481
Views
70
CrossRef citations to date
0
Altmetric
Review

The P2X7 receptor as a therapeutic target

, PhD, , , PhD, , PhD, , PhD, & , PhD show all
Pages 647-661 | Published online: 15 Apr 2008

Bibliography

  • North RA. Molecular physiology of P2X receptors. Physiol Rev 2002;82:1013-67
  • Surprenant A, Rassendren F, Kawshima E, et al. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 1996;272:735-8
  • Khakh BS, Burnstock G, Kennedy C, et al. International Union of Pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 2001;53:107-18
  • Valera S, Hussy N, Evans RJ, et al. A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 1994;371:516-9
  • Steinberg TH, Newman AS, Swanson JA, et al. ATP4- permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 1987;262:8884-8
  • Falzoni S, Munerati M, Ferrari D, et al. The purinergic P2Z receptor of human macrophage cells. J Clin Invest 1995;95:1207-16
  • Rassendren F, Buell G, Virginio C, et al. The permeabilizing ATP receptor P2X7: cloning of a human cDNA. J Biol Chem 1997;272:5482-6
  • Chessell IP, Michel AD, Humphrey PPA. Effects of antagonists at the human recombinant P2X7 receptor. Br J Pharmacol 1998;124:1314-20
  • Young MT, Pelegrin P, Surprenant A. Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol Pharmacol 2007;71:92-100
  • Hibell AD, Kidd EJ, Chessel IP, et al. Apparent species differences in the kinetic properties of P2X7 receptors. Br J Pharmacol 2000;130:167-73
  • Ferrari D, Pizzirani C, Adinolfi E, et al. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 2006;176:3877-83
  • Wiley JS, Dao-Ung LP, Gu BJ, et al. A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukaemia: A molecular study. Lancet 2002;359:1114-9
  • Cabrini G, Falzoni S, Forchap SL, et al. A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol 2005;175:82-9
  • Barden N, Harvey M, Gagné B, et al. Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2006;141:374-82
  • Niño-Moreno P, Portales-Pérez D, Hernández-Castro B, et al. P2X7 and NRAMP1/SLC11 A1 gene polymorphisms in Mexican mestizo patients with pulmonary tuberculosis. Clin Exp Immunol 2007;148:469-77
  • Haas SL, Ruether A, Singer MV, et al. Functional P2X7 receptor polymorphisms (His155Tyr, Arg307Gln, Glu496Ala) in patients with Crohn's disease. Scand J Immunol 2007;65:166-70
  • Fernando SL, Saunders BM, Sluyter R, et al. A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med 2007;175:360-6
  • Di Virgilio F, Borea PA, Illes P. P2 receptors meet the immune system. Trends Pharmacol Sci 2001;22:5-7
  • Sperlagh B, Vizi ES, Wirkner K, et al. P2X7 receptors in the nervous system. Prog Neurobiol 2006;78:327-46
  • Anderson CM, Nedergaard M. Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 2006;29:257-62
  • Pfeiffer ZA, Aga M, Prabhu U, et al. The nucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho. J Leukoc Biol 2004;75:1173-82
  • Elliott JI, Surprenant A, Marelli-Berg FM, et al. Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol 2005;7:808-16
  • Coutinho-Silva R, Persechini PM, Bisaggio RD, et al. P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Am J Physiol 1999;276:C1139-47
  • Peng L, Bradley CJ, Wiley JS. P2Z purinoceptor, a special receptor for apoptosis induced by ATP in human leukemic lymphocytes. Chin Med J (Engl) 1999;112:356-62
  • Chiozzi P, Murgia M, Falzoni S, et al. Role of the purinergic P2Z receptor in spontaneous cell death in J774 macrophage cultures. Biochem Biophys Res Commun 1996;218:176-81
  • Ferrari D, Chiozzi P, Falzoni S, et al. ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 1997;36:1295-301
  • Schulze-Lohoff E, Hugo C, Rost S, et al. Extracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X7 receptors. Am J Physiol 1998;275:F962-71
