204
Views
20
CrossRef citations to date
0
Altmetric
Review

Targeting the PI3K and MAPK pathways to treat Kaposi’s sarcoma-associated herpes virus infection and pathogenesis

, , , , , & show all
Pages 589-599 | Published online: 27 Apr 2007

Bibliography

  • RAMEH LE, CANTLEY LC: The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. (1999) 274:8347-8350.
  • BARBER MA, WELCH HC: PI3K and RAC signalling in leukocyte and cancer cell migration. Bull. Cancer (2006) 93(5):E44-E52.
  • FRUMAN DA, MEYERS RE, CANTLEY LC: Phoshoinositide kinases. Ann. Rev. Biochem. (1998) 67:481-507.
  • GOSWAMI A, RANGANATHAN P, RANGNEKAR VM: The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Cancer Res. (2006) 66:2889-2892.
  • GRANVILLE CA, MEMMOTT RM, GILLS JJ, DENNIS PA: Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin. Cancer Res. (2006) 12:679-689.
  • RUSTEN TE, STENMARK H: Analyzing phosphoinositides and their interacting proteins. Nat. Methods (2006) 3:251-258.
  • RANI MR, RANSOHOFF RM: Alternative and accessory pathways in the regulation of IFN-β-mediated gene expression. J. Interferon Cytokine Res. (2005) 25:788-798.
  • HAMDEN KE, WHITMAN AG, FORD PW, SHELTON JG, MCCUBREY JA, AKULA SM: Raf and VEGF: emerging therapeutic targets in Kaposi’s sarcoma-associated herpesvirus infection and angiogenesis in hematopoietic and nonhematopoietic tumors. Leukemia (2005) 19:18-26.
  • KOLCH W: Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. (2000) 15:289-305.
  • ROBINSON MJ, COBB MH: Mitogen-activated protein kinase pathways. Curr. Opin. Cell. Biol. (1997) 9:180-186
  • NELSON TJ, ALKON DL: Insulin and cholesterol pathways in neuronal function, memory and neurodegeneration. Biochem. Soc. Trans. (2005) 33:1033-1036.
  • SAMSTAG Y, NEBL G: Ras initiates phosphatidyl-inositol-3-kinase (PI3K)/PKB mediated signalling pathways in untransformed human peripheral blood T lymphocytes. Adv. Enzyme Regul. (2005) 45:52-62.
  • TAKAHASHI K, MURAKAMI M, YAMANAKA S: Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells. Biochem. Soc. Trans. (2005) 33:1522-1525.
  • KING WG, MATTALIANO MD, CHAN TO, TSICHLIS PN, BRUGGE JS: Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol. Cell. Biol. (1997) 17:4406-4418.
  • INNOCENTI M, FRITTOLI E, PONZANELLI I, FALCK JR, BRACHMANN SM, DI FIORE PP, SCITA G: Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J. Cell Biol. (2003) 160:17-23.
  • VIARD P, BUTCHER AJ, HALET G, DAVIES A, NUNBERG B, HEBLICH F, DOLPHIN AC: PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat. Neurosci. (2004) 7:939-946.
  • MALEMUD CJ: Small molecular weight inhibitors of stress-activated and mitogen-activated protein kinases. Mini-Rev. Med. Chem. (2006) 6:689-698.
  • PARONETTO MP, ZALFA F, BOTTI F, GEREMIA R, BAGNI C, SETTE C: The nuclear RNA-binding protein Sam68 translocates to the cytoplasm and associates with the polysomes in mouse spermatocytes. Mol. Biol. Cell. (2006) 17:14-24.
  • SHEN A, PUENTE LG, OSTERGAARD HL: Tyrosine kinase activity and remodeling of the actin cytoskeleton are co-temporally required for degranulation by cytotoxic T lymphocytes. Immunology (2005) 116:276-286
  • VADLAMUDI RK, MANAVATHI B, BALASENTHIL S et al.: Functional implications of altered subcellular localization of PELP1 in breast cancer cells. Cancer Res. (2005) 65:7724-7732.
  • WHITMAN AG, HAMDEN KE, FORD PW, MCCUBREY JA, AKULA SM: Role for Raf in the entry of viruses associated with AIDS (review). Int. J. Oncol. (2004) 25:469-480.
