159
Views
28
CrossRef citations to date
0
Altmetric
Review

Myeloid cell leukemia-1 as a therapeutic target

&
Pages 363-373 | Published online: 14 Feb 2007

Bibliography

  • GREENBERG ME, SUN M, ZHANG R, FEBBRAIO M, SILVERSTEIN R, HAZEN SL: Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. (2006) Epub ahead of print.
  • LUCAS M, STUART LM, ZHANG A et al.: Requirements for apoptotic cell contact in regulation of macrophage responses. J. Immunol. (2006) 177:4047-4054.
  • SAVILL J, DRANSFIELD I, GREGORY C, HASLETT C: A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. (2002) 2:965-975.
  • GREEN DR: At the gates of death. Cancer Cell (2006) 9:328-330.
  • GREEN DR, KROEMER G: The pathophysiology of mitochondrial cell death. Science (2004) 305:626-629.
  • RICCI JE, MUNOZ-PINEDO C, FITZGERALD P et al.: Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell (2004) 117:773-786.
  • WILLIS SN, CHEN L, DEWSON G et al.: Proapoptotic Bak is sequestered by Mcl-1 and Bcl-XL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. (2005) 19:1294-1305.
  • WEI MC, ZONG WX, CHENG EH et al.: Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science (2001) 292:727-730.
  • CHEN L, WILLIS SN, WEI A et al.: Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell (2005) 17:393-403.
  • WILLIS SN, ADAMS JM: Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. (2005) 17:617-625.
  • YANG T, BUCHAN HL, TOWNSEND KJ, CRAIG RW: MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J. Cell. Physiol. (1996) 166:523-536.
  • MICHELS J, JOHNSON PWM, PACKHAM G: Mcl-1. Int. J. Biochem. Cell Biol. (2005) 37:267-271.
  • ZHANG B, GOJO I, FENTON RG: Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood (2002) 99:1885-1893.
  • KRAJEWSKI S, BODRUG S, KRAJEWSKA M et al.: Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am. J. Pathol. (2001) 146:1309-1319.
  • ZHOU P, LEVY NB, XIE H et al.: MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic cell types. Blood (1997) 97:3902-3909.
  • ZHOU P, QIAN L, KOZOPAS KM, CRAIG RW: Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood (2000) 89:630-643.
  • RINKENBERGER JL, HORNING S, KLOCKE B, ROTH K, KORSMEYER SJ: Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. (2005) 14:23-27.
  • OPFERMAN JT, IWASAKI H, ONG CC et al.: Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science (2003) 307:1101-1104.
  • OPFERMAN JT, LETAI A, BEARD C, SORCINELLI MD, ONG CC, KORSMEYER SJ: Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature (2003) 426:671-676.
  • LIU H, MA Y, COLE SM et al.: Serine phosphorylation of STAT3 is essential for Mcl-1 expression and macrophage survival. Blood (2001) 102:344-352.
  • LIU H, PERLMAN H, PAGLIARI LJ, POPE RM: Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages. Role of Mcl-1, independent of nuclear factor (NF)-κB, Bad, or caspase activation. J. Exp. Med. (2001) 194:113-126.
  • EPLING-BURNETTE PK, ZHONG B, BAI F et al.: Cooperative regulation of Mcl-1 by Janus kinase/stat and phosphatidylinositol 3-kinase contribute to granulocyte-macrophage colony-stimulating factor-delayed apoptosis in human neutrophils. J. Immunol. (2001) 166:7486-7495.
  • LIU H, EKSARKO P, TEMKIN V et al.: Mcl-1 is essential for the survival of synovial fibroblasts in rheumatoid arthritis. J. Immunol. (2005) 175:8337-8345.
  • MARRIOTT HM, BINGLE CD, READ RC et al.: Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. J. Clin. Investig. (2005) 115:359-368.
  • ZHUANG J, BRADY H: Emerging role of Mcl-1 in actively counteracting BH3-only proteins in apoptosis. Cell Death Differ. (2003) 13:1263-1267
  • NIJHAWAN D, FANG M, TRAER E et al.: Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet radiation. Genes Dev. (2006) 17:1475-1486.
  • MAURER U, CHARVET C, WAGMAN AS, DEJARDIN E, GREEN DR: Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol. Cell (2006) 21:749-760.
  • OPFERMAN JT: Unraveling MCL-1 degradation. Cell Death Differ. (2006) 13:1260-1262.
