147
Views
25
CrossRef citations to date
0
Altmetric
Review

Emerging and potential therapies for Alzheimer's disease

, BSc, , PhD & , PhD
Pages 693-704 | Published online: 15 May 2008

Bibliography

  • Mount C, Downton C. Alzheimer disease: progress or profit? Nat Med 2006;12:780-4
  • Melnikova I. Therapies for Alzheimer's disease. Nat Rev Drug Discov 2007;6:341-2
  • Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001;81:741-66
  • Parkin ET, Watt NT, Hussain I, et al. Cellular prion protein regulates β-secretase cleavage of the Alzheimer's amyloid precursor protein. Proc Natl Acad Sci USA 2007;104:11062-7
  • Lemere CA, Blusztajn JK, Yamaguchi H, et al. Sequence of deposition of heterogeneous amyloid β-peptides and Apo E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 1996;3:16-32
  • Nunan J, Small DH. Regulation of APP cleavage by α-, β- and γ-secretases. FEBS Lett 2000;483:6-10
  • Haass C. Take five–BACE and the γ-secretase quartet conduct Alzheimer's amyloid β-peptide generation. EMBO J 2004;23:483-8
  • Allinson TM, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein α-secretases. J Neurosci Res 2003;74:342-52
  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 2002;68:209-45
  • Masters CL, Cappai R, Barnham KJ, Villemagne VL. Molecular mechanisms for Alzheimer's disease: implications for neuroimaging and therapeutics. J Neurochem 2006;97:1700-25
  • Scarpini E, Scheltens P, Feldman H. Treatment of Alzheimer's disease: current status and new perspectives. Lancet Neurol 2003;2:539-47
  • Vardy ER, Hussain I, Hooper NM. Emerging therapeutics for Alzheimer's disease. Expert Rev Neurother 2006;6:695-704
  • Hussain I. The potential for BACE1 inhibitors in the treatment of Alzheimer's disease. IDrugs 2004;7:653-8
  • von Arnim CA, Kinoshita A, Peltan ID, et al. The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J Biol Chem 2005;280:17777-85
  • Wong HK, Sakurai T, Oyama F, et al. β Subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J Biol Chem 2005;280:23009-17
  • Pangalos MN, Jacobsen SJ, Reinhart PH. Disease modifying strategies for the treatment of Alzheimer's disease targeted at modulating levels of the β-amyloid peptide. Biochem Soc Trans 2005;33:553-8
  • Koo EH, Kopan R. Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nat Med 2004;10(Suppl):S26-33
  • Maretzky T, Schulte M, Ludwig A, et al. L1 is sequentially processed by two differently activated metalloproteases and presenilin/γ-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol 2005;25:9040-53
  • Medina M, Dotti CG. RIPped out by presenilin-dependent γ-secretase. Cell Signal 2003;15:829-41
  • Beher D, Clarke EE, Wrigley JD, et al. Selected non-steroidal anti-inflammatory drugs and their derivatives target γ-secretase at a novel site. Evidence for an allosteric mechanism. J Biol Chem 2004;279:43419-26
  • Netzer WJ, Dou F, Cai D, et al. Gleevec inhibits β-amyloid production but not Notch cleavage. Proc Natl Acad Sci USA 2003;100:12444-9
  • Petit A, Pasini A, Alves Da Costa C, et al. JLK isocoumarin inhibitors: selective γ-secretase inhibitors that do not interfere with notch pathway in vitro or in vivo. J Neurosci Res 2003;74:370-7
  • Hooper NM, Turner AJ. The search for α-secretase and its potential as a therapeutic approach to Alzheimer s disease. Curr Med Chem 2002;9:1107-19
  • Zimmermann M, Gardoni F, Marcello E, et al. Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem 2004;90:1489-99
  • Harper JD, Wong SS, Lieber CM, Lansbury PT. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem Biol 1997;4:119-25
  • Hartley DM, Walsh DM, Ye CP, et al. Protofibrillar intermediates of amyloid β-protein acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 1999;19:8876-84
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 2007;8:101-12
  • Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Aβ 1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 1998;95:6448-53
