405
Views
41
CrossRef citations to date
0
Altmetric
Review

Blocking sodium channels to treat neuropathic pain

&
Pages 291-306 | Published online: 14 Feb 2007

Bibliography

  • JULIUS D, BASBAUM AI: Molecular mechanisms of nociception. Nature (2001) 413(6852):203-210.
  • CODERRE TJ, MELZACK R: Cutaneous hyperalgesia: contributions of the peripheral and central nervous systems to the increase in pain sensitivity after injury. Brain Res. (1987) 404(1-2):95-106.
  • CARTER GT, GALER BS: Advances in the management of neuropathic pain. Phys. Med. Rehab. Clin. North Am. (2001) 12(2):447-459.
  • BARON R: Mechanisms of disease: neuropathic pain-a clinical perspective. Nat. Clin. Pract. Neurol. (2006) 2(2):95-106.
  • KIM SH, CHUNG JM: An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain (1992) 50(3):355-363.
  • BENNETT GJ, XIE YK: A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain (1988) 33(1):87-107.
  • SELTZER Z, DUBNER R, SHIR Y: A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain (1990) 43(2):205-218.
  • DECOSTERD I, WOOLF CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain (2000) 87(2):149-158.
  • CALCUTT NA, JORGE MC, YAKSH TL, CHAPLAN SR: Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain (1996) 68(2-3):293-299.
  • JOSHI SK, HERNANDEZ G, MIKUSA JP et al.: Comparison of antinociceptive actions of standard analgesics in attenuating capsaicin and nerve-injury-induced mechanical hypersensitivity. Neuroscience (2006) 143(2):587-596.
  • ESSER MJ, SAWYNOK J: Acute amitriptyline in a rat model of neuropathic pain: differential symptom and route effects. Pain (1999) 80(3):643-653.
  • LABUDA CJ, LITTLE PJ: Pharmacological evaluation of the selective spinal nerve ligation model of neuropathic pain in the rat. J. Neurosci. Methods (2005) 144(2):175-181.
  • WALCZAK JS, PICHETTE V, LEBLOND F, DESBIENS K, BEAULIEU P: Behavioral, pharmacological and molecular characterization of the saphenous nerve partial ligation: a new model of neuropathic pain. Neuroscience (2005) 132(4):1093-1102.
  • GOLDSTEIN DJ, WANG O, GITTER BD, IYENGAR S: Dose-response study of the analgesic effect of lanepitant in patients with painful diabetic neuropathy. Clin. Neuropharmacol. (2001) 24(1):16-22.
  • HILL R: NK1 (substance P) receptor antagonists-why are they not analgesic in humans? Trends Pharmacol. Sci. (2000) 21(7):244-246.
  • BAUMANN TK, MARTENSON ME: Spontaneous action potential discharge in cultured dorsal root ganglion neurons from patients with neuropathic pain. In: Proceedings of the 9th World Congress on Pain. Devor M et al. (Eds) IASP Press, Seattle, USA (2000):101-108.
  • TAL M, DEVOR M: Ectopic discharge in injured nerves: comparison of trigeminal and somatic afferents. Brain Res. (1992) 579(1):148-151.
  • AMIR R, KOCSIS JD, DEVOR M: Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons. J. Neurosci. (2005) 25(10):2576-2585.
  • ABDULLA FA, SMITH PA: Axotomy- and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. J. Neurophysiol. (2001) 85(2):630-643.
  • SHU X, MENDELL LM: Nerve growth factor acutely sensitizes the response of adult rat sensory neurons to capsaicin. Neurosci. Lett. (1999) 274(3):159-162.
  • MATHESON CR, CARNAHAN J, URICH JL et al.: Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for sensory neurons: comparison with the effects of the neurotrophins. J. Neurobiol. (1997) 32(1):22-32.
  • HEPPENSTALL PA, LEWIN GR: Neurotrophins, nociceptors and pain. Curr. Opin. Anaesthesiol. (2000) 13(5):573-576.