  • COHEN Y, XING M, MAMBO E et al.: BRAF mutation in papillary thyroid carcinoma. J. Natl. Cancer Inst. (2003) 95:625-627.
  • KIMURA ET, NIKIFOROVA MN, ZHU Z, KNAUF JA, NIKIFOROV YE, FAGIN JA: High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. (2003) 63:1454-1457.
  • PRITCHARD CA, SAMUELS ML, BOSCH E, MCMAHON M: Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol. Cell. Biol. (1995) 15:6430-6442.
  • GRBOVIC OM, BASSO AD, SAWAI A et al.: V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl. Acad. Sci. USA (2006) 103:57-62.
  • HAGAN S, GARCIA R, DHILLON A, KOLCH W: Raf kinase inhibitor protein regulation of raf and MAPK signaling. Methods Enzymol. (2005) 407:248-259.
  • CHONG H, VIKIS HG, GUAN KL: Mechanisms of regulating the Raf kinase family. Cell Signal (2003) 15:463-469.
  • DHILLON AS, KOLCH W: Untying the regulation of the Raf-1 kinase. Arch. Biochem. Biophys. (2002) 404:3-9.
  • MORRISON DK, CUTLER RE: The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. (1997) 9:174-179.
  • RODRIGUEZ-VICIANA P, OSES-PRIETO J, BURLINGAME A, FRIED M, MCCORMICK F: A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol. Cell. (2006) 22:217-230.
  • SHELTON JG, MOYE PW, STEELMAN LS et al.: Differential effects of kinase cascade inhibitors on neoplastic and cytokine-mediated cell proliferation. Leukemia (2003) 17:1765-1782.
  • WELLBROCK C, KARASARIDES M, MARAIS R: The RAF proteins take centre stage. Nat. Rev. Mol. Cell. Biol. (2004) 5:875-885.
  • LEFEVRE G, CALIPEL A, MOURIAUX F, HECQUET C, MALECAZE F, MASCARELLI F: Opposite long-term regulation of c-Myc and p27Kip1 through overactivation of Raf-1 and the MEK/ERK module inproliferating human choroidal melanoma cells. Oncogene (2003) 22:8813-8822.
  • PAGON Z, VOLKER J, COOPER GM, HANSEN U: Mammalian transcription factor LSF is a target of ERK signaling. J. Cell. Biochem. (2003) 89:733-746.
  • WANG Y, PRYWES R: Activation of the c-fos enhancer by the erk MAP kinase pathway through two sequence elements: the c-fos AP-1 and p62TCF sites. Oncogene (2000) 19:1379-1385.
  • JAISWAL RK, WEISSINGER E, KOLCH W, LANDRETH GE: Nerve growth factor-mediated activation of the mitogen-activated protein MAP kinase cascade involves a signaling complex containing B-Raf and HSP90. J. Biol. Chem. (1996) 271:23626-23629.
  • WANG HG, RAPP UR, REED JC: Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell (1996) 87:629-638.
  • DUMAZ N, MARAIS R: Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. FEBS J. (2005) 272:3491-3504.
  • AKULA SM, FORD PW, WHITMAN AG et al.: B-Raf-dependent expression of vascular endothelial growth factor-A in Kaposi sarcoma-associated herpesvirus-infected human B cells. Blood (2005) 105:4516-4522.
  • ALAVI A, HOOD JD, FRAUSTO R, STUPACK DG, CHERESH DA: Role of Raf in vascular protection from distinct apoptotic stimuli. Science (2003) 301:94-96.
  • WOJNOWSKI L, ZIMMER AM, BECK TW et al.: Endothelial apoptosis in Braf-deficient mice. Nat. Genet. (1997) 16:293-297.
  • CHONG H, GUAN KL: Regulation of Raf through phosphorylation and N terminus-C terminus interaction. J. Biol. Chem. (2003) 278:36269-36276.
  • DIAZ B, BARNARD D, FILSON A, MACDONALD S, KING A, MARSHALL M: Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol. Cell. Biol. (1997) 17:4509-4516.
  • CHAUDHARY A, KING WG, MATTALIANO MD et al.: Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr. Biol. (2000) 10:551-554.
  • CLERK A, SUGDEN PH: Signaling through the extracellular signal-regulated kinase 1/2 cascade in cardiac myocytes. Biochem. Cell. Biol. (2004) 82:603-609.
