL EJ, COID B et al.: Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch. Gen. Psychiatry (1999) 56(2):162-168.
  • POULSEN P, KYVIK KO, VAAG A, BECK-NIELSEN H: Heritability of Type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance-a population-based twin study. Diabetologia (1999) 42(2):139-145.
  • MANJI HK, MOORE GJ, RAJKOWSKA G, CHEN G: Neuroplasticity and cellular resilience in mood disorders. Mol. Psychiatry (2000) 5(6):578-593.
  • QUIROZ JA, SINGH J, GOULD TD et al.: Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol. Psychiatry (2004) 9(8):756-776.
  • HENINGER GR, CHARNEY DS, STERNBERG DE: Lithium carbonate augmentation of antidepressant treatment. An effective prescription for treatment-refractory depression. Arch. Gen. Psychiatry (1983) 40(12):1335-1342.
  • BAUER M, FORSTHOFF A, BAETHGE C et al.: Lithium augmentation therapy in refractory depression-update 2002. Eur. Arch. Psychiatry Clin. Neurosci. (2003) 253(3):132-139.
  • SCHOU M: Lithium treatment at 52. J. Affect. Disord. (2001) 67(1-3):21-32.
  • CADE JFJ: Lithium salts in the treatment of psychotic excitement. Med. J. Aust. (1949) 2:349-352.
  • GAO K, GAJWANI P, ELHAJ O, CALABRESE JR: Typical and atypical antipsychotics in bipolar depression. J. Clin. Psychiatry (2005) 66(11):1376-1385.
  • WALSH BT, SEIDMAN SN, SYSKO R, GOULD M: Placebo response in studies of major depression: variable, substantial, and growing. JAMA (2002) 287(14):1840-1847.
  • GOULD TD, QUIROZ JA, SINGH J, ZARATE CA, MANJI HK: Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol. Psychiatry (2004) 9(8):734-755.
  • YORK JD, PONDER JW, MAJERUS PW: Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. USA (1995) 92(11):5149-5153.
  • SPIEGELBERG BD, XIONG JP, SMITH JJ, GU RF, YORK JD: Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3’-nucleotidase inhibited by inositol 1,4-bisphosphate. J. Biol. Chem. (1999) 274(19):13619-13628.
  • RAY WJ, JR., SZYMANKI ES, NG L: The binding of lithium and of anionic metabolites to phosphoglucomutase. Biochim. Biophys. Acta (1978) 522(2):434-442.
  • SRINIVASAN C, TOON J, AMARI L et al.: Competition between lithium and magnesium ions for the G-protein transducin in the guanosine 5’-diphosphate bound conformation. J. Inorg. Biochem. (2004) 98(5):691-701.
  • AVISSAR S, SCHREIBER G, DANON A, BELMAKER RH: Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature (1988) 331(6155):440-442.
  • MINADEO N, LAYDEN B, AMARI LV et al.: Effect of Li+ upon the Mg2+-dependent activation of recombinant Gialpha1. Arch. Biochem. Biophys. (2001) 388(1):7-12.
  • BERRIDGE MJ, DOWNES CP, HANLEY MR: Neural and developmental actions of lithium: a unifying hypothesis. Cell (1989) 59(3):411-419.
  • MAJERUS PW: Inositol phosphate biochemistry. Ann. Rev. Biochem. (1992) 61:225-250.
  • ALLISON JH, STEWART MA: Reduced brain inositol in lithium-treated rats. Nat. New Biol. (1971) 233(43):267-268.
  • ATACK JR: Lithium, phosphatidylinositol signaling, and bipolar disorder. In: Bipolar Medications: Mechanism of Action, Manji HK et al. (Eds) American Psychiatric Press, Inc., Washington, DC (2000):1-30.
  • MANJI HK, LENOX RH: Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol. Psychiatry (1999) 46(10):1328-1351.
  • WILLIAMS RS, CHENG L, MUDGE AW, HARWOOD AJ: A common mechanism of action for three mood-stabilizing drugs. Nature (2002) 417(6886):292-295.
  • ATACK JR, COOK SM, WATT AP, FLETCHER SR, RAGAN CI: In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. J. Neurochem. (1993) 60(2):652-658.
  • ATACK JR, PRIOR AM, FLETCHER SR et al.: Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers. J. Pharmacol. Exp. Ther. (1994) 270(1):70-76.
  • KLEIN PS, MELTON DA: A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA (1996) 93(16):8455-8459.