  • MANNION RJ, COSTIGAN M, DECOSTERD I et al.: Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc. Natl. Acad. Sci. USA (1999) 96(16):9385-9390.
  • ALI Z, RINGKAMP M, HARTKE TV et al.: Uninjured C-fiber nociceptors develop spontaneous activity and α-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J. Neurophysiol. (1999) 81(2):455-466.
  • WU G, RINGKAMP M, MURINSON BB et al.: Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J. Neurosci. (2002) 22(17):7746-7753.
  • WOOLF CJ: The pathophysiology of peripheral neuropathic pain-abnormal peripheral input and abnormal central processing. Acta Neurochir. Suppl. (Wien) (1993) 58:125-130.
  • MENDELL LM, WALL PD: Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibres. Nature (1965) 206:97-99.
  • DICKENSON AH, SULLIVAN AF: Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology (1987) 26(8):1235-1238.
  • YASHPAL K, PITCHER GM, PARENT A, QUIRION R, CODERRE TJ: Noxious thermal and chemical stimulation induce increases in 3H-phorbol 12,13-dibutyrate binding in spinal cord dorsal horn as well as persistent pain and hyperalgesia, which is reduced by inhibition of protein kinase C. J. Neurosci. (1995) 15(5 Pt 1):3263-3272.
  • MELLER ST, DYKSTRA C, GEBHART GF: Production of endogenous nitric oxide and activation of soluble guanylate cyclase are required for N-methyl-D-aspartate-produced facilitation of the nociceptive tail-flick reflex. Eur. J. Pharmacol. (1992) 214(1):93-96.
  • TREEDE RD, MEYER RA, RAJA SN, CAMPBELL JN: Peripheral and central mechanisms of cutaneous hyperalgesia. Prog. Neurobiol. (1992) 38(4):397-421.
  • CERVERO F, SCHAIBLE HG, SCHMIDT RF: Tonic descending inhibition of spinal cord neurones driven by joint afferents in normal cats and in cats with an inflamed knee joint. Exp. Brain Res. (1991) 83(3):675-678.
  • PERTOVAARA A, KONTINEN VK, KALSO EA: Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Exp. Neurol. (1997) 147(2):428-436.
  • MA W, EISENACH JC: Chronic constriction injury of sciatic nerve induces the up-regulation of descending inhibitory noradrenergic innervation to the lumbar dorsal horn of mice. Brain Res. (2003) 970(1-2):110-118.
  • VANEGAS H, SCHAIBLE HG: Descending control of persistent pain: inhibitory or facilitatory? Brain Res. Brain Res. Rev. (2004) 46(3):295-309.
  • LEE BH, PARK SH, WON R, PARK YG, SOHN JH: Antiallodynic effects produced by stimulation of the periaqueductal gray matter in a rat model of neuropathic pain. Neurosci. Lett. (2000) 291(1):29-32.
  • CAMPBELL JN, MEYER RA: Mechanisms of neuropathic pain. Neuron (2006) 52(1):77-92.
  • MAO J, CHEN LL: Systemic lidocaine for neuropathic pain relief. Pain (2000) 87:7-17.
  • HUNTER JC, GOGAS KR, HEDLEY LR et al.: The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur. J. Pharmacol. (1997) 324(2-3):153-160.
  • SMITH LJ, SHIH A, MILETIC G, MILETIC V: Continual systemic infusion of lidocaine provides analgesia in an animal model of neuropathic pain. Pain (2002) 97(3):267-273.
  • DEVOR M, WALL PD, CATALAN N: Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain (1992) 48(2):261-268.
  • BROCHU RM, DICK IE, TARPLEY JW et al.: Block of peripheral nerve sodium channels selectively inhibits features of neuropathic pain in rats. Mol. Pharmacol. (2005) 69(3):823-832.
  • DEVOR M, GOVRIN-LIPPMANN R, ANGELIDES K: Na+ channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J. Neurosci. (1993) 13(5):1976-1992.