  • ZHONG Q, GAO W, DU F, WANG X: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell (2005) 121:1085-1095.
  • HAN J, GOLDSTEIN LA, GASTMAN BR, RABINOWICH H: Interrelated roles for Mcl-1 and BIM in regulation of TRAIL-mediated mitochondrial apoptosis. J. Biol. Chem. (2006) 281:10153-10163.
  • HERRANT M, JACQUEL A, MARCHETTI S et al.: Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene (2004) 23:7863-7873.
  • MICHELS J, O’NEILL JW, CDALLMAN CL et al.: Mcl-1 is required for Akata6 B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage. Oncogene (2004) 23:4818-4817.
  • WENG C, LI Y, XU D, SHI Y, TANG H: Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J. Biol. Chem. (2005) 280:10491-10500.
  • SNOWDEN R, SUN X-M, DYER M, COHEN G: Bisindolylmaleimide IX is a potent inducer of apoptosis in chronic lymphocytic leukaemic cells and activates cleavage of Mcl-1. Leukemia (2003) 17:1981-1989.
  • LEU JI-J, DUMONT P, HAFEY M, MURPHY ME, GEORGE DL: Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. (2004) 6:443-450.
  • AICHBERGER KJ, MAYERHOFER M, KRAUTH MT et al.: Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood (2005) 105:3303-3311.
  • HAN J, GOLDSTEIN LA, GASTMAN BR, FROELICH CJ, YIN X-M, RABINOWICH H: Degradation of Mcl-1 by granzyme B: implications for Bim-mediated mitochondrial apoptotic events. J. Biol. Chem. (2004) 279:22020-22029.
  • HAN J, GOLDSTEIN LA, GASTMAN BR, RABINOVITZ A, RABINOWICH H: Disruption of Mcl-1 Bim complex in granzyme B-mediated mitochondrial apoptosis. J. Biol. Chem. (2005) 280:16383-16392.
  • ALVES NL, DERKS IA, BERK E, SPIJKER R, VAN LIER RA, ELDERING E: The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity (2006) 24:703-716.
  • CLOHESSY JG, ZHUANG J, BOER JD, GIL-GOMEZ G, BRADY HJM: Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J. Biol. Chem. (2006) 281:5750-5759.
  • GELINAS C, WHITE E: BH3-only proteins in control: specificity regulates MCL-1 and BAK-mediated apoptosis. Genes Dev. (2005) 19:1263-1268.
  • ROSSI AG, SAWATZKY DA, WALKER A et al.: Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat. Med. (2006) 12:1056-1064.
  • YU C, RAHMANI M, DAI Y et al.: The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process. Cancer Res. (2003) 63:1822-1833.
  • OLTERSDORF T, ELMORE SW, SHOEMAKER AR et al.: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature (2005) 435:677-681.
  • VAN DELFT MF, WEI AH, MASON KD et al.: The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell (2006) 10:389-399.
  • SHORE GC, VIALLET J: Modulating the bcl-2 family of apoptosis suppressors for potential therapeutic benefit in cancer. Hematology (Am. Soc. Hematol. Educ. Program) (2005):226-230.
  • AICHBERGER KJ, MAYERHOFER M, GLEIXNER KV et al.: Identification of mcl-1 as a novel target in neoplastic mast cells in systemic mastocytosis: inhibition of mast cell survival by mcl-1 antisense oligonucleotides and synergism with PKC412. Blood (2006) Epub ahead of print.
  • EPLING-BURNETTE PK, LIU JH, CATLETT-FALCONE R et al.: (2001) Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J. Clin. Investig. (2006) 107:351-362.
  • MOULDING DA, GILES RV, SPILLER DG, WHITE MR, TIDD DM, EDWARDS SW: Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells. Blood (2000) 96:1756-1763.
  • RINGSHAUSEN I, OELSNER M, WEICK K, BOGNER C, PESCHEL C, DECKER T: Mechanisms of apoptosis-induction by rottlerin: therapeutic implications for B-CLL. Leukemia (2006) 20:514-520.
  • ROSATO RR, ALMENARA JA, MAGGIO SC et al.: Potentiation of the lethality of the histone deacetylase inhibitor LAQ824 by the cyclin-dependent kinase inhibitor roscovitine in human leukemia cells. Mol. Cancer Ther. (2005) 4:1772-1785.