  • Hillman KA, Harada H, Chan CM, et al. Chicken DT40 cells stably transfected with the rat P2X(7) receptor ion channel: A system suitable for the study of purine receptor-mediated cell death. Biochem Pharmacol 2003;66:415-24
  • Baricordi OR, Ferrari D, Melchiorri L, et al. An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood 1996;87:682-90
  • Baricordi OR, Melchiorri L, Adinolfi E, et al. Increased proliferation rate of lymphoid cells transfected with the P2X(7) ATP receptor. J Biol Chem 1999;274:33206-8
  • Raffaghello L, Chiozzi P, Falzoni S, et al. The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. Cancer Res 2006;66:907-14
  • Bianco F, Ceruti S, Colombo A, et al. A role for P2X7 in microglial proliferation. J Neurochem 2006;99:745-58
  • Adinolfi E, Callegari MG, Ferrari D, et al. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 2005;16:3260-72
  • Solle M, Labasi J, Perregaux DG, et al. Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 2001;276:125-32
  • Ke HZ, Qi H, Weidema AF, et al. Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol 2003;17:1356-67
  • Faria RX, Defarias FP, Alves LA. Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol 2005;288:C260-70
  • Jiang LH, Rassendren F, Mackenzie A, et al. N-methyl-D-glucamine and propidium dyes utilize different permeation pathways at rat P2X7 receptors. Am J Physiol 2005;289:C1295-302
  • Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J 2006;25:5071-82
  • Pelegrin P, Surprenant A. Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1â release through a dye uptake-independent pathway. J Biol Chem 2007;282:2386-94.
  • Le Feuvre R, Brough D, Rothwell N. Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 2002;447:261-9
  • Parvathenani LK, Tertyshnikova S, Greco CR, et al. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J Biol Chem 2003;278:13300-17
  • Narcisse L, Scemes E, Zha Y, et al. The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 2005;49:245-58
  • Collo G, Neidhart S, Kawashima E, et al. Tissue distribution of the P2X7 receptor. Neuropharmacology 1997;36:1277-83
  • Franke H, Gunther A, Grosche J, et al. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 2004;63:686-99
  • Anderson C, Duan S, Chen Y, et al. ATP-activated glutamate release through non-selective P2Z/P2X7 like channels in cultured mouse astrocytes. Drug Dev Res 2000;50:92
  • Chessel IP, Hatcher J, Bountra C, et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005;114:386-96
  • Donnelly-Roberts DL, Jarvis MF. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 2007;151:571-9
  • Di Virgilio F, Falzoni S, Mutini C, et al. Purinergic P2X7 receptor: a pivotal role in inflammation and immunomodulation. Drug Dev Res 1998;45:207-13
  • Gracie JA. Interleukin-18 as a potential target in inflammatory arthritis. Clin Exp Immunol 2004;136:402-4
  • Gunosewoyo H, Coster MJ, Kassiou M. Molecular probes for P2X7 studies. Curr Med Chem 2007;14:1505-23
  • Gargett CE, Wiley JS. The isoquinoline derivative KN-62: a potent antagonist of the P2Z receptor of human lymphocytes. Br J Pharmacol 1997;120:1483-90
  • Tokumitsu H, Chijiwa T, Hagiwara M, et al. KN-62, [1-(N,O-bis (1,5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine, a specific inhibitor of Ca2+/calmodulin protein kinase II. J Biol Chem 1990;8:4315-20
  • Baraldi PG, Makaeva R, Pavani MG, et al. Synthesis, biological activity and molecular modeling studies of 1,2,3,4-tetrahydroisoquinoline derivatives as conformationally constrained analogues of KN-62, a potent antagonist of the P2X7-receptor containing the tyrosine moiety. Arzneimittelforschung Drug Res 2002;52:273-85
  • Baraldi PG, Romagnoli R, Tabrizi MA, et al. Synthesis of Conformationally Constrained analogues of KN-62, a potent antagonist of the P2X7-receptor. Bioorg Med Chem Lett 2000;10:681-4