  • KRETSCHMER T, HAPPEL LT, ENGLAND JD et al.: Accumulation of PN1 and PN3 sodium channels in painful human neuroma-evidence from immunocytochemistry. Acta Neurochir. (Wien) (2002) 144(8):803-810; discussion 810.
  • HARTSHORNE RP, CATTERALL WA: The sodium channel from rat brain. Purification and subunit composition. J. Biol. Chem. (1984) 259(3):1667-1675.
  • KRANER SD, TANAKA JC, BARCHI RL: Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes. J. Biol. Chem. (1985) 260(10):6341-6347.
  • CASADEI JM, GORDON RD, BARCHI RL: Immunoaffinity isolation of Na+ channels from rat skeletal muscle. Analysis of subunits. J. Biol. Chem. (1986) 261(9):4318-4323.
  • ISOM LL: Sodium channel β subunits: anything but auxiliary. Neuroscientist (2001) 7(1):42-54.
  • WEST JW, PATTON DE, SCHEUER T et al.: A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc. Natl. Acad. Sci. USA (1992) 89(22):10910-10914.
  • RAGSDALE DS, MCPHEE JC, SCHEUER T, CATTERALL WA: Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc. Natl. Acad. Sci. USA (1996) 93(17):9270-9275.
  • ISOM LL, DE JONGH KS, PATTON DE et al.: Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science (1992) 256(5058):839-842.
  • ISOM LL, RAGSDALE DS, DE-JONGH KS et al.: Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell (1995) 83(3):433-442.
  • MORGAN K, STEVENS EB, SHAH B et al.: β3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc. Natl. Acad. Sci. USA (2000) 97(5):2308-2313.
  • YU FH, WESTENBROEK RE, SILOS-SANTIAGO I et al.: Sodium channel β4, a new disulfide-linked auxiliary subunit with similarity to β2. J. Neurosci. (2003) 23(20):7577-7585.
  • OKUSE K, MALIK HALL M, BAKER MD et al.: Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature (2002) 417(6889):653-656.
  • NODA M, SUZUKI H, NUMA S, STUHMER W: A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. (1989) 259(1):213-216.
  • TERLAU H, HEINEMANN SH, STUHMER W et al.: Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. (1991) 293(1-2):93-96.
  • STRICHARTZ GR: The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. Gen. Physiol. (1973) 62(1):37-57.
  • COURTNEY KR: Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J. Pharmacol. Exp. Ther. (1975) 195(2):225-236.
  • SCHOLZ A: Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. Br. J. Anaesth. (2002) 89(1):52-61.
  • LIU G, YAROV-YAROVOY V, NOBBS M et al.: Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels. Neuropharmacology (2003) 44(3):413-422.
  • CANTRELL AR, CATTERALL WA: Neuromodulation of Na channels: an unexpected form of cellular plasticity. Nat. Neurosci. (2001) 2:397-407.
  • BOEHMER C, WILHELM V, PALMADA M et al.: Serum and glucocorticoid inducible kinases in the regulation of the cardiac sodium channel SCN5A. Cardiovasc. Res. (2003) 57(4):1079-1084.
  • AHERN CA, ZHANG JF, WOOKALIS MJ, HORN R: Modulation of the cardiac sodium channel NaV1.5 by Fyn, a Src family tyrosine kinase. Circ. Res. (2005) 96(9):991-998.
  • WITTMACK EK, RUSH AM, HUDMON A, WAXMAN SG, DIB-HAJJ SD: Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase. J. Neurosci. (2005) 25(28):6621-6630.
  • FITZGERALD EM, OKUSE K, WOOD JN, DOLPHIN AC, MOSS SJ: cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J. Physiol. (1999) 516(Pt 2):433-446.
  • VIJAYARAGAVAN K, BOUTJDIR M, CHAHINE M: Modulation of Na(v)1.7 and Na(v)1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J. Neurophysiol. (2004) 91(4):1556-1569.
  • ENGLAND S, BEVAN S, DOCHERTY RJ: PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J. Physiol. (1996) 495(Pt 2):429-440.
