221
Views
22
CrossRef citations to date
0
Altmetric
Review

Targeting the Wnt signaling pathway to treat Barrett’s esophagus

, &
Pages 375-389 | Published online: 14 Feb 2007

Bibliography

  • SPECHLER SJ: Clinical practice. Barrett’s Esophagus. N. Engl. J. Med. (2002) 346:836-842.
  • SPECHLER SJ: Barrett’s esophagus. Semin. Gastrointest. Dis. (1996) 7:51-60.
  • SOLAYMANI-DODARAN M, LOGAN RF, WEST J, CARD T, COUPLAND C: Risk of oesophageal cancer in Barrett’s oesophagus and gastro-oesophageal reflux. Gut (2004) 53:1070-1074.
  • HAMEETEMAN W, TYTGAT GN, HOUTHOFF HJ, VAN DEN TWEEL JG: Barrett’s esophagus: development of dysplasia and adenocarcinoma. Gastroenterology (1989) 96:1249-1256.
  • CORLEY DA, LEVIN TR, HABEL LA, WEISS NS, BUFFLER PA: Surveillance and survival in Barrett’s adenocarcinomas: a population-based study. Gastroenterology (2002) 122:633-640.
  • FLEJOU JF: Barrett’s oesophagus: from metaplasia to dysplasia and cancer. Gut (2005) 54(Suppl. 1):i6-i12.
  • KOPPERT LB, WIJNHOVEN BP, VAN DEKKEN H, TILANUS HW, DINJENS WN: The molecular biology of esophageal adenocarcinoma. J. Surg. Oncol. (2005) 92:169-190.
  • REID BJ, BLOUNT PL, RUBIN CE et al.: Flow-cytometric and histological progression to malignancy in Barrett’s esophagus: prospective endoscopic surveillance of a cohort. Gastroenterology (1992) 102:1212-1219.
  • REID BJ, HAGGITT RC, RUBIN CE, RABINOVITCH PS: Barrett’s esophagus. Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology (1987) 93:1-11.
  • ZHUANG Z, VORTMEYER AO, MARK EJ et al.: Barrett’s esophagus: metaplastic cells with loss of heterozygosity at the APC gene locus are clonal precursors to invasive adenocarcinoma. Cancer Res. (1996) 56:1961-1964.
  • BARRETT MT, SANCHEZ CA, GALIPEAU PC et al.: Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene (1996) 13:1867-1873.
  • BIAN YS, OSTERHELD MC, FONTOLLIET C, BOSMAN FT, BENHATTAR J: p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus. Gastroenterology (2002) 122:1113-1121.
  • SUSPIRO A, PEREIRA AD, AFONSO A et al.: Losses of heterozygosity on chromosomes 9p and 17p are frequent events in Barrett’s metaplasia not associated with dysplasia or adenocarcinoma. Am. J. Gastroenterol. (2003) 98:728-734.
  • CASSON AG, MANOLOPOULOS B, TROSTER M et al.: Clinical implications of p53 gene mutation in the progression of Barrett’s epithelium to invasive esophageal cancer. Am. J. Surg. (1994) 167:52-57.
  • YOUNES M, LEBOVITZ RM, LECHAGO LV, LECHAGO J: p53 protein accumulation in Barrett’s metaplasia, dysplasia, and carcinoma: a follow-up study. Gastroenterology (1993) 105:1637-1642.
  • BIAN YS, OSTERHELD MC, BOSMAN FT, BENHATTAR J, FONTOLLIET C: p53 gene mutation and protein accumulation during neoplastic progression in Barrett’s esophagus. Mod. Pathol. (2001) 14:397-403.
  • DJALILVAND A, PAL R, GOLDMAN H, ANTONIOLI D, KOCHER O: Evaluation of p53 mutations in premalignant esophageal lesions and esophageal adenocarcinoma using laser capture microdissection. Mod. Pathol. (2004) 17:1323-1327.
  • GONZALEZ MV, ARTIMEZ ML, RODRIGO L et al.: Mutation analysis of the p53, APC, and p16 genes in the Barrett’s oesophagus, dysplasia, and adenocarcinoma. J. Clin. Pathol. (1997) 50:212-217.
  • BAYLIN SB, HERMAN JG, GRAFF JR, VERTINO PM, ISSA JP: Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. (1998) 72:141-196.
  • BROCK MV, GOU M, AKIYAMA Y et al.: Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin. Cancer Res. (2003) 9:2912-2919.