  • STAMBOLIC V, RUEL L, WOODGETT JR: Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. (1996) 6(12):1664-1668.
  • BHAT RV, SHANLEY J, CORRELL MP et al.: Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc. Natl. Acad. Sci. USA (2000) 97(20):11074-11079.
  • SAYAS CL, ARIAENS A, PONSIOEN B, MOOLENAAR WH: GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol. Biol. Cell (2006) 17(4):1834-1844.
  • FAN G, BALLOU LM, LIN RZ: Phospholipase C-independent activation of glycogen synthase kinase-3 β and C-terminal Src kinase by Gαq. J. Biol. Chem. (2003) 278(52):52432-52436.
  • FRAME S, COHEN P: GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. (2001) 359(Pt 1):1-16.
  • ZHANG F, PHIEL CJ, SPECE L, GURVICH N, KLEIN PS: Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J. Biol. Chem. (2003) 278(35):33067-33077.
  • BENNECIB M, GONG CX, GRUNDKE-IQBAL I, IQBAL K: Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett. (2000) 485(1):87-93.
  • TANJI C, YAMAMOTO H, YORIOKA N et al.: A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase A-dependent inhibition of GSK-3beta. J. Biol. Chem. (2002) 277(40):36955-36961.
  • FIOL CJ, MAHRENHOLZ AM, WANG Y, ROESKE RW, ROACH PJ: Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J. Biol. Chem. (1987) 262(29):14042-14048.
  • FRAME S, COHEN P, BIONDI RM: A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell (2001) 7(6):1321-1327.
  • DAJANI R, FRASER E, ROE SM et al.: Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell (2001) 105(6):721-732.
  • GRIMES CA, JOPE RS: The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. (2001) 65(4):391-426.
  • ELDAR-FINKELMAN H, ILOUZ R: Challenges and opportunities with glycogen synthase kinase-3 inhibitors for insulin resistance and Type 2 diabetes treatment. Expert Opin. Investig. Drugs (2003) 12(9):1511-1519.
  • BONDY CA, CHENG CM: Signaling by insulin-like growth factor 1 in brain. Eur. J. Pharmacol. (2004) 490(1-3):25-31.
  • BRYWE KG, MALLARD C, GUSTAVSSON M et al.: IGF-I neuroprotection in the immature brain after hypoxia-ischemia, involvement of Akt and GSK3beta? Eur. J. Neurosci. (2005) 21(6):1489-1502.
  • WATCHARASIT P, BIJUR GN, ZMIJEWSKI JW et al.: Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc. Natl. Acad. Sci. USA (2002) 99(12):7951-7955.
  • LINSEMAN DA, BUTTS BD, PRECHT TA et al.: Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci. (2004) 24(44):9993-10002.
  • LOGAN CY, NUSSE R: The Wnt signaling pathway in development and disease. Ann. Rev. Cell Dev. Biol. (2004) 20:781-810.
  • HUANG HC, KLEIN PS: The Frizzled family: receptors for multiple signal transduction pathways. Genome Biol. (2004) 5(7):234.
  • RYVES WJ, HARWOOD AJ: Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. (2001) 280(3):720-725.
  • GURVICH N, KLEIN PS: Lithium and valproic acid: parallels and contrasts in diverse signaling contexts. Pharmacol. Ther. (2002) 96:45-66.
  • MUNOZ-MONTANO JR, MORENO FJ, AVILA J, DIAZ-NIDO J: Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons. FEBS Lett. (1997) 411(2-3):183-188.
  • DE SARNO P, LI X, JOPE RS: Regulation of Akt and glycogen synthase kinase-3beta phosphorylation by sodium valproate and lithium. Neuropharmacology (2002) 43(7):1158-1164.
  • ROH MS, EOM TY, ZMIJEWSKA AA et al.: Hypoxia activates glycogen synthase kinase-3 in mouse brain in vivo: protection by mood stabilizers and imipramine. Biol. Psychiatry (2005) 57:278-286.
  • PHIEL CJ, WILSON CA, LEE VM, KLEIN PS: GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature (2003) 423(6938):435-439.
  • DE FERRARI GV, CHACON MA, BARRIA MI et al.: Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol. Psychiatry (2003) 8(2):195-208.
  • PEREZ M, HERNANDEZ F, LIM F, DIAZ-NIDO J, AVILA J: Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J. Alzheimers Dis. (2003) 5(4):301-308.
  • GOULD TD, CHEN G, MANJI HK: In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacology (2004) 29(1):32-38.