  • GOLD MS, LEVINE JD, CORREA AM: Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J. Neurosci. (1998) 18(24):10345-10355.
  • NATURA G, VON BANCHET GS, SCHAIBLE HG: Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain (2005) 116(3):194-204.
  • RENGANATHAN M, CUMMINS TR, WAXMAN SG: Nitric oxide blocks fast, slow, and persistent Na+ channels in C-type DRG neurons by S-nitrosylation. J. Neurophysiol. (2002) 87(2):761-775.
  • RENGANATHAN M, DIB-HAJJ S, WAXMAN SG: Na(v)1.5 underlies the ‘third TTX-R sodium current’ in rat small DRG neurons. Brain Res. Mol. Brain Res. (2002) 106(1-2):70-82.
  • LIU X, ZHOU JL, CHUNG K, CHUNG JM: Ion channels associated with the ectopic discharges generated after segmental spinal nerve injury in the rat. Brain Res. (2001) 900(1):119-127.
  • LYU YS, PARK SK, CHUNG K, CHUNG JM: Low dose of tetrodotoxin reduces neuropathic pain behaviors in an animal model. Brain Res. (2000) 871(1):98-103.
  • BLACK JA, DIB-HAJJ S, MCNABOLA K et al.: Spinal sensory neurons express multiple sodium channel α-subunit mRNAs. Brain Res. Mol. Brain Res. (1996) 43(1-2):117-131.
  • KIM CH, OH Y, CHUNG JM, CHUNG K: The changes in expression of three subtypes of TTX sensitive sodium channels in sensory neurons after spinal nerve ligation. Brain Res. Mol. Brain Res. (2001) 95(1-2):153-161.
  • ENGLAND JD, HAPPEL LT, KLINE DG et al.: Sodium channel accumulation in humans with painful neuromas. Neurology (1996) 47(1):272-276.
  • WAXMAN SG, KOCSIS JD, BLACK JA: Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J. Neurophysiol. (1994) 72(1):466-470.
  • DIB-HAJJ SD, FJELL J, CUMMINS TR et al.: Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain (1999) 83(3):591-600.
  • HAINS BC, SAAB CY, KLEIN JP, CRANER MJ, WAXMAN SG: Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J. Neurosci. (2004) 24(20):4832-4839.
  • LAMPERT A, HAINS BC, WAXMAN SG: Upregulation of persistent and ramp sodium current in dorsal horn neurons after spinal cord injury. Exp. Brain Res. (2006) 174(4):660-666.
  • ZHAO P, WAXMAN SG, HAINS BC: Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury. Mol. Pain (2006) 2:27.
  • KRETSCHMER T, ENGLAND JD, HAPPEL LT et al.: Ankyrin G and voltage gated sodium channels colocalize in human neuroma-key proteins of membrane remodeling after axonal injury. Neurosci. Lett. (2002) 323(2):151-155.
  • BLACK JA, LIU S, TANAKA M, CUMMINS TR, WAXMAN SG: Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain (2004) 108(3):237-247.
  • HAINS BC, KLEIN JP, SAAB CY et al.: Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J. Neurosci. (2003) 23(26):8881-8892.
  • LINDIA JA, KOHLER MG, MARTIN WJ, ABBADIE C: Relationship between sodium channel NaV1.3 expression and neuropathic pain behavior in rats. Pain (2005) 117(1-2):145-153.
  • NASSAR MA, BAKER MD, LEVATO A et al.: Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol. Pain (2006) 2(1):33.
  • CUMMINS TR, HOWE JR, WAXMAN SG: Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J. Neurosci. (1998) 18(23):9607-9619.
  • LOPEZ-SANTIAGO LF, PERTIN M, MORISOD X et al.: Sodium channel β2 subunits regulate tetrodotoxin-sensitive sodium channels in small dorsal root ganglion neurons and modulate the response to pain. J. Neurosci. (2006) 26(30):7984-7994.
