73
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Novel mechanistic concept of platelet inhibition

, PhD
Pages 677-692 | Published online: 15 May 2008

Bibliography

  • Freedman JE. Molecular regulation of platelet-dependent thrombosis. Circulation 2005;112(17):2725-34
  • Clemetson KJ. Platelet collagen receptors: a new target for inhibition? Haemostasis 1999;29(1):16-26
  • Jackson SP, Schoenwaelder SM. Antiplatelet therapy: in search of the ‘magic bullet’. Nat Rev Drug Discov 2003;2(10):775-89
  • Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood 2003;102(2):449-61
  • Moroi M, Jung SM. Platelet glycoprotein VI: its structure and function. Thromb Res 2004;114(4):221-33
  • Farndale RW. Collagen-induced platelet activation. Blood Cells Mol Dis 2006;36(2):162-5
  • Farndale RW, Siljander PR, Onley DJ, et al. Collagen-platelet interactions: recognition and signalling. Biochem Soc Symp 2003;70:81-94
  • Farndale RW, Sixma JJ, Barnes MJ, et al. The role of collagen in thrombosis and hemostasis. J Thromb Haemost 2004;2(4):561-73
  • Bhatt DL. Intensifying platelet inhibition – navigating between Scylla and Charybdis. N Engl J Med 2007;357(20):2078-81
  • McNicol A, Israels SJ. Platelets and anti-platelet therapy. J Pharmacol Sci 2003;93(4):381-96
  • Clemetson KJ, Clemetson JM. Collagen receptors as potential targets for novel anti-platelet agents. Curr Pharm Des 2007;13(26):2673-83
  • Arai M, Yamamoto N, Moroi M, et al. Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br J Haematol 1995;89(1):124-30
  • Moroi M, Jung SM, Okuma M, et al. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest 1989;84(5):1440-5
  • Kato K, Kanaji T, Russell S, et al. The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood 2003;102(5):1701-7
  • Poole A, Gibbins JM, Turner M, et al. The Fc receptor γ-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J 1997;16(9):2333-41
  • Nieswandt B, Bergmeier W, Schulte V, et al. Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRγ chain. J Biol Chem 2000;275(31):23998-4002
  • Lockyer S, Okuyama K, Begum S, et al. GPVI-deficient mice lack collagen responses and are protected against experimentally induced pulmonary thromboembolism. Thromb Res 2006;118(3):371-80
  • Moroi M, Jung SM, Shinmyozu K, et al. Analysis of platelet adhesion to a collagen-coated surface under flow conditions: the involvement of glycoprotein VI in the platelet adhesion. Blood 1996;88(6):2081-92
  • Penz S, Reininger AJ, Brandl R, et al. Human atheromatous plaques stimulate thrombus formation by activating platelet glycoprotein VI. FASEB J 2005;19(8):898-909
  • Li H, Lockyer S, Concepcion A, et al. The Fab fragment of a novel anti-GPVI monoclonal antibody, OM4, reduces in vivo thrombosis without bleeding risk in rats. Arterioscler Thromb Vasc Biol 2007;27(5):1199-205
  • Kleinschnitz C, Pozgajova M, Pham M, et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007;115(17):2323-30
  • Lecut C, Feeney LA, Kingsbury G, et al. Human platelet glycoprotein VI function is antagonized by monoclonal antibody-derived Fab fragments. J Thromb Haemost 2003;1(12):2653-62
  • Massberg S, Konrad I, Bultmann A, et al. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J 2004;18(2):397-9
  • Gruner S, Prostredna M, Koch M, et al. Relative antithrombotic effect of soluble GPVI dimer compared with anti-GPVI antibodies in mice. Blood 2005;105(4):1492-9
  • Cosemans JM, Kuijpers MJ, Lecut C, et al. Contribution of platelet glycoprotein VI to the thrombogenic effect of collagens in fibrous atherosclerotic lesions. Atherosclerosis 2005;181(1):19-27
  • Massberg S, Gawaz M, Gruner S, et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003;197(1):41-9
  • Chu X, Hou M, Peng J, et al. Identification of human platelet glycoprotein VI-specific IgG autoantibody and its fragments. Blood Coagul Fibrinolysis 2006;17(5):403-7
  • Clemetson KJ, McGregor JL, James E, et al. Characterization of the platelet membrane glycoprotein abnormalities in Bernard-Soulier syndrome and comparison with normal by surface-labeling techniques and high-resolution two-dimensional gel electrophoresis. J Clin Invest 1982;70(2):304-11
  • Nieswandt B, Schulte V, Bergmeier W, et al. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med 2001;193(4):459-69
