864
Views
96
CrossRef citations to date
0
Altmetric
Review

Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications

, , & , MD PhD
Pages 637-645 | Published online: 15 Apr 2008

Bibliography

  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494-8
  • Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001;15(2):188-200
  • Martin SE, Caplen NJ. Applications of RNA interference in mammalian systems. Ann Rev Genomics Hum Genet 2007;8:81-108
  • Micklem DR, Lorens JB. RNAi screening for therapeutic targets in human malignancies. Curr Pharm Biotechnol 2007;8(6):337-43
  • Marsden PA. RNA interference as potential therapy – not so fast. N Engl J Med 2006;355(9):953-4
  • Rychahou PG, Jackson LN, Farrow BJ, Evers BM. RNA interference: mechanisms of action and therapeutic consideration. Surgery 2006;140(5):719-25
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5(7):522-31
  • Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett 2005;579(26):5974-81
  • Bruserud O. Introduction: RNA and the treatment of human cancer. Curr Pharm Biotechnol 2007;8(6):318-9
  • Haney SA. Expanding the repertoire of RNA interference screens for developing new anticancer drug targets. Expert Opin Ther Targets 2007;11(11):1429-41
  • Kolfschoten IG, Regazzi R. Technology Insight: small, noncoding RNA molecules as tools to study and treat endocrine diseases. Nat Clin Pract Endocrinol Metab 2007;3(12):827-34
  • Pirollo KF, Chang EH. Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res 2008;68(5):1247-50
  • Merritt WM, Lin YG, Spannuth WA, et al. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst 2008;100(5):359-72
  • Pirollo KF, Rait A, Zhou Q, et al. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res 2007;67(7):2938-43
  • Fumitaka T. TO. Therapeutic potential of RNA interference against cancer. Cancer Sci 2006;97:689-96
  • Mathieu Derouet XW, Linda Mayy, Byong Hoon Yoo, et al. Rosen. Acquisition of anoikis resistance promotes the emergence of oncogenic k-ras mutations in colorectal cancer cells and stimulates their tumorigenicity in vivo Neoplasia 2007;9(7):536-45
  • Kar R, Sen S, Singh A, et al. Role of apoptotic regulators in human epithelial ovarian cancer. Cancer Biol Ther 2007;67;1101-5
  • Badalian G, Barbai T, Raso E, et al. Phenotype of bone metastases of non-small cell lung cancer: epidermal growth factor receptor expression and k-ras mutational status. Pathol Oncol Res 2007;13(2):99-104
  • Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002;2(3):243-7
  • Rejiba S, Wack S, Aprahamian M, Hajri A. K-ras oncogene silencing strategy reduces tumor growth and enhances gemcitabine chemotherapy efficacy for pancreatic cancer treatment. Cancer Sci 2007;98(7):1128-36
  • Ji Z, Mei FC, Xie J, Cheng X. Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 2007;282(19):14048-55
  • Fleming JB, Shen GL, Holloway SE, et al. Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol Cancer Res 2005;3(7):413-23
  • Hadj-Slimane R, Lepelletier Y, Lopez N, et al. Short interfering RNA (siRNA), a novel therapeutic tool acting on angiogenesis. Biochimie 2007;89(10):1234-44
  • Siobhan M, Cashman LB, Jason Christofferson, Rajendra Kumar-Singh. Inhibition of choroidal neovascularization by adenovirus-mediated delivery of short hairpin RNAs targeting VEGF as a potential therapy for AMD. Invest Ophthalmol Vis Sci 2006;47(6):3496-504
  • Guan HT, Xue XH, Dai ZJ, et al. Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity. World J Gastroenterol 2006;12(18):2901-7
  • Kami K, Doi R, Koizumi M, et al. Downregulation of survivin by siRNA diminishes radioresistance of pancreatic cancer cells. Surgery 2005;138(2):299-305
  • Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9(3):347-51
  • Wang YH, Liu S, Zhang G, et al. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res 2005;7(2):R220-8
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432(7014):173-8
  • Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005;23(8):1002-7
  • Chen PY, Weinmann L, Gaidatzis D, et al. Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 2008;14(2):263-74
  • Gaynor JW, Brazier J, Cosstick R. Synthesis of 3′-S-phosphorothiolate oligonucleotides for their potential use in RNA interference. Nucleosides Nucleotides Nucleic Acids 2007;26(6-7):709-12
  • Corey DR. Chemical modification: the key to clinical application of RNA interference? J Clin Invest 2007;117(12):3615-22
  • Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv 2008;5(1):25-44
  • Liu B. Exploring cell type-specific internalizing antibodies for targeted delivery of siRNA. Brief Funct Genomic Proteomic 2007;6(2):112-9
  • de Fougerolles AR. Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 2008;19(2):125-32
  • Urban-Klein B, Werth S, Abuharbeid S, et al. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo Gene Ther 2005;12(5):461-6
  • Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 2004;32(19):e149. Published online 1 November 2004, doi: 10.1093/nar/gnh140
  • Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006;5(8):1909-17
  • Kawakami S, Hashida M. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet 2007;22(3):142-51
  • Pal A, Ahmad A, Khan S, et al. Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int J Oncol 2005;26(4):1087-91
  • Landen CN Jr, Chavez-Reyes A, Bucana C, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005;65(15):6910-8
  • Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007;8(3):173-84
  • Rychahou PG, Murillo CA, Evers BM. Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery 2005;138(2):391-7
  • Siolas D, Lerner C, Burchard J, et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 2005;23(2):227-31
  • Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 2006;12(7):1179-87
  • Jackson AL, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 2006;12(7):1197-205
  • Masiero M, Nardo G, Indraccolo S, Favaro E. RNA interference: implications for cancer treatment. Mol Aspects Med 2007;28(1):143-66
  • Sioud M. RNA interference and innate immunity. Adv Drug Deliv Rev 2007;59(2-3):153-63
  • Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003;5(9):834-9
  • Kariko K, Bhuyan P, Capodici J, Weissman D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 2004;172(11):6545-9
  • Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005;23(6):709-17
  • Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441(7092):537-41
  • John M, Constien R, Akinc A, et al. Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 2007;449(7163):745-7
  • Grimm D, Kay MA. Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J Clin Invest 2007;117(12):3633-41
  • Aigner A. Nonviral in vivo delivery of therapeutic small interfering RNAs. Curr Opin Mol Ther 2007;9(4):345-52
  • Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet 2004;363(9414):1049-57
  • Misek DE, Patwa TH, Lubman DM, Simeone DM. Early detection and biomarkers in pancreatic cancer. J Natl Compr Canc Netw 2007;5(10):1034-41
  • Zuckerman DS, Ryan DP. Adjuvant therapy for pancreatic cancer: a review. Cancer 2008;112(2):243-9
  • Stephens B, Han H, Hostetter G, et al. Small interfering RNA-mediated knockdown of PRL phosphatases results in altered Akt phosphorylation and reduced clonogenicity of pancreatic cancer cells. Mol Cancer Ther 2008;7(1):202-10
  • Iwaki K, Shibata K, Ohta M, et al. A small interfering RNA targeting proteinase-activated receptor-2 is effective in suppression of tumor growth in a Panc1 xenograft model. Int J Cancer 2008;122(3):658-63
  • Zhao S, Ammanamanchi S, Brattain M, et al. Smad4-dependent TGF-β signaling suppresses RON receptor tyrosine kinase dependent motility and invasion of pancreatic cancer cells. J Biol Chem 2008: published online Feb 29, doi: 10.1074/jbc.M800154200
  • Liu W, Bloom DA, Cance WG, et al. Fak and Igf-Ir interact to provide survival signals in human pancreatic adenocarcinoma cells. Carcinogenesis 2008: published online Feb 7 2008, doi: 10.1093/carcin/bgn026
  • Wang Z, Banerjee S, Kong D, et al. Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 2007;67(17):8293-300
  • Qiu Z, Huang C, Sun J, et al. RNA interference-mediated signal transducers and activators of transcription 3 gene silencing inhibits invasion and metastasis of human pancreatic cancer cells. Cancer Sci 2007;98(7):1099-106
  • Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett 2003;545(2-3):144-50
  • Ito H, Duxbury M, Zinner MJ, et al. Glucose transporter-1 gene expression is associated with pancreatic cancer invasiveness and MMP-2 activity. Surgery 2004;136(3):548-56
  • Yang L, Cao Z, Yan H, Wood WC. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res 2003;63(20):6815-24
  • Duxbury MS, Matros E, Ito H, et al. Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer. Ann Surg 2004;240(4):667-74; discussion 75-6
  • Li M, Bharadwaj U, Zhang R, et al. Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol Cancer Ther 2008;7(2):286-96
  • Thomas M, Lu JJ, Chen J, Klibanov AM. Non-viral siRNA delivery to the lung. Adv Drug Deliv Rev 2007;59(2-3):124-33
  • Saravolac EG, Wong JP. Recent Patents on development of nucleic acid-based antiviral drugs against seasonal and pandemic influenza virus infections. Recent Patents. Anti Infect Drug Disc 2007;2(2):140-7
  • Zhou H, Jin M, Yu Z, et al. Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Res 2007;76(2):186-93
  • Li BJ, Tang Q, Cheng D, et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 2005;11(9):944-51
  • Duxbury MS, Ito H, Zinner MJ, et al. CEACAM6 gene silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic adenocarcinoma cells. Oncogene 2004;23(2):465-73
  • Arumugam T, Simeone DM, Van Golen K, Logsdon CD. S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 2005;11(15):5356-64
  • Li M, Zhang Y, Liu Z, et al. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci U S A 2007;104(47):18636-41
  • Hucl T, Brody JR, Gallmeier E, et al. High cancer-specific expression of mesothelin (MSLN) is attributable to an upstream enhancer containing a transcription enhancer factor dependent MCAT motif. Cancer Res 2007;67(19):9055-65
  • Hassan R, Laszik ZG, Lerner M, et al. Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am J Clin Pathol 2005;124(6):838-45
  • Hassan R, Lerner MR, Benbrook D, et al. Antitumor activity of SS(dsFv) PE38 and SS1(dsFv)PE38, recombinant antimesothelin immunotoxins against human gynecologic cancers grown in organotypic culture in vitro Clin Cancer Res 2002;8(11):3520-6
  • Kreitman RJ. Recombinant fusion toxins for cancer treatment. Expert Opin Biol Ther 2002;2(8):785-91
  • Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer 2008;44(1):46-53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.