  • EADS CA, LORD RV, KURUMBOOR SK et al.: Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res. (2000) 60:5021-5026.
  • EADS CA, LORD RV, WICKRAMASINGHE K et al.: Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. (2001) 61:3410-3418.
  • CLEMENT G, BRAUNSCHWEIG R, PASQUIER N, BOSMAN FT, BENHATTAR J: Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett’s oesophagus patients at risk for malignant transformation. J. Pathol. (2006) 208:100-107.
  • CADIGAN KM, NUSSE R: Wnt signaling: a common theme in animal development. Genes Dev. (1997) 11:3286-3305.
  • KORINEK V, BARKER N, MOERER P et al.: Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. (1998) 19:379-383.
  • BRENNAN KR, BROWN AM: Wnt proteins in mammary development and cancer. J. Mammary Gland Biol. Neoplasia (2004) 9:119-131.
  • REYA T, DUNCAN AW, AILLES L et al.: A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature (2003) 423:409-414.
  • PEREZ-LOSADA J, BALMAIN A: Stem-cell hierarchy in skin cancer. Nat. Rev. Cancer (2003) 3:434-443.
  • PINTO D, GREGORIEFF A, BEGTHEL H, CLEVERS H: Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. (2003) 17:1709-1713.
  • POLESSKAYA A, SEALE P, RUDNICKI MA: Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell (2003) 113:841-852.
  • SHACKEL NA, MCGUINNESS PH, ABBOTT CA, GORRELL MD, MCCAUGHAN GW: Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: cDNA array analysis of intrahepatic differential gene expression. Gut (2001) 49:565-576.
  • SURENDRAN K, SIMON TC: CNP gene expression is activated by Wnt signaling and correlates with Wnt4 expression during renal injury. Am. J. Physiol. Renal Physiol. (2003) 284:F653-F662.
  • MONGA SP, PEDIADITAKIS P, MULE K, STOLZ DB, MICHALOPOULOS GK: Changes in WNT/β-catenin pathway during regulated growth in rat liver regeneration. Hepatology (2001) 33:1098-1109.
  • POLAKIS P: Wnt signaling and cancer. Genes Dev. (2000) 14:1837-1851.
  • MOON RT, KOHN AD, DE FERRARI GV, KAYKAS A: WNT and β-catenin signalling: diseases and therapies. Nat. Rev. Genet. (2004) 5:691-701.
  • LOGAN CY, NUSSE R: The Wnt signaling pathway in development and disease. Ann. Rev. Cell Dev. Biol. (2004) 20:781-810.
  • NUSSE R, VARMUS HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell (1982) 31:99-109.
  • MORIN PJ, SPARKS AB, KORINEK V et al.: Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science (1997) 275:1787-1790.
  • SAITOH T, MINE T, KATOH M: Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int. J. Mol. Med. (2002) 9:515-519.
  • ZENG G, GERMINARO M, MICSENYI A et al.: Aberrant Wnt/β-catenin signaling in pancreatic adenocarcinoma. Neoplasia (2006) 8:279-289.
  • HOWNG SL, WU CH, CHENG TS et al.: Differential expression of Wnt genes, β-catenin and E-cadherin in human brain tumors. Cancer Lett. (2002) 183:95-101.
  • RICKEN A, LOCHHEAD P, KONTOGIANNEA M, FAROOKHI R: Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. Endocrinology (2002) 143:2741-2749.
  • BUI TD, ZHANG L, REES MC, BICKNELL R, HARRIS AL: Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br. J. Cancer (1997) 75:1131-1136.
  • UEMATSU K, KANAZAWA S, YOU L et al.: Wnt pathway activation in mesothelioma: evidence of Dishevelled overexpression and transcriptional activity of β-catenin. Cancer Res. (2003) 63:4547-4551.
  • UEMATSU K, HE B, YOU L et al.: Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene (2003) 22:7218-7221.
  • PHAM K, MILOVANOVIC T, BARR RJ, TRUONG T, HOLCOMBE RF: Wnt ligand expression in malignant melanoma: pilot study indicating correlation with histopathological features. Mol. Pathol. (2003) 56:280-285.
  • RHEE CS, SEN M, LU D et al.: Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene (2002) 21:6598-6605.
  • MILLER JR: The Wnts. Genome Biol. (2002) 3:REVIEWS3001.
  • WIDELITZ R: Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors (2005) 23:111-116.