  • Miura Y, Takahashi T, Jung SM, et al. Analysis of the interaction of platelet collagen receptor glycoprotein VI (GPVI) with collagen. A dimeric form of GPVI, but not the monomeric form, shows affinity to fibrous collagen. J Biol Chem 2002;277(48):46197-204
  • Smethurst PA, Onley DJ, Jarvis GE, et al. Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J Biol Chem 2007;282(2):1296-304
  • Horii K, Kahn ML, Herr AB. Structural basis for platelet collagen responses by the immune-type receptor glycoprotein VI. Blood 2006;108(3):936-42
  • Feng J, Garrity D, Call ME, et al. Convergence on a distinctive assembly mechanism by unrelated families of activating immune receptors. Immunity 2005;22(4):427-38
  • George JN. Platelets. Lancet 2000;355(9214):1531-9
  • Bigalke B, Lindemann S, Ehlers R, et al. Expression of platelet collagen receptor glycoprotein VI is associated with acute coronary syndrome. Eur Heart J 2006;27(18):2165-9
  • O'Connor MN, Smethurst PA, Davies LW, et al. Selective blockade of glycoprotein VI clustering on collagen helices. J Biol Chem 2006;281(44):33505-10
  • Calvo E, Tokumasu F, Marinotti O, et al. Aegyptin, a novel mosquito salivary gland protein, specifically binds to collagen and prevents its interaction with platelet glycoprotein VI, integrin α2β1, and von Willebrand factor. J Biol Chem 2007;282(37):26928-38
  • Matsumoto Y, Takizawa H, Gong X, et al. Highly potent anti-human GPVI monoclonal antibodies derived from GPVI knockout mouse immunization. Thromb Res 2007;119(3):319-29
  • Morita A, Isawa H, Orito Y, et al. Identification and characterization of a collagen-induced platelet aggregation inhibitor, triplatin, from salivary glands of the assassin bug, Triatoma infestans. FEBS J 2006;273(13):2955-62
  • Aiken ML, Ginsberg MH, Byers-Ward V, et al. Effects of OKM5, a monoclonal antibody to glycoprotein IV, on platelet aggregation and thrombospondin surface expression. Blood 1990;76(12):2501-9
  • Busfield SJ, Villeval JL, Jandrot-Perrus M, et al. Glycoprotein VI antibodies and uses thereof. US6989144B1; 2006
  • Schulte V, Reusch HP, Pozgajova M, et al. Two-phase antithrombotic protection after anti-glycoprotein VI treatment in mice. Arterioscler Thromb Vasc Biol 2006;26(7):1640-7
  • Cauwenberghs N, Vanhoorelbeke K, Vauterin S, et al. Epitope mapping of inhibitory antibodies against platelet glycoprotein Ibα reveals interaction between the leucine-rich repeat N-terminal and C-terminal flanking domains of glycoprotein Ibα. Blood 2001;98(3):652-60
  • Hubbard GP, Wolffram S, de Vos R, et al. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study. Br J Nutr 2006;96(3):482-8
  • Hubbard GP, Wolffram S, Lovegrove JA, et al. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost 2004;2(12):2138-45
  • Andrews RK, Suzuki-Inoue K, Shen Y, et al. Interaction of calmodulin with the cytoplasmic domain of platelet glycoprotein VI. Blood 2002;99(11):4219-21
  • Suzuki-Inoue K, Tulasne D, Shen Y, et al. Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. J Biol Chem 2002;277(24):21561-6
  • Locke D, Liu C, Peng X, et al. Fc Rγ-independent signaling by the platelet collagen receptor glycoprotein VI. J Biol Chem 2003;278(17):15441-8
  • Morton LF, Peachey AR, Zijenah LS, et al. Conformation-dependent platelet adhesion to collagen involving integrin α2β1-mediated and other mechanisms: multiple α2β1-recognition sites in collagen type I. Biochem J 1994;299(Pt 3):791-7
  • Zijenah LS and Barnes MJ. Platelet-reactive sites in human collagens I and III: evidence for cell-recognition sites in collagen unrelated to RGD and like sequences. Thromb Res 1990;59(3):553-66
  • Asselin J, Knight CG, Farndale RW, et al. Monomeric (glycine-proline-hydroxyproline)10 repeat sequence is a partial agonist of the platelet collagen receptor glycoprotein VI. Biochem J 1999;339(Pt 2):413-8
  • Morton LF, Hargreaves PG, Farndale RW, et al. Integrin α2β1-independent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for α2β1-independent platelet reactivity. Biochem J 1995;306(Pt 2):337-44
  • Kato K, Furihata K, Cheli Y, et al. Effect of multimer size and a natural dimorphism on the binding of convulxin to platelet glycoprotein (GP)VI. J Thromb Haemost 2006;4(5):1107-13