  • O’BRIEN WT, HARPER AD, JOVE F et al.: Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci. (2004) 24(30):6791-6798.
  • SU Y, RYDER J, LI B et al.: Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry (2004) 43(22):6899-6908.
  • GOULD TD, PICCHINI AM, EINAT H, MANJI HK: Targeting glycogen synthase kinase-3 in the CNS: implications for the development of new treatments for mood disorders. Curr. Drug Targets (2006) In Press.
  • CHALECKA-FRANASZEK E, CHUANG DM: Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc. Natl. Acad. Sci. USA (1999) 96(15):8745-8750.
  • KOZLOVSKY N, AMAR S, BELMAKER RH, AGAM G: Psychotropic drugs affect Ser9-phosphorylated GSK-3beta protein levels in rodent frontal cortex. Int. J. Neuropsychopharmacol. (2005):1-6.
  • KIRSHENBOIM N, PLOTKIN B, SHLOMO SB, KAIDANOVICH-BEILIN O, ELDAR-FINKELMAN H: Lithium-mediated phosphorylation of glycogen synthase kinase-3b involves PI3 kinase-dependent activation of protein kinase C-alpha. J. Mol. Neurosci. (2004) 24(2):237-246.
  • EMRICH HM, VON ZERSSEN D, KISSLING W, MOLLER HJ, WINDORFER A: Effect of sodium valproate on mania. The GABA-hypothesis of affective disorders. Arch. Psychiatr. Nervenkr. (1980) 229(1):1-16.
  • LAMBERT PA, VENAUD G: [Use of valpromide in psychiatric therapeutics]. Encephale (1987) 13(6):367-373.
  • BOWDEN CL, BRUGGER AM, SWANN AC et al.: Efficacy of divalproex versus lithium and placebo in the treatment of mania. The Depakote Mania Study Group. JAMA (1994) 271(12):918-924.
  • POPE HG, JR., MCELROY SL, KECK PE, JR., HUDSON JI: Valproate in the treatment of acute mania. A placebo-controlled study. Arch. Gen. Psychiatry (1991) 48(1):62-68.
  • CHEN G, HUANG LD, JIANG YM, MANJI HK: The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. (1999) 72(3):1327-1330.
  • GRIMES AC, JOPE RS: CREB DNA binding activity is inhibited by glycogen synthase kinase-3beta and facilitated by lithium. J. Neurochem. (2001) 78(6):1219-1232.
  • WERSTUCK GH, KIM AJ, BRENSTRUM T et al.: Examining the correlations between GSK-3 inhibitory properties and anti-convulsant efficacy of valproate and valproate-related compounds. Bioorg. Med. Chem. Lett (2004) 14(22):5465-5467.
  • KIM AJ, SHI Y, AUSTIN RC, WERSTUCK GH: Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J. Cell Sci. (2005) 118(Pt 1):89-99.
  • PHIEL CJ, ZHANG F, HUANG EY et al.: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. (2001) 276(39):36734-36741.
  • HALL AC, BRENNAN A, GOOLD RG et al.: Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol. Cell. Neurosci. (2002) 20(2):257-270.
  • LI X, ZHU W, ROH MS et al.: In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology (2004) 29(8):1426-1431.
  • BLIER P, ABBOTT FV: Putative mechanisms of action of antidepressant drugs in affective and anxiety disorders and pain. J. Psychiatry Neurosci. (2001) 26(1):37-43.
  • MUKHERJEE S, SACKEIM HA, SCHNUR DB: Electroconvulsive therapy of acute manic episodes: a review of 50 years’ experience. Am. J. Psychiatry (1994) 151(2):169-176.
  • ROH MS, KANG UG, SHIN SY et al.: Biphasic changes in the Ser-9 phosphorylation of glycogen synthase kinase-3beta after electroconvulsive shock in the rat brain. Prog. Neuropsychopharmacol. Biol. Psychiatry (2003) 27(1):1-5.
  • KANG UG, ROH MS, JUNG JR et al.: Activation of protein kinase B (Akt) signaling after electroconvulsive shock in the rat hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry (2004) 28(1):41-44.
  • MADSEN TM, NEWTON SS, EATON ME, RUSSELL DS, DUMAN RS: Chronic electroconvulsive seizure up-regulates beta-catenin expression in rat hippocampus: role in adult neurogenesis. Biol. Psychiatry (2003) 54(10):1006-1014.
  • MALBERG JE, EISCH AJ, NESTLER EJ, DUMAN RS: Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. (2000) 20(24):9104-9110.