  • Pillot T, Drouet B, Queille S, et al. The nonfibrillar amyloid β-peptide induces apoptotic neuronal cell death: involvement of its C-terminal fusogenic domain. J Neurochem 1999;73:1626-34
  • Aisen PS, Gauthier S, Vellas B, et al. Alzhemed: a potential treatment for Alzheimer's disease. Curr Alzheimer Res 2007;4:473-8
  • European trial of Alzhemed ends, marketing morphs to supplement: Alzheimer's Research Forum, drug news, 2007. Available from: http://www.alzforum.org/new/detail.asp?id=1691 [Last accessed 10 April 2008]
  • Kirkitadze MD, Kowalska A. Molecular mechanisms initiating amyloid β-fibril formation in Alzheimer's disease. Acta Biochim Pol 2005;52:417-23
  • Turner AJ, Nalivaeva NN. New insights into the roles of metalloproteinases in neurodegeneration and neuroprotection. Int Rev Neurobiol 2007;82:113-35
  • Saito T, Iwata N, Tsubuki S, et al. Somatostatin regulates brain amyloid beta peptide Aβ42 through modulation of proteolytic degradation. Nat Med 2005;11:434-9
  • Astellea discontinues development of Alzheimer's disease compound FK962. Astellas, 2006. Available from: http://www.astellas.com/global/about/news/2006/pdf/060718-1_eg.pdf [Last accessed 10 April 2008]
  • Schenk D, Barbour R, Dunn W, et al. Immunisation with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173-7
  • Bard F, Barbour R, Cannon C, et al. Epitope and isotype specificities of antibodies to β-amyloid peptide for protection against Alzheimer's disease-like neuropathology. Proc Natl Acad Sci USA 2003;100:2023-8
  • Lau LF, Schachter JB, Seymour PA, Sanner MA. Tau protein phosphorylation as a therapeutic target in Alzheimer's disease. Curr Top Med Chem 2002;2:395-415
  • Cohen P, Goedert M. GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 2004;3:479-87
  • Aguzzi A, Montrasio F, Kaeser PS. Prions: health scare and biological challenge. Nat Rev Mol Cell Biol 2001;2:118-26
  • Prusiner SB. Prions. Proc Natl Acad Sci USA 1998;95:13363-83
  • Aguzzi A, Polymenidou M. Mammalian prion biology: one century of evolving concepts. Cell 2004;116:313-27
  • Ford MJ, Burton LJ, Morris RJ, Hall SM. Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 2002;113:177-92
  • Moser M, Colello RJ, Pott U, Oesch B. Developmental expression of the prion protein gene in glial cells. Neuron 1995;14:509-17
  • Herms J, Tings T, Gall S, et al. Evidence of presynaptic location and function of the prion protein. J Neurosci 1999;19:8866-75
  • Jansen GH, Vogelaar CF, Elshof SM. Distribution of cellular prion protein in normal human cerebral cortex-does it have relevance to Creutzfeldt-Jakob disease? Clin Chem Lab Med 2001;39:294-8
  • Sales N, Rodolfo K, Hassig R, et al. Cellular prion protein localisation in rodent and primate brain. Eur J Neurosci 1998;10:2464-71
  • Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987;51:229-40
  • Brown DR, Qin K, Herms JW, et al. The cellular prion protein binds copper in vivo. Nature 1997;390:684-7
  • Garnett AP, Viles JH. Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding, and cooperativity: insights from circular dichroism. J Biol Chem 2003;278:6795-802
  • Hornemann S, Korth C, Oesch B, et al. Recombinant full-length murine prion protein, mPrP(23-231): purification and spectroscopic characterisation. FEBS Lett 1997;413:277-81
  • Jones CE, Klewpatinond M, Abdelraheim SR, et al. Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. J Mol Biol 2005;346:1393-407
  • Aguzzi A, Heikenwalder M, Polymenidou M. Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 2007;8:552-61
  • Westergard L, Christensen HM, Harris DA. The cellular prion protein (PrPC): its physiological function and role in disease. Biochim Biophys Acta 2007;1772:629-44
  • Tschampa HJ, Neumann M, Zerr I, et al. Patients with Alzheimer's disease and dementia with Lewy bodies mistaken for Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 2001;71:33-9