  • Chen H, Locke D, Liu Y, et al. The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion. J Biol Chem 2002;277(4):3011-9
  • Berlanga O, Bori-Sanz T, James JR, et al. Glycoprotein VI oligomerization in cell lines and platelets. J Thromb Haemost 2007;5(5):1026-33
  • Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res 2004;61(3):498-511
  • Gibbins JM, Okuma M, Farndale R, et al. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor γ-chain. FEBS Lett 1997;413(2):255-9
  • Sigalov A. Multi-chain immune recognition receptors: spatial organization and signal transduction. Semin Immunol 2005;17(1):51-64
  • Sigalov AB. Multichain immune recognition receptor signaling: different players, same game? Trends Immunol 2004;25(11):583-9
  • Sigalov AB. Immune cell signaling: a novel mechanistic model reveals new therapeutic targets. Trends Pharmacol Sci 2006;27(10):518-24
  • Sigalov AB. Transmembrane interactions as immunotherapeutic targets: lessons from viral pathogenesis. Adv Exp Med Biol 2007;601:335-44
  • Sigalov AB. Signaling chain homooligomerization (SCHOOL) model. In: Sigalov AB, editor, Multichain immune recognition receptor signaling: from spatiotemporal organization to human disease. Austin: Landes Bioscience; 2008:121-63
  • Sigalov AB. SCHOOL model and new targeting strategies. In: Sigalov AB, editor, Multichain immune recognition receptor signaling: from spatiotemporal organization to human disease. Austin: Landes Bioscience; 2008:268-311
  • Sigalov A, Aivazian D, Stern L. Homooligomerization of the cytoplasmic domain of the T cell receptor ζ chain and of other proteins containing the immunoreceptor tyrosine-based activation motif. Biochemistry 2004;43(7):2049-61
  • Sigalov AB, Zhuravleva AV, Orekhov VY. Binding of intrinsically disordered proteins is not necessarily accompanied by a structural transition to a folded form. Biochimie 2007;89(3):419-21
  • Jones S, Thornton JM. Principles of protein–protein interactions. Proc Natl Acad Sci USA 1996;93(1):13-20
  • Kim WM, Sigalov AB. Viral pathogenesis, modulation of immune receptor signaling, and treatment. In: Sigalov AB, editor, Multichain immune recognition receptor signaling: from spatiotemporal organization to human disease. Austin: Landes Bioscience; 2008:325-49
  • Sigalov AB. Inhibiting collagen-induced platelet aggregation and activation with peptide variants. US 12/001,258 and PCT PCT/US2007/025389 patent applications filed on 12/11/2007 and 12/12/2007, respectively, claiming a priority to US 60/874,694 provisional patent application filed on 12/13/2006
  • Sigalov AB. More on: glycoprotein VI oligomerization: a novel concept of platelet inhibition. J Thromb Haemost 2007;5(11):2310-2
  • Rabie T, Varga-Szabo D, Bender M, et al. Diverging signaling events control the pathway of GPVI down-regulation in vivo. Blood 2007;110(2):529-35
  • Schamel WW, Arechaga I, Risueno RM, et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J Exp Med 2005;202(4):493-503
  • Davis MM, Boniface JJ, Reich Z, et al. Ligand recognition by αβ T cell receptors. Ann Rev Immunol 1998;16:523-44
  • Sigalov AB, Aivazian DA, Uversky VN, et al. Lipid-binding activity of intrinsically unstructured cytoplasmic domains of multichain immune recognition receptor signaling subunits. Biochemistry 2006;45(51):15731-9
  • Fletcher S, Hamilton AD. Targeting protein–protein interactions by rational design: mimicry of protein surfaces. J R Soc Interface 2006;3(7):215-33
  • Fry DC. Protein–protein interactions as targets for small molecule drug discovery. Biopolymers 2006;84(6):535-52
  • Fry DC, Vassilev LT. Targeting protein–protein interactions for cancer therapy. J Mol Med 2005;83(12):955-63
  • Ryan DP, Matthews JM. Protein–protein interactions in human disease. Curr Opin Struct Biol 2005;15(4):441-6
  • Toogood PL. Inhibition of protein–protein association by small molecules: approaches and progress. J Med Chem 2002;45(8):1543-58
  • Hershberger SJ, Lee SG, Chmielewski J. Scaffolds for blocking protein–protein interactions. Curr Top Med Chem 2007;7(10):928-42
  • Loregian A, Palu G. Disruption of protein–protein interactions: towards new targets for chemotherapy. J Cell Physiol 2005;204(3):750-62