  • TOLEDO-ARAL JJ, MOSS BL, HE ZJ et al.: Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc. Natl. Acad. Sci. USA (1997) 94(4):1527-1532.
  • SANGAMESWARAN L, FISH LM, KOCH BD et al.: A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. J. Biol. Chem. (1997) 272(23):14805-14809.
  • COWARD K, AITKEN A, POWELL A et al.: Plasticity of TTX-sensitive sodium channels PN1 and brain III in injured human nerves. Neuroreport (2001) 12(3):495-500.
  • DJOUHRI L, NEWTON R, LEVINSON SR et al.: Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel α subunit protein. J. Physiol. (2003) 546(Pt 2):565-576.
  • KIM CH, OH Y, CHUNG JM, CHUNG K: Changes in three subtypes of tetrodotoxin sensitive sodium channel expression in the axotomized dorsal root ganglion in the rat. Neurosci. Lett. (2002) 323(2):125-128.
  • HONG S, MORROW TJ, PAULSON PE, ISOM LL, WILEY JW: Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J. Biol. Chem. (2004) 279(28):29341-29350.
  • NASSAR MA, STIRLING LC, FORLANI G et al.: Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl. Acad. Sci. USA (2004) 101(34):12706-12711.
  • NASSAR MA, LEVATO A, STIRLING LC, WOOD JN: Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol. Pain (2005) 1:24.
  • COX JJ, REIMANN F, NICHOLAS AK et al.: An SCN9A channelopathy causes congenital inability to experience pain. Nature (2006) 444(7121):894-898.
  • YANG Y, WANG Y, LI S et al.: Mutations in SCN9A, encoding a sodium channel α subunit, in patients with primary erythermalgia. J. Med. Genet. (2004) 41(3):171-174.
  • HAN C, RUSH AM, DIB-HAJJ SD et al.: Sporadic onset of erythermalgia: a gain-of-function mutation in Nav1.7. Ann. Neurol. (2006) 59(3):553-558.
  • FERTLEMAN CR, BAKER MD, PARKER KA et al.: SCN9A Mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and Phenotypes. Neuron (2006) 52(5):767-774.
  • CUMMINS TR, DIB-HAJJ SD, WAXMAN SG: Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J. Neurosci. (2004) 24(38):8232-8236.
  • DIB-HAJJ SD, RUSH AM, CUMMINS TR et al.: Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain (2005) 128(Pt 8):1847-1854.
  • LAMPERT A, DIB-HAJJ SD, TYRRELL L, WAXMAN SG: Size matters: Erythromelalgia mutation S241T in Nav1.7 alters channel gating. J. Biol. Chem. (2006) 281(47):36029-36035.
  • CHOI JS, DIB-HAJJ SD, WAXMAN SG: Inherited erythermalgia. Limb pain from an S4 charge-neutral Na channelopathy. Neurology (2006) 67(9):1563-1567.
  • AKOPIAN AN, SIVILOTTI L, WOOD JN: A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature (1996) 379(6562):257-262.
  • SANGAMESWARAN L, DELGADO SG, FISH LM et al.: Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J. Biol. Chem. (1996) 271(11):5953-5956.
  • DJOUHRI L, FANG X, OKUSE K et al.: The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J. Physiol. (2003) 550(Pt 3):739-752.
  • RENGANATHAN M, CUMMINS TR, WAXMAN SG: Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. (2001) 86(2):629-640.
  • BLAIR NT, BEAN BP: Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J. Neurosci. (2002) 22(23):10277-10290.
  • SCHOLZ A, VOGEL W: Tetrodotoxin-resistant action potentials in dorsal root ganglion neurons are blocked by local anesthetics. Pain (2000) 89(1):47-52.
  • GOLD MS, REICHLING DB, SHUSTER MJ, LEVINE JD: Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc. Natl. Acad. Sci. USA (1996) 93(3):1108-1112.