  • Ravi RG, Kertesy SB, Dubyak GR, Jacobson KA. Potent P2X7 receptor antagonists: tyrosyl derivatives synthesized using a sequential parallel synthetic approach. Drug Dev Res 2001;54:75-87
  • Chen W, Ravi RG, Kertesy SB, et al. Functionalized congeners of tyrosine-based P2X7 receptor antagonists: probing multiple sites for linking and dimerization. Bioconjug Chem 2002;13:1100-11
  • Lee GE, Joshi BV, Chen W, et al. Synthesis and structure-activity relationship studies of tyrosine-based antagonists at the human P2X7 receptor. Bioorg Med Chem Lett 2008;18:571-5
  • Baraldi PG, Nunez MC, Morelli A, et al. Synthesis and biological activity of N-arylpiperazine-modified analogues of KN-62, a potent antagonist of the purinergic P2X7 Receptor. J Med Chem 2003;46:1318-29
  • Romagnoli R, Baraldi PG, Pavani MG, et al. Synthesis, radiolabeling and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor. Bioorg Med Chem Lett 2004;14:5709-12
  • Romagnoli R, Baraldi PG, Carrion MD, et al. From tyrosine to glycine: synthesis and biological activity of potent antagonists of the purinergic P2X7 receptor. J Med Chem 2007;50:3706-15
  • Baxter A, Bent J, Bowers K, et al. Hit-to-lead studies: the discovery of potent adamantane amide P2X7 receptor antagonists. Bioorg Med Chem Lett 2003;13:4047-50
  • AstraZeneca AB. 2-Adamantyl derivatives as P2X7 receptor antagonists.WO2005014529 (2005)
  • Furber M, Alcaraz L, Bent JE, et al. Discovery of potent and selective adamantane-based small-molecule P2X7 receptor antagonists/Interleukin-1β inhibitors. J Med Chem 2007;50:5882-5
  • AstraZeneca. Adamantyl derivatives as P2X7 receptor antagonists. WO2006025783 (2006)
  • AstraZeneca AB. Novel biaromatic compounds, inhibitors of the P2X7 receptor. WO2006080884 (2006)
  • Renovis, Inc. Novel compounds as P2X7 modulators and uses thereof. WO2007028022 (2007)
  • Abbott Laboratories. Acylhydrazide P2X7 antagonists and uses thereof. WO2006110516 (2006)
  • Alcaraz L, Baxter A, Bent J, et al. Novel P2X7 receptor antagonists. Bioorg Med Chem Lett 2003;13:4043-6
  • Stokes L, Jiang L-H, Alcaraz L, et al. Br J Pharmacol 2006;149:880-7
  • Renovis, Inc. Bycycloheteroaroyl compounds as P2X7 modulators and uses thereof. WO2007109192 (2007)
  • Honore PM, Donnelly-Roberts DL, Namovic M, et al. A-740003 (N-1-(1-{[(cyanoimino)(5-quinolinylamino)methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide, a novel and selective P2X7 receptor antagonist dose-dependently reduces neurophatic pain in the rat. J Pharmacol Exp Ther 2006;319:1376-85
  • Abbott Laboratories. P2X7 antagonists for the treating neuropatic pain. US20050171195 (2005)
  • Abbott Laboratories. Cyanoamidine P2X7 antagonists for the treatment of pain. WO2006017406 (2006)
  • Merriman GH, Ma L, Shum P, et al. Synthesis and SAR of novel 4,5-diarylimidazolines as potent P2X7 receptor antagonists. Bioorg Med Chem Lett 2005;15:435-8
  • Abbott Laboratories. P2X7 receptor antagonists and uses thereof. WO2007056091 (2007)
  • Glaxo Group Limited. N-(Phenylmethyl)-2-(1H-pyrazol-4-yl)acetamide derivatives as P2X7 antagonists for the treatment of pain, inflammation and neurodegeneration. WO2007141267 (2007)
  • Nelson DW, Gregg RJ, Kort ME, et al. Structure-activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists. J Med Chem 2006;49:3659-66
  • Honore P, Donnelly-Roberts D, Namovic MT, et al. J Pharmacol Exp Ther 2006;319:1376-85
  • Abbott Laboratories. The use of selective P2X7 receptor antagonists. WO2006086229 (2006)
  • Carroll WA, Kalvin DM, Medrano AP, et al. Novel and potent 3-(2,3-dichlorophenyl)-4-(benzyl)-4H-1,2,4-triazole P2X7 antagonists. Bioorg Med Chem Lett 2007;17:4044-48

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.