  • VEGA F, MEDEIROS LJ, LEVENTAKI V et al.: Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res. (2006) 66:6589-6597.
  • KAUFMANN SH: Imatinib spells BAD news for Bcr/abl-positive leukemias. Proc. Natl. Acad. Sci. USA (2006) 103:14651-14652.
  • KURODA J, PUTHALAKATH H, CRAGG MS et al.: Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc. Natl. Acad. Sci. USA (2006) 103:14907-14912.
  • DERENNE S, MONIA B, DEAN NM et al.: Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood (2002) 100:194-199.
  • GOMEZ-BOUGIE P, BATAILLE R, AMIOT M: The imbalance between Bim and Mcl-1 expression controls the survival of human myeloma cells. Eur. J. Immunol. (2004) 34:3156-3164.
  • GOMEZ-BOUGIE P, OLIVER L, LE GOUILL S, BATAILLE R, AMIOT M: Melphalan-induced apoptosis in multiple myeloma cells is associated with a cleavage of Mcl-1 and Bim and a decrease in the Mcl-1/Bim complex. Oncogene (2005) 24:8076-8079.
  • QIN JZ, ZIFFRA J, STENNETT L et al.: Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res. (2005) 65:6282-6293.
  • HUSSEIN MR, HAEMEL AK, WOOD GS: Apoptosis and melanoma: molecular mechanisms. J. Pathol. (2003) 199:275-288.
  • THALLINGER C, WOLSCHEK MF, WACHECK V et al.: Mcl-1 antisense therapy chemosensitizes human melanoma in a SCID mouse xenotransplantation model. J. Invest. Dermatol. (2003) 120:1081-1086.
  • QIN J-Z, XIN H, SITAILO LA, DENNING MF, NICKLOFF BJ: Enhanced killing of melanoma cells by simultaneously targeting Mcl-1 and NOXA. Cancer Res. (2006) 66:9636-9645.
  • CUCONATI A, MUKHERJEE C, PEREZ D, WHITE E: DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev. (2003) 17:2922-2932.
  • SIEGHART W, LOSERT D, STROMMER S et al.: Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J. Hepatol. (2006) 44:151-157.
  • THALLINGER C, WOLSCHEK MF, MAIERHOFER H et al.: Mcl-1 is a novel therapeutic target for human sarcoma: synergistic inhibition of human sarcoma xenotransplants by a combination of mcl-1 antisense oligonucleotides with low-dose cyclophosphamide. Clin. Cancer Res. (2004) 10:4185-4191.
  • SLY LM, HINGLEY-WILSON SM, REINER NE, MCMASTER WR: Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Mcl-2 family member Mcl-1. J. Immunol. (2003) 170:430-437.
  • CROSS A, BARNES T, BUCKNALL RC, EDWARDS SW, MOOTS RJ: Neutrophil apoptosis in rheumatoid arthritis is regulated by local oxygen tensions within joints. J. Leuk. Biol. (2006) 80:521-528.
  • LIU H, POPE RM: Apoptosis in rheumatoid arthritis: friend or foe. Rheum. Dis. Clin. North Am. (2004) 30:603-625.
  • POPE RM: Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol. (2002) 2:527-535.
  • PERLMAN H, PAGLIARI LJ, LIU H, KOCH AE, HAINES GK III, POPE RM: Rheumatoid arthritis synovial macrophages express the Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein and are refractory to Fas-mediated apoptosis. Arthritis Rheum. (2001) 44:21-30.
  • BAI S, LIU H, CHEN KH et al.: NF-κB-regulated expression of cellular FLIP protects rheumatoid arthritis synovial fibroblasts from tumor necrosis factor α-mediated apoptosis. Arthritis Rheum. (2004) 50:3844-3855.
  • LIU H, HUANG Q, SHI B, EKSARKO P, TEMKIN V, POPE RM: Regulation of Mcl-1 expression in rheumatoid arthritis synovial macrophages. Arthritis Rheum. (2006) 54:3174-3181.
  • PERLMAN H, PAGLIARI LJ, GEORGANAS C, MANO T, WALSH K, POPE RM: FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis. J. Exp. Med. (1999) 190:1679-1688.
  • RINGSHAUSEN I, SCHNELLER F, BOGNER C et al.: Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cδ. Blood (2002) 100:3741-3748.
  • IWAMARU A, SZYMANSKI S, IWADO E et al.: A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene (2006) Epub ahead of print.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.