  • Sillerud LO, Larson RS. Design and structure of peptide and peptidomimetic antagonists of protein–protein interaction. Curr Protein Pept Sci 2005;6(2):151-69
  • Archakov AI, Govorun VM, Dubanov AV, et al. Protein–protein interactions as a target for drugs in proteomics. Proteomics 2003;3(4):380-91
  • Berg T. Modulation of protein–protein interactions with small organic molecules. Angew Chem Int Ed Engl 2003;42(22):2462-81
  • Che Y, Brooks BR, Marshall GR. Development of small molecules designed to modulate protein–protein interactions. J Comput Aided Mol Des 2006;20(2):109-30
  • Veselovsky AV, Ivanov YD, Ivanov AS, et al. Protein–protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002;15(6):405-22
  • Pagliaro L, Felding J, Audouze K, et al. Emerging classes of protein–protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol 2004;8(4):442-9
  • Yin H, Slusky JS, Berger BW, et al. Computational design of peptides that target transmembrane helices. Science 2007;315(5820):1817-22
  • Sigalov AB. Interaction between HIV gp41 fusion peptide and T cell receptor: putting the puzzle pieces back together. FASEB J 2007;21(8):1633-4
  • Collins B, Hollidge C. Antithrombotic drug market. Nat Rev Drug Discov 2003;2(1):11-2
  • Arkin M. Protein–protein interactions and cancer: small molecules going in for the kill. Curr Opin Chem Biol 2005;9(3):317-24
  • Bose M, Gestwicki JE, Devasthali V, et al. ‘Nature-inspired’ drug-protein complexes as inhibitors of Aβ aggregation. Biochem Soc Trans 2005;33(Pt 4):543-7
  • Stockwell BR. Exploring biology with small organic molecules. Nature 2004;432(7019):846-84
  • Stoevesandt O, Elbs M, Kohler K, et al. Peptide microarrays for the detection of molecular interactions in cellular signal transduction. Proteomics 2005;5(8):2010-7
  • Watt PM. Screening for peptide drugs from the natural repertoire of biodiverse protein folds. Nat Biotechnol 2006;24(2):177-83
  • Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000;41(3):415-27
  • Dunker AK, Brown CJ, Lawson JD, et al. Intrinsic disorder and protein function. Biochemistry 2002;41(21):6573-82
  • Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005;6(3):197-208
  • Iakoucheva LM, Brown CJ, Lawson JD, et al. Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 2002;323(3):573-84
  • Minezaki Y, Homma K, Nishikawa K. Intrinsically disordered regions of human plasma membrane proteins preferentially occur in the cytoplasmic segment. J Mol Biol 2007;368(3):902-13
  • Iakoucheva LM, Radivojac P, Brown CJ, et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004;32(3):1037-49
  • Gollner GP, Muller G, Alt R, et al. Therapeutic application of T cell receptor mimic peptides or cDNA in the treatment of T cell-mediated skin diseases. Gene Ther 2000;7(12):1000-4
  • Manolios N, Collier S, Taylor J, et al. T-cell antigen receptor transmembrane peptides modulate T-cell function and T cell-mediated disease. Nat Med 1997;3(1):84-8
  • Manolios N, Huynh NT, Collier S. Peptides in the treatment of inflammatory skin disease. Australas J Dermatol 2002;43(3):226-7
  • Amon MA, Ali M, Bender V, et al. Lipidation and glycosylation of a T cell antigen receptor (TCR) transmembrane hydrophobic peptide dramatically enhances in vitro and in vivo function. Biochim Biophys Acta 2006;1763(8):879-88
  • Melnyk RA, Partridge AW, Yip J, et al. Polar residue tagging of transmembrane peptides. Biopolymers 2003;71(6):675-85
  • Cunningham F, Deber CM. Optimizing synthesis and expression of transmembrane peptides and proteins. Methods 2007;41(4):370-80
  • Apic G, Russell RB. A shortcut to peptides to modulate platelets. Nat Chem Biol 2007;3(2):83-4
  • Ashish, Wimley WC. Visual detection of specific, native interactions between soluble and microbead-tethered α-helices from membrane proteins. Biochemistry 2001;40(46):13753-9
  • Edwards RJ, Moran N, Devocelle M, et al. Bioinformatic discovery of novel bioactive peptides. Nat Chem Biol 2007;3(2):108-12
  • Wimley WC, White SH. Designing transmembrane α-helices that insert spontaneously. Biochemistry 2000;39(15):4432-42
  • Killian JA. Synthetic peptides as models for intrinsic membrane proteins. FEBS Lett 2003;555(1):134-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.