  • TAMAI K, SEMENOV M, KATO Y et al.: LDL-receptor-related proteins in Wnt signal transduction. Nature (2000) 407:530-535.
  • LIU T, DECOSTANZO AJ, LIU X et al.: G protein signaling from activated rat frizzled-1 to the β-catenin-Lef-Tcf pathway. Science (2001) 292:1718-1722.
  • AMIT S, HATZUBAI A, BIRMAN Y et al.: Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. (2002) 16:1066-1076.
  • HART MJ, DE LOS SANTOS R, ALBERT IN, RUBINFELD B, POLAKIS P: Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr. Biol. (1998) 8:573-581.
  • ABERLE H, BAUER A, STAPPERT J, KISPERT A, KEMLER R: β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. (1997) 16:3797-3804.
  • CLIFFE A, HAMADA F, BIENZ M: A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr. Biol. (2003) 13:960-966.
  • CAVALLO RA, COX RT, MOLINE MM et al.: Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature (1998) 395:604-608.
  • CHEN G, FERNANDEZ J, MISCHE S, COUREY AJ: A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev. (1999) 13:2218-2230.
  • NELSON WJ, NUSSE R: Convergence of Wnt, β-catenin, and cadherin pathways. Science (2004) 303:1483-1487.
  • KAWANO Y, KYPTA R: Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. (2003) 116:2627-2634.
  • HSIEH JC, KODJABACHIAN L, REBBERT ML et al.: A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature (1999) 398:431-436.
  • JONES SE, JOMARY C: Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays (2002) 24:811-820.
  • UREN A, REICHSMAN F, ANEST V et al.: Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. (2000) 275:4374-4382.
  • FEDI P, BAFICO A, NIETO SORIA A et al.: Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J. Biol. Chem. (1999) 274:19465-19472.
  • SPARKS AB, MORIN PJ, VOGELSTEIN B, KINZLER KW: Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res. (1998) 58:1130-1134.
  • LUU HH, ZHANG R, HAYDON RC et al.: Wnt/β-catenin signaling pathway as a novel cancer drug target. Curr. Cancer Drug Targets (2004) 4:653-671.
  • ILYAS M: Wnt signalling and the mechanistic basis of tumour development. J. Pathol. (2005) 205:130-144.
  • JIN LH, SHAO QJ, LUO W et al.: Detection of point mutations of the Axin1 gene in colorectal cancers. Int. J. Cancer (2003) 107:696-699.
  • TANIGUCHI K, ROBERTS LR, ADERCA IN et al.: Mutational spectrum of β-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene (2002) 21:4863-4871.
  • WU R, ZHAI Y, FEARON ER, CHO KR: Diverse mechanisms of β-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res. (2001) 61:8247-8255.
  • BAEZA N, MASUOKA J, KLEIHUES P, OHGAKI H: AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene (2003) 22:632-636.
  • DUVAL A, GAYET J, ZHOU XP et al.: Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res. (1999) 59:4213-4215.
  • SUZUKI H, WATKINS DN, JAIR KW et al.: Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. (2004) 36:417-422.
  • PINTO D, CLEVERS H: Wnt, stem cells and cancer in the intestine. Biol. Cell (2005) 97:185-196.
  • BAILEY T, BIDDLESTONE L, SHEPHERD N et al.: Altered cadherin and catenin complexes in the Barrett’s esophagus-dysplasia-adenocarcinoma sequence: correlation with disease progression and dedifferentiation. Am. J. Pathol. (1998) 152:135-144.
  • WASHINGTON K, CHIAPPORI A, HAMILTON K et al.: Expression of β-catenin, α-catenin, and E-cadherin in Barrett’s esophagus and esophageal adenocarcinomas. Mod. Pathol. (1998) 11:805-813.
  • WIJNHOVEN BP, NOLLET F, DE BOTH NJ, TILANUS HW, DINJENS WN: Genetic alterations involving exon 3 of the β-catenin gene do not play a role in adenocarcinomas of the esophagus. Int. J. Cancer (2000) 86:533-537.
  • BIAN YS, OSTERHELD MC, BOSMAN FT, FONTOLLIET C, BENHATTAR J: Nuclear accumulation of β-catenin is a common and early event during neoplastic progression of BE. Am. J. Clin. Pathol. (2000) 114:583-590.
  • MARSMAN WA, BIRJMOHUN RS, VAN REES BP et al.: Loss of heterozygosity and immunohistochemistry of adenocarcinomas of the esophagus and gastric cardia. Clin. Cancer Res. (2004) 10:8479-8485.