  • KANG UG, SEO MS, ROH MS et al.: The effects of clozapine on the GSK-3-mediated signaling pathway. FEBS Lett. (2004) 560(1-3):115-119.
  • EMAMIAN ES, HALL D, BIRNBAUM MJ, KARAYIORGOU M, GOGOS JA: Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat. Genet. (2004) 36(2):131-137.
  • ALIMOHAMAD H, RAJAKUMAR N, SEAH YH, RUSHLOW W: Antipsychotics alter the protein expression levels of beta-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol. Psychiatry (2005) 57(5):533-542.
  • ALIMOHAMAD H, SUTTON L, MOUYAL J, RAJAKUMAR N, RUSHLOW WJ: The effects of antipsychotics on beta-catenin, glycogen synthase kinase-3 and dishevelled in the ventral midbrain of rats. J. Neurochem. (2005) 95(2):513-525.
  • LI X, ROSBOROUGH KM, FRIEDMAN AB, ZHU W, ROTH KA: Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics. Int. J. Neuropsychopharmacol. (2006):1-13.
  • BASTA-KAIM A, BUDZISZEWSKA B, JAWORSKA-FEIL L et al.: Antipsychotic drugs inhibit the human corticotropin-releasing-hormone gene promoter activity in neuro-2A cells-an involvement of protein kinases. Neuropsychopharmacology (2005) 31(4):853-865.
  • PAYNE JL: The role of estrogen in mood disorders in women. Int. Rev. Psychiatry (2003) 15(3):280-290.
  • BLOCH M, DALY RC, RUBINOW DR: Endocrine factors in the etiology of postpartum depression. Compr. Psychiatry (2003) 44(3):234-246.
  • GRIGORIADIS S, KENNEDY SH: Role of estrogen in the treatment of depression. Am. J. Ther. (2002) 9(6):503-509.
  • CARDONA-GOMEZ P, PEREZ M, AVILA J, GARCIA-SEGURA LM, WANDOSELL F: Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. Mol. Cell. Neurosci. (2004) 25(3):363-373.
  • GOODENOUGH S, SCHLEUSNER D, PIETRZIK C, SKUTELLA T, BEHL C: Glycogen synthase kinase 3beta links neuroprotection by 17beta-estradiol to key Alzheimer processes. Neuroscience (2005) 132(3):581-589.
  • KOUZMENKO AP, TAKEYAMA K, ITO S et al.: Wnt/beta-catenin and estrogen signaling converge in vivo. J. Biol. Chem. (2004) 279(39):40255-40258.
  • MEDUNJANIN S, HERMANI A, DE SERVI B et al.: Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor-alpha and is involved in the regulation of receptor activity. J. Biol. Chem. (2006) In Press.
  • MENDEZ P, GARCIA-SEGURA LM: Phosphatidyl inositol 3 kinase (PI3K) and glycogen synthase kinase 3 (GSK3) regulate estrogen receptor mediated transcription in neuronal cells. Endocrinology (2006) Epub ahead of print.
  • SHAW PC, DAVIES AF, LAU KF et al.: Isolation and chromosomal mapping of human glycogen synthase kinase-3 alpha and -3 beta encoding genes. Genome (1998) 41(5):720-727.
  • HANSEN L, ARDEN KC, RASMUSSEN SB et al.: Chromosomal mapping and mutational analysis of the coding region of the glycogen synthase kinase-3alpha and beta isoforms in patients with NIDDM. Diabetologia (1997) 40(8):940-946.
  • BADENHOP RF, MOSES MJ, SCIMONE A et al.: A genome screen of 13 bipolar affective disorder pedigrees provides evidence for susceptibility loci on chromosome 3 as well as chromosomes 9, 13 and 19. Mol. Psychiatry (2002) 7(8):851-859.
  • LANDER E, KRUGLYAK L: Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. (1995) 11(3):241-247.
  • RUSS C, LOVESTONE S, POWELL JF: Identification of sequence variants and analysis of the role of the glycogen synthase kinase 3 beta gene and promoter in late onset Alzheimer’s disease. Mol. Psychiatry (2001) 6(3):320-324.
  • KWOK JB, HALLUPP M, LOY CT et al.: GSK3B polymorphisms alter transcription and splicing in Parkinson’s disease. Ann. Neurol. (2005) 58(6):829-839.