  • DHILLON AS, POLLOCK C, STEEN H, SHAW PE, MISCHAK H, KOLCH W: Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol. Cell. Biol. (2002) 22:3237-3246.
  • INAMURA K, MATSUZAKI Y, UEMATSU N, HONDA A, TANAKA N, UCHIDA K: Rapid inhibition of MAPK signaling and anti-proliferation effect via JAK/STAT signaling by interferon-α in hepatocellular carcinoma cell lines. Biochim. Biohphys. Acta. (2005) 1745:401-410.
  • KING AJ, SUN H, DIAZ B et al.: The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature (1998) 396:180-183.
  • LI DW, LIU JP, MAO YW et al.: Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by αB-crystallin through inhibition of RAS activation. Mol. Biol. Cell. (2005) 16:4437-4453.
  • MASON CS, SPRINGER CJ, COOPER RG, SUPERTI-FURGA G, MARSHALL CJ, MARAIS R: Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO. J. (1999) 18:2137-2148.
  • DUMAZ N, LIGHT Y, MARAIS R: Cyclic AMP blocks cell growth through Raf-1-dependent and Raf-1-independent mechanisms. Mol. Cell. Biol. (2002) 22:3717-3728.
  • HOWE AK, JULIANO RL: Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nat. Cell Biol. (2000) 2:593-600.
  • WU J, DENT P, JELINEK T, WOLFMAN A, WEBER MJ, STURGILL TW: Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′,5′-monophosphate. Science (1993) 262:1065-1069.
  • PERALDI P, FRODIN M, BARNIER JV et al.: Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP. FEBS Lett. (1995) 357:290-296.
  • DENT P, JEILNEK T, MORRISON DK, WEBER MJ, STURGILL TW: Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science (1995) 268:1902-1906.
  • MUSLIN AJ, TANNER JW, ALLEN PM, SHAW AS: Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell (1996) 84:889-897.
  • CUTLER RE JR, STEPHENS RM, SARACINO MR, MORRISON DK: Autoregulation of the Raf-1 serine/threonine kinase. Proc. Natl. Acad. Sci. USA (1998) 95:9214-9219.
  • TRAN NH, FROST JA: Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. J. Biol. Chem. (2003) 278:11221-11226.
  • MORRISON DK: KSR: a MAPK scaffold of the Ras pathway? J. Cell Sci. (2001) 114:1609-1612.
  • MURPHY LO, MACKEIGAN JP, BLENIS J: A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol. Cell. Biol. (2004) 24:144-153.
  • ABERG ND, BRYWE KG, ISGAARD J: Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci. World J. (2006) 6:53-80.
  • LAVOIE JN, UAILEMAIN G, BRUNET A, MOILER R, POUYSSEGUR J: Cyclinee D1 expression is regulated positively by the p42/44 MAPK and negatively by the p38/HOG MAPK pathway. J. Biol. Chem. (1996) 271:20608-20616.
  • OKA H, CHATANI Y, HOSHINO R, OGAWA O, KAKEHI Y, TERACHI T et al.: Constitutive activation of mitogen-activated protein (MAP) kinases in human renal cell carcinoma. Cancer Res. (1995) 55:4182-4187.
  • RESZKA AA, SEGER R, DILTZ CD, KREBS EG, FISCHER EH: Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Natl. Acad. Sci. USA (1995) 92:8881-8885.
  • FRANKLIN CC, KRAFT AS: Constitutively active MAP kinase kinase (MEK1) stimulates SAP kinase end c-Jun transcriptional activity in U937 human leukemic cells. Oncogene (1995) 11:2365-2374.
  • CREEDON DJ, JOHNSON EM, LAWRENCE JC: Mitogen-activated protein kinase-independent pathways mediate the effects of nerve growth factor and cAMP on neuronal survival. J. Biol. Chem. (1996) 271:20713-20718.
  • SANO M, KOHNO M, IWANGA M: The activation and nuclear translocation of extracellular signal-regulated kinases (ERK-1 and -2) appear not to be required for elongation of neurites in PC12D cells. Brain Res. (1995) 688:213-218.
  • VIRDEE K, TOLKOVSKY AM: Activation of p44 and p42 MAP kinases is not essential for the survival of rat sympathetic neurons. Eur. J. Neurosci. (1995) 7:2159-2169.
  • ENGLISH JD, SWEATT JD: Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. (1996) 271:24329-24332.