  • OSTERHELD MC, BIAN YS, BOSMAN FT, BENHATTAR J, FONTOLLIET C: β-catenin expression and its association with prognostic factors in adenocarcinoma developed in Barrett esophagus. Am. J. Clin. Pathol. (2002) 117:451-456.
  • SEERY JP, SYRIGOS KN, KARAYIANNAKIS AJ, VALIZADEH A, PIGNATELLI M: Abnormal expression of the E-cadherin-catenin complex in dysplastic Barrett’s oesophagus. Acta Oncol. (1999) 38:945-948.
  • CHOI YW, HEATH EI, HEITMILLER R, FORASTIERE AA, WU TT: Mutations in β-catenin and APC genes are uncommon in esophageal and esophagogastric junction adenocarcinomas. Mod. Pathol. (2000) 13:1055-1059.
  • KOPPERT LB, VAN DER VELDEN AW, VAN DE WETERING M et al.: Frequent loss of the AXIN1 locus but absence of AXIN1 gene mutations in adenocarcinomas of the gastro-oesophageal junction with nuclear β-catenin expression. Br. J. Cancer (2004) 90:892-899.
  • SARBIA M, GEDDERT H, KLUMP B et al.: Hypermethylation of tumor suppressor genes (p16INK4A, p14ARF and APC) in adenocarcinomas of the upper gastrointestinal tract. Int. J. Cancer (2004) 111:224-228.
  • CLEMENT G, BRAUNSCHWEIG R, PASQUIER N, BOSMAN FT, BENHATTAR J: Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett’s esophagus. Oncogene (2006) 25:3084-3092.
  • ZOU H, MOLINA JR, HARRINGTON JJ et al.: Aberrant methylation of secreted frizzled-related protein genes in esophageal adenocarcinoma and Barrett’s esophagus. Int. J. Cancer (2005) 116:584-591.
  • YOU L, HE B, UEMATSU K et al.: Inhibition of Wnt-1 signaling induces apoptosis in β-catenin-deficient mesothelioma cells. Cancer Res. (2004) 64:3474-3478.
  • HE B, YOU L, UEMATSU K et al.: A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia (2004) 6:7-14.
  • MIKAMI I, YOU L, HE B et al.: Efficacy of Wnt-1 monoclonal antibody in sarcoma cells. BMC Cancer (2005) 5:53.
  • HE B, REGUART N, YOU L et al.: Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene (2005) 24:3054-3058.
  • YOU L, HE B, XU Z et al.: An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. (2004) 64:5385-5389.
  • MAZIERES J, YOU L, HE B et al.: Wnt2 as a new therapeutic target in malignant pleural mesothelioma. Int. J. Cancer (2005) 117:326-332.
  • YOU L, HE B, XU Z et al.: Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene (2004) 23:6170-6174.
  • WEERARATNA AT, JIANG Y, HOSTETTER G et al.: Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell (2002) 1:279-288.
  • TANIGUCHI H, YAMAMOTO H, HIRATA T et al.: Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene (2005) 24:7946-7952.
  • HE B, LEE AY, DADFARMAY S et al.: Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in β-catenin-deficient human mesothelioma cells. Cancer Res. (2005) 65:743-748.
  • LEE AY, HE B, YOU L et al.: Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene (2004) 23:6672-6676.
  • ZI X, GUO Y, SIMONEAU AR et al.: Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res. (2005) 65:9762-9770.
  • HORVATH LG, HENSHALL SM, KENCH JG et al.: Membranous expression of secreted frizzled-related protein 4 predicts for good prognosis in localized prostate cancer and inhibits PC3 cellular proliferation in vitro. Clin. Cancer Res. (2004) 10:615-625.
  • ROTH W, WILD-BODE C, PLATTEN M et al.: Secreted Frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene (2000) 19:4210-4220.
  • LIN YC, YOU L, XU Z et al.: Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem. Biophys. Res. Commun. (2006) 341:635-640.
  • TSUJI T, MIYAZAKI M, SAKAGUCHI M, INOUE Y, NAMBA M: A REIC gene shows down-regulation in human immortalized cells and human tumor-derived cell lines. Biochem. Biophys. Res. Commun. (2000) 268:20-24.