  • TUBAZIO V, BENEDETTI F, SERRETTI A et al.: Glycogen synthase kinase (GSK) gene promoter polymorphism: a TDT and haplotype approach in mood disorders. Am. J. Med. Genet. (2004) 130B(1):37 (P1.24).
  • NISHIGUCHI N, BREEN G, RUSS C, ST CLAIR D, COLLIER D: Association analysis of the glycogen synthase kinase-3beta gene in bipolar disorder. Neurosci. Lett. (2006) 394(3):243-245.
  • LEE KY, AHN YM, JOO EJ et al.: No association of two common SNPs at position -1727 A/T, -50 C/T of GSK-3 beta polymorphisms with schizophrenia and bipolar disorder of Korean population. Neurosci. Lett. (2006) 395(2):175-178.
  • BENEDETTI F, SERRETTI A, PONTIGGIA A et al.: Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta -50 T/C SNP. Neurosci. Lett. (2005) 376(1):51-55.
  • BENEDETTI F, BERNASCONI A, LORENZI C et al.: A single nucleotide polymorphism in glycogen synthase kinase 3-beta promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci. Lett. (2004) 355(1-2):37-40.
  • BENEDETTI F, SERRETTI A, COLOMBO C et al.: A glycogen synthase kinase 3-beta promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci. Lett. (2004) 368(2):123-126.
  • SZCZEPANKIEWICZ A, SKIBINSKA M, HAUSER J et al.: Association analysis of the GSK-3beta T-50C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology (2006) 53(1):51-56.
  • EINAT H, MANJI HK, BELMAKER RH: New approaches to modeling bipolar disorder. Psychopharmacol. Bull. (2003) 37(1):47-63.
  • LAMBERTY Y, MARGINEANU DG, KLITGAARD H: Effect of the new antiepileptic drug levetiracetam in an animal model of mania. Epilepsy Behav. (2001) 2(5):454-459.
  • MAMELAK M: An amphetamine model of manic depressive illness. Int. Pharmacopsychiatry (1978) 13(4):193-208.
  • MURPHY DL, BRODIE HK, GOODWIN FK, BUNNEY WE Jr.: Regular induction of hypomania by L-dopa in ‘bipolar’ manic-depressive patients. Nature (1971) 229(5280):135-136.
  • VAN KAMMEN DP, MURPHY DL: Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacologia (1975) 44(3):215-224.
  • HUEY LY, JANOWSKY DS, JUDD LL et al.: Effects of lithium carbonate on methylphenidate-induced mood, behavior, and cognitive processes. Psychopharmacology (Berl) (1981) 73(2):161-164.
  • BEAULIEU JM, SOTNIKOVA TD, YAO WD et al.: Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA (2004) 101(14):5099-5104.
  • SVENNINGSSON P, TZAVARA ET, CARRUTHERS R et al.: Diverse psychotomimetics act through a common signaling pathway. Science (2003) 302(5649):1412-1415.
  • BHAT RV, XUE Y, BERG S et al.: Structural insights and biological effects of glycogen synthase kinase 3 specific inhibitor AR-A014418. J. Biol. Chem. (2003) 278(46):45937-45945.
  • NOBLE W, PLANEL E, ZEHR C et al.: Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl. Acad. Sci. USA (2005) 102(19):6990-6995.
  • GOULD TD, EINAT H, BHAT R, MANJI HK: AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int. J. Neuropsychopharmacol. (2004):1-4.
  • PORSOLT RD, LE PICHON M, JALFRE M: Depression: a new animal model sensitive to antidepressant treatments. Nature (1977) 266(5604):730-732.
  • KAIDANOVICH-BEILIN O, MILMAN A, WEIZMAN A, PICK CG, ELDAR-FINKELMAN H: Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol. Psychiatry (2004) 55(8):781-784.
  • ILOUZ R, KAIDANOVICH O, GURWITZ D, ELDAR-FINKELMAN H: Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem. Biophys. Res. Commun. (2002) 295(1):102-106.
  • KROCZKA B, BRANSKI P, PALUCHA A, PILC A, NOWAK G: Antidepressant-like properties of zinc in rodent forced swim test. Brain Res. Bull. (2001) 55(2):297-300.
  • NOWAK G, SZEWCZYK B, WIERONSKA JM et al.: Antidepressant-like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats. Brain Res. Bull. (2003) 61(2):159-164.
  • KROCZKA B, ZIEBA A, DUDEK D, PILC A, NOWAK G: Zinc exhibits an antidepressant-like effect in the forced swimming test in mice. Pol. J. Pharmacol. (2000) 52(5):403-406.