  • HADDAD JJ: N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog. Neurobiol. (2005) 77:252-282.
  • JI RR, BABA H, BRENNER GJ, WOOLF CJ: Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat. Neurosci. (1999) 2:1114-1119.
  • CAMMAROTA M, BEVILAQUA LR, ARDENGHI P et al.: Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade. Brain Res. Mol. Brain Res. (2000) 76(1):36-46.
  • WANG X, TOURNIER C: Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal (2006) 18:753-760.
  • VEERAMANI S, YUAN TC, CHEN SJ et al.: Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr. Relat. Cancer (2005) 12:805-822.
  • CHEN YL, LAW PY, LOH HH: Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr. Med. Chem. Anti-Cancer Agents (2005) 5(6):575-589.
  • KHWAJA A, RODRIGUEZ-VICIANA P, WENNSTROM S, WARNE PH, DOWNWARD J: Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO. J. (1997) 16:2783-2793.
  • REGAN CP, LI W, BOUCHER DM, SPATZ S, SU MS, KUIDA K: Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc. Natl. Acad. Sci. USA (2002) 99:9248-9253.
  • SOHN SJ, SARVIS BK, CADO D, WINOTO A: ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J. Biol. Chem. (2002) 277:43344-43351.
  • WANG X, MERRITT AJ, SEYFRIED J et al.: Targeted deletion of mek5 causes early embryonic death and defects in the extracellular signal-regulated kinase 5/myocyte enhancer factor 2 cell survival pathway. Mol. Cell. Biol. (2005) 25:336-345.
  • JOY S, SIOW RC, ROWLANDS DJ et al.: The isoflavone equol mediates rapid vascular relaxation: Ca2+-independent activation of eNOS/Hsp90 involving ERK1/2 and Akt phosphorylation in human endothelial cells. J. Biol. Chem. (2006). Epub ahead of print.
  • WHITMAN AG, BRYAN BA, DYSON OF et al.: AIDS related viruses, their association with leukemia, and Raf signaling. Curr. HIV Res. (2005) 3:319-327.
  • CHANG Y, CESARMAN E, PESSIN MS et al.: Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science (1994) 266:1865-1869.
  • GALLO RC: HIV-1, HHV-8, and Kaposi’s sarcoma. J. Hum. Virol. (1998) 1:185-186.
  • CHANG Y, MOORE PS: Kaposi’s sarcoma (KS)-associated herpesvirus and its role in KS. Infect. Agents Dis. (1996) 5:215-222.
  • ENSOLI B, SGADARI C, BARILLARI G, SIRIANNI MC, STURZL M, MONINI P: Biology of Kaposi’s sarcoma. Eur. J. Cancer (2001) 37:1251-1269.
  • BOSHOFF C: Kaposi’s sarcoma biology. IUBMB Life (2002) 53:259-261.
  • ENSOLI B, STURZL M: Kaposi’s sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. Cytokine Growth Factor Rev. (1998) 9:63-83.
  • ABLASHI DV, CHATLYNNE LG, WHITMAN JE Jr, CESARMAN E: Spectrum of Kaposi’s sarcoma-associated herpesvirus, or human herpesvirus-8, diseases. Clin. Microbiol. Rev. (2002) 15:439-464.
  • COHEN A, WOLF DG, GUTTMAN-YASKY E, SARID R: Kaposi’s sarcoma-associated herpesvirus: clinical, diagnostic, and epidemiological aspects. Crit. Rev. Clin. Lab. Sci. (2005) 42:101-153.
  • JUDDE JG, LACOSTE V, BRIERE J et al.: Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi’s sarcoma and other diseases. J. Natl. Cancer Inst. (2000) 92:729-736.
  • GEDDES M, FRANCESCHI S, BARCHIELLI A et al.: Kaposi’s sarcoma in Italy before and after the AIDS epidemic. Br. J. Cancer (1994) 69:333-336.
  • PENN I: Kaposi’s sarcoma in organ transplant recipients: report of 20 cases. Transplantation (1979) 27:8-11.
  • TRATTNER A, HODAK E, DAVID M, SANDBANK M: The appearance of Kaposi sarcoma during corticosteroid therapy. Cancer (1993) 72:1779-1783.
  • TAYLOR JF, TEMPLETON AC, VOGEL CL, ZIEGLER JL, KYALWAZI SK: Kaposi’s sarcoma in Uganda: a clinico-pathological study. Int. J. Cancer (1971) 8:122-135.