  • TSUJI T, NOZAKI I, MIYAZAKI M et al.: Antiproliferative activity of REIC/Dkk-3 and its significant down-regulation in non-small-cell lung carcinomas. Biochem. Biophys. Res. Commun. (2001) 289:257-263.
  • KAWANO Y, KITAOKA M, HAMADA Y et al.: Regulation of prostate cell growth and morphogenesis by Dickkopf-3. Oncogene (2006) 25:6528-6537.
  • KUPHAL S, LODERMEYER S, BATAILLE F et al.: Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene (2006) 25:5027-5036.
  • HOANG BH, KUBO T, HEALEY JH et al.: Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-β-catenin pathway. Cancer Res. (2004) 64:2734-2739.
  • LEE AY, HE B, YOU L et al.: Dickkopf-1 antagonizes Wnt signaling independent of β-catenin in human mesothelioma. Biochem. Biophys. Res. Commun. (2004) 323:1246-1250.
  • AGUILERA O, FRAGA MF, BALLESTAR E et al.: Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene (2006) 25:4116-4121.
  • MIZUTANI K, MIYAMOTO S, NAGAHATA T et al.: Upregulation and overexpression of DVL1, the human counterpart of the Drosophila dishevelled gene, in prostate cancer. Tumori (2005) 91:546-551.
  • SATOH S, DAIGO Y, FURUKAWA Y et al.: AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat. Genet. (2000) 24:245-250.
  • KIM JS, CROOKS H, FOXWORTH A, WALDMAN T: Proof-of-principle: oncogenic β-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol. Cancer Ther. (2002) 1:1355-1359.
  • DIHLMANN S, VON KNEBEL DOEBERITZ M: Wnt/β-catenin-pathway as a molecular target for future anti-cancer therapeutics. Int. J. Cancer (2005) 113:515-524.
  • GREEN DW, ROH H, PIPPIN JA, DREBIN JA: β-catenin antisense treatment decreases β-catenin expression and tumor growth rate in colon carcinoma xenografts. J. Surg. Res. (2001) 101:16-20.
  • VERMA UN, SURABHI RM, SCHMALTIEG A, BECERRA C, GAYNOR RB: Small interfering RNAs directed against β-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin. Cancer Res. (2003) 9:1291-1300.
  • CONG F, ZHANG J, PAO W, ZHOU P, VARMUS H: A protein knockdown strategy to study the function of β-catenin in tumorigenesis. BMC Mol. Biol. (2003) 4:10.
  • SU Y, ISHIKAWA S, KOJIMA M, LIU B: Eradication of pathogenic β-catenin by Skp1/Cullin/F box ubiquitination machinery. Proc. Natl. Acad. Sci. USA (2003) 100:12729-12734.
  • LIU J, STEVENS J, MATSUNAMI N, WHITE RL: Targeted degradation of β-catenin by chimeric F-box fusion proteins. Biochem. Biophys. Res. Commun. (2004) 313:1023-1029.
  • TOOGOOD PL: Inhibition of protein-protein association by small molecules: approaches and progress. J. Med. Chem. (2002) 45:1543-1558.
  • LEPOURCELET M, CHEN YN, FRANCE DS et al.: Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell (2004) 5:91-102.
  • EMAMI KH, NGUYEN C, MA H et al.: A small molecule inhibitor of β-catenin/CREB-binding protein transcription [corrected]. Proc. Natl. Acad. Sci. USA (2004) 101:12682-12687.
  • TAKEMARU KI, MOON RT: The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J. Cell Biol. (2000) 149:249-254.
  • CHEN RH, MCCORMICK F: Selective targeting to the hyperactive β-catenin/T-cell factor pathway in colon cancer cells. Cancer Res. (2001) 61:4445-4449.
  • BRUNORI M, MALERBA M, KASHIWAZAKI H, IGGO R: Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. J. Virol. (2001) 75:2857-2865.
  • FUERER C, IGGO R: Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway. Gene Ther. (2002) 9:270-281.
  • TOTH K, DJEHA H, YING B et al.: An oncolytic adenovirus vector combining enhanced cell-to-cell spreading, mediated by the ADP cytolytic protein, with selective replication in cancer cells with deregulated wnt signaling. Cancer Res. (2004) 64:3638-3644.
  • FUERER C, HOMICSKO K, LUKASHEV AN, PITTET AL, IGGO RD: Fusion of the BCL9 HD2 domain to E1A increases the cytopathic effect of an oncolytic adenovirus that targets colon cancer cells. BMC Cancer (2006) 6:236.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.