  • GOLD MS, ZHANG L, WRIGLEY DL, TRAUB RJ: Prostaglandin E(2) modulates TTX-R I(Na) in rat colonic sensory neurons. J. Neurophysiol. (2002) 88(3):1512-1522.
  • PORRECA F, LAI J, BIAN D et al.: A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proc. Natl. Acad. Sci. USA (1999) 96(14):7640-7644.
  • LAI J, GOLD MS, KIM CS et al.: Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain (2002) 95(1-2):143-152.
  • KHASAR SG, GOLD MS, LEVINE JD: A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat. Neurosci. Lett. (1998) 256(1):17-20.
  • AKOPIAN AN, SOUSLOVA V, ENGLAND S et al.: The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci. (1999) 2(6):541-548.
  • KERR BJ, SOUSLOVA V, MCMAHON SB, WOOD JN: A role for the TTX-resistant sodium channel Nav1.8 in NGF-induced hyperalgesia, but not neuropathic pain. Neuroreport (2001) 12(14):3077-3080.
  • LAIRD JM, SOUSLOVA V, WOOD JN, CERVERO F: Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. J. Neurosci. (2002) 22(19):8352-8356.
  • NOVAKOVIC SD, TZOUMAKA E, MCGIVERN JG et al.: Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J. Neurosci. (1998) 18(6):2174-2187.
  • SLEEPER AA, CUMMINS TR, DIB-HAJJ SD et al.: Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. J. Neurosci. (2000) 20(19):7279-7289.
  • COWARD K, PLUMPTON C, FACER P et al.: Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain (2000) 85(1-2):41-50.
  • DECOSTERD I, JI RR, ABDI S, TATE S, WOOLF CJ: The pattern of expression of the voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain (2002) 96(3):269-277.
  • FLAKE NM, LANCASTER E, WEINREICH D, GOLD MS: Absence of an association between axotomy-induced changes in sodium currents and excitability in DRG neurons from the adult rat. Pain (2004) 109(3):471-480.
  • GOLD MS, WEINREICH D, KIM CS et al.: Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J. Neurosci. (2003) 23(1):158-166.
  • ABE M, KURIHARA T, HAN W, SHINOMIYA K, TANABE T: Changes in expression of voltage-dependent ion channel subunits in dorsal root ganglia of rats with radicular injury and pain. Spine (2002) 27(14):1517-1524; discussion 1525.
  • JOHN VH, MAIN MJ, POWELL AJ et al.: Heterologous expression and functional analysis of rat Nav1.8 (SNS) voltage-gated sodium channels in the dorsal root ganglion neuroblastoma cell line ND7-23. Neuropharmacology (2004) 46(3):425-438.
  • VICKERY RG, AMAGASU SM, CHANG R et al.: Comparison of the pharmacological properties of rat Na(V)1.8 with rat Na(V)1.2a and human Na(V)1.5 voltage-gated sodium channel subtypes using a membrane potential sensitive dye and FLIPR(R). Receptors Channels (2004) 10(1):11-23.
  • AKIBA I, SEKI T, MORI M et al.: Stable expression and characterization of human PN1 and PN3 sodium channels. Receptors Channels (2003) 9(5):291-299.
  • DEKKER LV, DANIELS Z, HICK C et al.: Analysis of human Nav1.8 expressed in SH-SY5Y neuroblastoma cells. Eur. J. Pharmacol. (2005) 528(1-3):52-58.
  • LIU CJ, PRIEST BT, BUGIANESI RM et al.: A high-capacity membrane potential FRET-based assay for NaV1.8 channels. Assay Drug Dev. Technol. (2006) 4(1):37-48.
  • LIU CJ, CUMMINS TR, TYRRELL L et al.: CAP-1A is a novel linker that binds clathrin and the voltage-gated sodium channel Na(v)1.8. Mol. Cell. Neurosci. (2005) 28(4):636-649.
  • DIB-HAJJ SD, TYRRELL L, BLACK JA, WAXMAN SG: NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc. Natl. Acad. Sci. USA (1998) 95(15):8963-8968.