  • HAVERKOS HW, DROTMAN DP: Prevalence of Kaposi’s sarcoma among patients with AIDS. N. Engl. J. Med. (1985) 312:1518.
  • BERAL V, PETERMAN TA, BERKELMAN RL, JAFFE HW: Kaposi’s sarcoma among persons with AIDS: a sexually transmitted infection? Lancet (1990) 335:123-128.
  • GERAMINEJAD P, MEMAR O, ARONSON I, RADY PL, HENGGE U, TYRING SK: Kaposi’s sarcoma and other manifestations of human herpesvirus 8. J. Am. Acad. Dermatol. (2002) 47:641-655.
  • RENNE R, BLACKBOURN D, WHITBY D, LEVY J, GANEM D: Limited transmission of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J. Virol. (1998) 72:5182-5188.
  • AKULA SM, PRAMOD NP, WANG FZ, CHANDRAN B: Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell (2002) 108:407-419.
  • CANNON M, CESARMAN E, BOSHOFF C: KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood (2006) 107:277-284.
  • BRINKMANN MM, SCHULZ TF: Regulation of intracellular signaling by the terminal membrane proteins of members of the Gammaherpesvirinae. J. Gen. Virol. (2006) 87:1047-1074.
  • WANG L, DITTMER DP, TOMLINSON CC, FAKHARI FD, DAMANIA B: Immortialization of primary endothelial cells by the K1 protein of Kaposi’s sarcoma-associated herpesvirus. Cancer Res. (2006) 66:3658-3666.
  • WONG EL, DAMANIA B: Transcriptional regulation of the Kaposi’s sarcoma-associated herpesvirus K15 gene. J. Virol. (2006) 80:1385-1392.
  • XIE J, PAN H YOO S, GAO SJ: Kaposi’s sarcoma-associated herpesvirus induction of AP-1 and interleukin 6 during primary infection mediated by multiple mitogen-activated protein kinase pathways. J. Virol. (2005) 79:15027-15037.
  • ANGEL P, KARIN M: The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta (1991) 1072:129-157.
  • CROWE DL, BROWN TN: Transcriptional inhibition of matrix metalloproteinase 9 (MMP-9) activity by a c-Fos/estrogen receptor fusion protein is mediated by the proximal AP-1 site of the MMP-9 promoter and correlates with reduced tumor cell invasion. Neoplasia (1999) 1:368-372.
  • SHAULIAN E, KARIN M: AP-1 as a regulator of cell life and death. Nat. Cell Biol. (2002) 4:E131-E136.
  • COHEN A, BRODIE C, SARID R: An essential role of ERK signaling in TPA-induced reactivation of Kaposi’s sarcoma-associated herpesvirus. J. Gen. Virol. (2006) 87:795-802.
  • DATTA SR, DUDEK H, TAO X et al.: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell (1997) 91:231-241.
  • FRANKE TF, CANTLEY LC: Apoptosis. A Bad kinase makes good. Nature (1997) 390:116-117.
  • CURRELI F, FRIEDMAN-KIEN AE, FLORE O: Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. J. Clin. Invest. (2005) 115:642-652.
  • STEDMAN W, DENG Z, LU F, LIEBERMAN PM: ORC, MCM, and histone hyperacetylation at the Kaposi’s sarcoma-associated herpesvirus latent replication origin. J. Virol. (2004) 78:12566-12575.
  • XU Y, AUCOIN DP, HUETE AR, CEI SA, HANSON LJ, PARI GS: A Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J. Virol. (2005) 79:3479-3487.
  • YADA K, DO E, SAKAKIBARA S et al.: KSHV RTA induces a transcriptional repressor, HEY1 that represses rta promoter. Biochem. Biophys. Res. Commun. (2006) 345:410-418.
  • GONZALEZ CM, WONG EL, BOWSER BS, HONG GK, KENNEY S, DAMANIA B: Identification and characterization of the Orf49 protein of Kaposi’s sarcoma-associated herpesvirus. J. Virol. (2006) 80:3062-3070.
  • BAIS C, VAN GEELEN A, EROLES P et al.: Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell (2003) 3:131-143.
  • CANNON ML, CESARMAN E: The KSHV G protein-coupled receptor signals via multiple pathways to induce transcription factor activation in primary effusion lymphoma cells. Oncogene (2004) 23:514-523.