  • Hainfellner JA, Wanschitz J, Jellinger K, et al. Coexistence of Alzheimer-type neuropathology in Creutzfeldt-Jakob disease. Acta Neuropathol (Berl ) 1998;96:116-22
  • Voigtlander T, Kloppel S, Birner P, et al. Marked increase of neuronal prion protein immunoreactivity in Alzheimer's disease and human prion diseases. Acta Neuropathol (Berl ) 2001;101:417-23
  • Brown DR. PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochem J 2000;352(Pt 2):511-8
  • Kuwahara C, Takeuchi AM, Nishimura T, et al. Prions prevent neuronal cell-line death. Nature 1999;400:225-6
  • Brown DR, Schmidt B, Kretzschmar HA. Effects of oxidative stress on prion protein expression in PC12 cells. Int J Dev Neurosci 1997;15:961-72
  • Watt NT, Hooper NM. Prion protein in Alzheimer's disease. Future Neurol 2007;2:587-90
  • Bertram L, McQueen MB, Mullin K, et al. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007;39:17-23
  • Dermaut B, Croes EA, Rademakers R, et al. PRNP Val129 homozygosity increases risk for early-onset alzheimer's disease. Ann Neurol 2003;53:409-12
  • Ahn K, Kim E, Kwon YA, et al. No association of prion protein gene polymorphisms with Alzheimer's disease in Korean population. Exp Mol Med 2006;38:727-31
  • Jeong BH, Lee KH, Jeong YE, et al. Polymorphisms at codons 129 and 219 of the prion protein gene (PRNP) are not associated with sporadic Alzheimer's disease in the Korean population. Eur J Neurol 2007;14:621-6
  • Del Bo R, Scarlato M, Ghezzi S, et al. Is M129V of PRNP gene associated with Alzheimer's disease? A case-control study and a meta-analysis. Neurobiol Aging 2006;27:770 e1- e5
  • Riemenschneider M, Klopp N, Xiang W, et al. Prion protein codon 129 polymorphism and risk of Alzheimer disease. Neurology 2004;63:364-6
  • Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993;261:921-3
  • Cruz-Sanchez FF, Durany N, Thome J, et al. Correlation between apolipoprotein-E polymorphism and Alzheimer's disease pathology. J Alzheimers Dis 2000;2:223-9
  • Amouyel P, Vidal O, Laplanche JL, Launay JM. The apolipoprotein E alleles as major susceptibility factors for Creutzfeldt–Jakob disease. Lancet 1994;344:1315-8
  • Brown DR, Kozlowski H. Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans 2004;1907-17
  • Multhaup G, Schlicksupp A, Hesse L, et al. The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I). Science 1996;271:1406-9
  • Miura T, Sasaki S, Toyama A, Takeuchi H. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake. Biochemistry 2005;44:8712-20
  • Ruiz FH, Silva E, Inestrosa NC. The N-terminal tandem repeat region of human prion protein reduces copper: role of tryptophan residues. Biochem Biophys Res Commun 2000;269:491-5
  • Watt NT, Taylor DR, Gillott A, et al. Reactive oxygen species-mediated β-cleavage of the prion protein in the cellular response to oxidative stress. J Biol Chem 2005;280:35914-21
  • Chen S, Mange A, Dong L, et al. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci 2003;22:227-33
  • Small DH, Clarris HL, Williamson TG, et al. Neurite-outgrowth regulating functions of the amyloid protein precursor of Alzheimer's disease. J Alzheimers Dis 1999;1:275-85
  • Lammich S, Kojro E, Postina R, et al. Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 1999;96:3922-7
  • Parkin ET, Watt NT, Turner AJ, Hooper NM. Dual mechanisms for shedding of the cellular prion protein. J Biol Chem 2004;279:11170-8
  • Vincent B, Paitel E, Saftig P, et al. The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem 2001;276:37743-6
  • Jankowsky JL, Younkin LH, Gonzales V, et al. Rodent Aβ modulates the solubility and distribution of amyloid deposits in transgenic mice. J Biol Chem 2007;282:22707-20
  • Rezaie P, Pontikis CC, Hudson L, et al. Expression of cellular prion protein in the frontal and occipital lobe in Alzheimer's disease, diffuse Lewy body disease, and in normal brain: an immunohistochemical study. J Histochem Cytochem 2005;53:929-40
  • Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol 1999;16:145-56
  • Laude AJ, Prior IA. Plasma membrane microdomains: organisation, function and trafficking. Mol Membr Biol 2004;21:193-205
  • Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 2003;4:724-38
  • Cordy JM, Hooper NM, Turner AJ. The involvement of lipid rafts in Alzheimer's disease. Mol Membr Biol 2006;23:111-22
  • Ehehalt R, Keller P, Haass C, et al. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J Cell Biol 2003;160:113-23
  • Lee SJ, Liyanage U, Bickel PE, et al. A detergent-insoluble membrane compartment contains Aβ in vivo. Nat Med 1998;4:730-4
  • Riddell DR, Christie G, Hussain I, Dingwall C. Compartmentalization of β-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 2001;11:1288-93
  • Kojro E, Gimpl G, Lammich S, et al. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc Natl Acad Sci USA 2001;98:5815-20
  • Fassbender K, Masters C, Beyreuther K. Alzheimer's disease: molecular concepts and therapeutic targets. Naturwissenschaften 2001;88:261-7
  • Simons M, Keller P, De Strooper B, et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 1998;95:6460-4
  • Wolozin B, Kellman W, Ruosseau P, et al. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000;57:1439-43
  • Cordy JM, Hussain I, Dingwall C, et al. Exclusively targeting β-secretase to lipid rafts by GPI-anchor addition up-regulates β-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 2003;100:11735-40
  • Naslavsky N, Stein R, Yanai A, et al. Characterisation of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem 1997;272:6324-31
  • Vey M, Pilkuhn S, Wille H, et al. Subcellular colocalisation of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci USA 1996;93:14945-9
  • Walmsley AR, Zeng F, Hooper NM. Membrane topology influences N-glycosylation of the prion protein. EMBO J 2001;20:703-12
  • Scholefield Z, Yates EA, Wayne G, et al. Heparan sulphate regulates amyloid precursor protein processing by BACE1, the Alzheimer's β-secretase. J Cell Biol 2003;163:97-107
  • Diaz-Nido J, Wandosell F, Avila J. Glycosaminoglycans and β-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 2002;23:1323-32
  • Snow AD, Sekiguchi R, Nochlin D, et al. An important role of heparan sulphate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar Aβ-amyloid in rat brain. Neuron 1994;12:219-34
  • Su JH, Cummings BJ, Cotman CW. Localisation of heparan sulphate glycosaminoglycan and proteoglycan core protein in aged brain and Alzheimer's disease. Neuroscience 1992;51:801-13
  • Castillo GM, Lukito W, Wight TN, Snow AD. The sulphate moieties of glycosaminoglycans are critical for the enhancement of β-amyloid protein fibril formation. J Neurochem 1999;72:1681-7
  • Narindrasorasak S, Lowery D, Gonzalez-DeWhitt P, et al. High affinity interactions between the Alzheimer's β-amyloid precursor proteins and the basement membrane form of heparan sulfate proteoglycan. J Biol Chem 1991;266:12878-83
  • Leveugle B, Ding W, Durkin JT, et al. Heparin promotes β-secretase cleavage of the Alzheimer's amyloid precursor protein. Neurochem Int 1997;30:543-8
  • Leveugle B, Ding W, Laurence F, et al. Heparin oligosaccharides that pass the blood-brain barrier inhibit β-amyloid precursor protein secretion and heparin binding to β-amyloid peptide. J Neurochem 1998;70:736-44
  • Warner RG, Hundt C, Weiss S, Turnbull JE. Identification of the heparan sulphate binding sites in the cellular prion protein. J Biol Chem 2002;277:18421-30
  • Verrecchio A, Germann MW, Schick BP, et al. Design of peptides with high affinities for heparin and endothelial cell proteoglycans. J Biol Chem 2000;275:7701-7
  • Trevitt CR, Collinge J. A systematic review of prion therapeutics in experimental models. Brain 2006;129:2241-65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.