  • TATE S, BENN S, HICK C et al.: Two sodium channels contribute to the TTX-R sodium current in primary sensory neurons. Nat. Neurosci. (1998) 1(8):653-655.
  • AMAYA F, DECOSTERD I, SAMAD TA et al.: Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol. Cell. Neurosci. (2000) 15(4):331-342.
  • PRIEST BT, MURPHY BA, LINDIA JA et al.: Contribution of the tetrodotoxin-resistant voltage-gated sodium channel Na(v)1.9 to sensory transmission and nociceptive behavior. Proc. Natl. Acad. Sci. USA (2005) 102(26):9382-9387.
  • CUMMINS TR, DIB-HAJJ SD, BLACK JA et al.: A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci. (1999) 19(24):RC43.
  • MARUYAMA H, YAMAMOTO M, MATSUTOMI T et al.: Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, Na(v)1.9, in mouse dorsal root ganglion neurons. Pflugers Arch. (2004) 449(1):76-87.
  • HERZOG RI, CUMMINS TR, WAXMAN SG: Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J. Neurophysiol. (2001) 86(3):1351-1364.
  • COSTE B, OSORIO N, PADILLA F, CREST M, DELMAS P: Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol. Cell. Neurosci. (2004) 26(1):123-134.
  • RUSH AM, WAXMAN SG: PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res. (2004) 1023(2):264-271.
  • BAKER MD, CHANDRA SY, DING Y, WAXMAN SG, WOOD JN: GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J. Physiol. (2003) 548(Pt 2):373-382.
  • DIB-HAJJ S, BLACK JA, CUMMINS TR, WAXMAN SG: NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci. (2002) 25(5):253-259.
  • LIU CJ, DIB-HAJJ SD, BLACK JA et al.: Direct interaction with contactin targets voltage-gated sodium channel Na(v)1.9/NaN to the cell membrane. J. Biol. Chem. (2001) 276(49):46553-46561.
  • ISOM LL, DE-JONGH KS, CATTERALL WA: Auxiliary subunits of voltage-gated ion channels. Neuron (1994) 12(6):1183-1194.
  • CATTERALL WA: From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron (2000) 26:13-25.
  • PERTIN M, JI RR, BERTA T et al.: Upregulation of the voltage-gated sodium channel β2 subunit in neuropathic pain models: characterization of expression in injured and non-injured primary sensory neurons. J. Neurosci. (2005) 25(47):10970-10980.
  • SHAH BS, GONZALEZ MI, BRAMWELL S et al.: β3, a novel auxiliary subunit for the voltage gated sodium channel is upregulated in sensory neurones following streptozocin induced diabetic neuropathy in rat. Neurosci. Lett. (2001) 309(1):1-4.
  • TAKAHASHI N, KIKUCHI S, DAI Y et al.: Expression of auxiliary β subunits of sodium channels in primary afferent neurons and the effect of nerve injury. Neuroscience (2003) 121(2):441-450.
  • KUGELBERG E, LINDBLOM U: The mechanism of the pain in trigeminal neuralgia. J. Neurol. Neurosurg. Psychiatry (1959) 22(1):36-43.
  • HILLE B: Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature (1966) 210(42):1220-1222.
  • KALSO E, TRAMER MR, MCQUAY HJ, MOORE RA: Systemic local-anaesthetic-type drugs in chronic pain: a systematic review. Eur. J. Pain (1998) 2(1):3-14.
  • GAMMAITONI AR, ALVAREZ NA, GALER BS: Safety and tolerability of the lidocaine patch 5%, a targeted peripheral analgesic: a review of the literature. J. Clin. Pharmacol. (2003) 43(2):111-117.
  • GALER BS, HARLE J, ROWBOTHAM MC: Response to intravenous lidocaine infusion predicts subsequent response to oral mexiletine: a prospective study. J. Pain Symptom Manage. (1996) 12(3):161-167.
  • FINNERUP NB, OTTO M, MCQUAY HJ, JENSEN TS, SINDRUP SH: Algorithm for neuropathic pain treatment: an evidence based proposal. Pain (2005) 118(3):289-305.