  • KLOUCHE M, CARRUBA G, CASTAGNETTA L, ROSE-JOHN S: Virokines in the pathogenesis of cancer: focus on human herpesvirus 8. Ann. N. Y. Acad. Sci. (2004) 1028:329-339.
  • YOO SM, ZHOU FC, YE FC, PAN HY, GAO SJ: Early and sustained expression of latent and host modulating genes in coordinated transcriptional program of KSHV productive primary infection of human primary endothelial cells. Virology (2005) 343:47-64.
  • FORD PW, BRYAN BA, DYSON OF, WEIDNER DA, CHINTALGATTU V, AKULA SM: Raf/MEK/ERK signaling triggers reactivation of Kaposi’s sarcoma-associated herpesvirus latency. J. Gen. Virol. (2006) 87:1139-1144.
  • SHELTON JG, STEELMAN LS, WHITE ER, MCCUBREY JA: Synergy between PI3K/Akt and Raf/MEK/ERK pathways in IGF-1R mediated cell cycle progression and prevention of apoptosis in hematopoietic cells. Cell Cycle (2005) 372:372-379.
  • OZA AM, ELIT L, SWENERTON K et al.: Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND.116). Gynecol. Oncol. (2003) 89:129-133.
  • CRIPPS MC, FIGUERDO AT, OZA AM et al.: Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin. Cancer Res. (2002) 8:2188-2192.
  • GOKHALE PC, ZHANG C, NEWSOME JT et al.: Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome. Clin. Cancer Res. (2002) 8:3611-3621.
  • GOKHALE PC, SOLDATENKOV V, WANG FH, RAHMAN A, DRITSCHILO A, KASID U: Antisense raf oligodeoxyribonucleotide is protected by liposomal encapsulation and inhibits Raf-1 protein expression in vitro and in vivo: implication for gene therapy of radioresistant cancer. Gene Ther. (1997) 4:1289-1299.
  • DRITSCHILO A, HUANG CH, RUDIN CM et al.: Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin. Cancer Res. (2006) 12:1251-1259.
  • SRIDHAR SS, HEDLEY D, SIU LL: Raf kinase as a target for anticancer therapeutics. Mol. Cancer Ther. (2005) 4:677-685.
  • SEBOLT-LEOPOLD JS, HERRARA R: Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer (2004) 4:937-947.
  • SEBOLT-LEOPOLD JS, DUDLEY DT et al.: Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med. (1999) 5:810-816.
  • SOLIT D, GARRAWAY LA, PRATILAS CA et al.: BRAF mutation predicts sensitivity to MEK inhibition. Nature (2006) 439:358-362.
  • THOMPSON N, LYONS J: Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr. Opin. Pharmacol. (2005) 5:350-356.
  • MCDAID H, LOPEZ-BARCONS L, GROSSMAN A et al.: Enhancement of the therapeutic efficacy of taxol by the mitogen-activated protein kinase kinase inhibitor CI-1040 in nude mice bearing human heterotransplants. Cancer Res. (2005) 65:2854-2860.
  • WARD S, SOTSIOS Y, DOWDEN J, BRUCE I, FINAN P: Therapeutic potential of phosphoinositide 3-kinase inhibitors. Chem. Biol. (2003) 10:207-213.
  • ADJEI AA, MAUER A, BRUZEK L et al.: Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. (2003) 21:1760-1766.
  • RAO S, CUNNINGHAM D, DE GRAMONT A et al.: Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol. (2004) 22:3950-3957.
  • ROSENBERG JE, VON DER MAASE H, SEIGNE JD et al.: A Phase II trial of R115777, an oral farnexyl transferase inhibitor, in patients with advanced urothelial tract transitional cell carcinoma. Cancer (2005) 103:2035-2041.
  • MIZUTANI T, FUKUSHI S, SAIJO M, FURANE I, MORIKAWA S: Phosphorylation of p38 MAPK and its downstream targets in SARS corona-virus infected cells. Biochem. Biophys. Res. Commun. (2004) 319:1228-1234.
  • YANG H, KIM SK, KIM M et al.: Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction. J. Clin. Invest. (2005) 115:379-387.
  • FERRARA N: Vascular endothelial growth factor as a target for anticancer therapy. Oncologist (2004) 9:2-10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.