  • SZEWCZYK B, BRANSKI P, WIERONSKA JM et al.: Interaction of zinc with antidepressants in the forced swimming test in mice. Pol. J. Pharmacol. (2002) 54(6):681-685.
  • WYSKA E, SZYMURA-OLEKSIAK J, OPOKA W et al.: Pharmacokinetic interaction after joint administration of zinc and imipramine in forced swim test in mice. Pol. J. Pharmacol. (2004) 56(4):479-484.
  • NOWAK G, SIWEK M, DUDEK D, ZIEBA A, PILC A: Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol. J. Pharmacol. (2003) 55(6):1143-1147.
  • FREDERICKSON CJ, KOH JY, BUSH AI: The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. (2005) 6(6):449-462.
  • ELDAR-FINKELMAN H: Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol. Med. (2002) 8(3):126-132.
  • COHEN P, GOEDERT M: GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov. (2004) 3(6):479-487.
  • MARTINEZ A, CASTRO A, DORRONSORO I, ALONSO M: Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med. Res. Rev. (2002) 22(4):373-384.
  • MARTINEZ A, ALONSO M, CASTRO A, PEREZ C, MORENO FJ: First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem. (2002) 45(6):1292-1299.
  • PLOTKIN B, KAIDANOVICH O, TALIOR I, ELDAR-FINKELMAN H: Insulin mimetic action of synthetic phosphorylated Peptide inhibitors of glycogen synthase kinase-3. J. Pharmacol. Exp. Ther. (2003) 305(3):974-980.
  • KAIDANOVICH-BEILIN O, ELDAR-FINKELMAN H: Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in ob/ob mice: molecular characterization in liver and muscle. J. Pharmacol. Exp. Ther. (2006) 316(1):17-24.
  • COHEN Y, CHETRIT A, SIROTA P, MODAN B: Cancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med. Oncol. (1998) 15(1):32-36.
  • GOULD TD, GRAY NA, MANJI HK: Effects of a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous polyposis coli mutant mice. Pharmacol. Res. (2003) 48(1):49-53.
  • GOULD TD, MANJI HK: Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology (2005) 30(7):1223-1237.
  • BUNNEY WE, JR., DAVIS JM: Norepinephrine in depressive reactions. A review. Arch. Gen. Psychiatry (1965) 13(6):483-494.
  • SCHILDKRAUT JJ: The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am. J. Psychiatry (1965) 122(5):509-522.
  • CHUANG DM, CHEN R, CHALECKA-FRANASZEK E et al.: Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. (2002) 4:129-116.
  • MANJI HK, MOORE GJ, CHEN G: Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry (1999) 46(7):929-940.
  • JOPE RS, BIJUR GN: Mood stabilizers, glycogen synthase kinase-3beta and cell survival. Mol. Psychiatry (2002) 7(Suppl. 1):S35-S45.
  • SMITH E, FRENKEL B: Glucocorticoids inhibit LEF/TCF transcriptional activity in differentiating osteoblasts in a GSK3β-dependent and independent manner. J. Biol. Chem. (2004) 280(3):2388-2394.
  • OHNAKA K, TANABE M, KAWATE H, NAWATA H, TAKAYANAGI R: Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem. Biophys. Res. Commun. (2005) 329(1):177-181.
  • KLEMFUSS H: Rhythms and the pharmacology of lithium. Pharmacol. Ther. (1992) 56(1):53-78.
  • WEHR TA, WIRZ-JUSTICE A: Circadian rhythm mechanisms in affective illness and in antidepressant drug action. Pharmacopsychiatria (1982) 15(1):31-39.
  • BUNNEY WE, BUNNEY BG: Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology (2000) 22(4):335-345.
  • MARTINEK S, INONOG S, MANOUKIAN AS, YOUNG MW: A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell (2001) 105(6):769-779.
  • YIN L, WANG J, KLEIN PS, LAZAR MA: Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science (2006) 311(5763):1002-1005.
  • HARADA Y, SAKAI M, KURABAYASHI N, HIROTA T, FUKADA Y: Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J. Biol. Chem. (2005) 280(36):31714-31721.
  • PICCHINI AM, MANJI HK, GOULD TD: GSK-3 and neurotrophic signaling: novel targets underlying the pathophysiology of mood disorders? Drug Discov. Today Dis. Mech. (2004) 1(4):419-428.

Website

  • http://www.stanford.edu/~rnusse/wntwindow.html The Wnt homepage (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.