  • JARVIS B, COUKELL AJ: Mexiletine. A review of its therapeutic use in painful diabetic neuropathy. Drugs (1998) 56(4):691-707.
  • CAMPBELL FG, GRAHAM JG, ZILKHA KJ: Clinical trial of carbazepine (tegretol) in trigeminal neuralgia. J. Neurol. Neurosurg. Psychiatry (1966) 29(3):265-267.
  • NICOL CF: A four year double-blind study of tegretol in facial pain. Headache (1969) 9(1):54-57.
  • RULL JA, QUIBRERA R, GONZALEZ-MILLAN H, LOZANO CASTANEDA O: Symptomatic treatment of peripheral diabetic neuropathy with carbamazepine (Tegretol): double blind crossover trial. Diabetologia (1969) 5(4):215-218.
  • WILTON TD: Tegretol in the treatment of diabetic neuropathy. S. Afr. Med. J. (1974) 48(20):869-872.
  • DOGRA S, BEYDOUN S, MAZZOLA J, HOPWOOD M, WAN Y: Oxcarbazepine in painful diabetic neuropathy: a randomized, placebo-controlled study. Eur. J. Pain (2005) 9(5):543-554.
  • EISENBERG E, LURIE Y, BRAKER C, DAOUD D, ISHAY A: Lamotrigine reduces painful diabetic neuropathy: a randomized, controlled study. Neurology (2001) 57(3):505-509.
  • VINIK AI, TUCHMAN M, SAFIRSTEIN B et al.: Lamotrigine for treatment of pain associated with diabetic neuropathy: results of two randomized, double-blind, placebo-controlled studies. Pain (2007) In Press.
  • TREZISE DJ, JOHN VH, XIE XM: Voltage- and use-dependent inhibition of Na+ channels in rat sensory neurones by 4030W92, a new antihyperalgesic agent. Br. J. Pharmacol. (1998) 124(5):953-963.
  • WALLACE MS, ROWBOTHAM M, BENNETT GJ et al.: A multicenter, double-blind, randomized, placebo-controlled crossover evaluation of a short course of 4030W92 in patients with chronic neuropathic pain. J. Pain (2002) 3(3):227-233.
  • VENERONI O, MAJ R, CALABRESI M et al.: Anti-allodynic effect of NW-1029, a novel Na+ channel blocker, in experimental animal models of inflammatory and neuropathic pain. Pain (2003) 102(1-2):17-25.
  • LIBERATORE AM, SCHULZ J, POMMIER J et al.: 2-Alkyl-4-arylimidazoles: structurally novel sodium channel modulators. Bioorg. Med. Chem. Lett. (2004) 14(13):3521-3523.
  • LIANG J, BROCHU RM, COHEN CJ et al.: Discovery of potent and use-dependent sodium channel blockers for treatment of chronic pain. Bioorg. Med. Chem. Lett. (2005) 15(11):2943-2947.
  • ILYIN VI, POMONIS JD, WHITESIDE GT et al.: Pharmacology of 2-[4-(4-chloro-2-fluorophenoxy)phenyl]-pyrimidine-4-carboxamide: a potent, broad-spectrum state-dependent sodium channel blocker for treating pain states. J. Pharmacol. Exp. Ther. (2006) 318(3):1083-1093.
  • ILYIN VI, HODGES DD, WHITTEMORE ER et al.: V102862 (Co 102862): a potent, broad-spectrum state-dependent blocker of mammalian voltage-gated sodium channels. Br. J. Pharmacol. (2005) 144(6):801-812.
  • DICK IE, BROCHU RM, PUROHIT Y et al.: Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J Pain (2007) In Press.
  • FELIX JP, WILLIAMS BS, PRIEST BT et al.: Functional assay of voltage-gated sodium channels using membrane potential-sensitive dyes. Assay Drug Dev. Tech. (2004) 2(3):260-268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.