318
Views
54
CrossRef citations to date
0
Altmetric
Review

New uses for old copper-binding drugs: converting the pro-angiogenic copper to a specific cancer cell death inducer

&
Pages 739-748 | Published online: 15 May 2008

Bibliography

  • Aggett PJ, Fairweather-Tait S. Adaptation to high and low copper intakes: its relevance to estimated safe and adequate daily dietary intakes. Am J Clin Nutr 1998;67:1061S-1063S
  • Labbe S, Thiele DJ. Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends Microbiol 1999;7:500-5
  • Liu XD, Liu PC, Santoro N, et al. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. EMBO J 1997;16:6466-77
  • Eide DJ. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Ann Rev Nutr 1998;18:441-69
  • Radisky D, Kaplan J. Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 1999;274:4481-4
  • Harris ED. Role of ceruloplasmin in copper transport. In: Sorenson JRJ, editor, Biology of copper complexes. New Jersey Humana Press; 1987. p. 31
  • Harris ED. Cellular copper transport and metabolism. Ann Rev Nutr 2000;20:291-310
  • Ohgami RS, Campagna DR, McDonald A, et al. The Steap proteins are metalloreductases. Blood 2006;108:1388-94
  • Macreadie IG. Copper transport and Alzheimer's disease. Eur Biophys J 2008;37:295-300
  • Culotta VC, Klomp LW, Strain J, et al. The copper chaperone for superoxide dismutase. J Biol Chem 1997;272:23469-72
  • Tainer JA, Getzoff ED, Richardson JS, et al. Structure and mechanism of copper, zinc superoxide dismutase. Nature 1983;306:284-7
  • Amaravadi R, Glerum D, MTzagoloff A. Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum Genet 1997;99:329-33
  • Petris MJ, Mercer JF, Culvenor JG, et al. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 1996;15:6084-95
  • Wijmenga C, Klomp LW. Molecular regulation of copper excretion in the liver. Proc Nutr Soc 2004;63:31-9
  • Huang YL, Sheu JY, Lin TH. Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem 1999;32:131-6
  • Kuo HW, Chen SF, Wu CC, et al. Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res 2002;89:1-11
  • Rizk SL, Sky-Peck HH. Comparison between concentrations of trace elements in normal and neoplastic human breast tissue. Cancer Res 1984;44:5390-4
  • Habib FK, Dembinski TC, Stitch SR. The zinc and copper content of blood leucocytes and plasma from patients with benign and malignant prostates. Clin Chim Acta 1980;104:329-35
  • Nayak SB, Bhat VR, Upadhyay D, et al. Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian J Physiol Pharmacol 2003;47:108-10
  • Diez M, Arroyo M, Cerdan FJ, et al. Serum and tissue trace metal levels in lung cancer. Oncology 1989;46:230-4
  • Turecky L, Kalina P, Uhlikova E, et al. Serum ceruloplasmin and copper levels in patients with primary brain tumors. Klin Wochenschr 1984;62:187-9
  • Inutsuka S, Araki S. Plasma copper and zinc levels in patients with malignant tumors of digestive organs: clinical evaluation of the C1/Zn ratio. Cancer 1978;42:626-31
  • McAuslan BR, Reilly W. Endothelial cell phagokinesis in response to specific metal ions. Exp Cell Res 1980;130:147-57
  • Brewer GJ. Tetrathiomolybdate anticopper therapy for Wilson's disease inhibits angiogenesis, fibrosis and inflammation. J Cell Mol Med 2003;7:11-20
  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-6
  • Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972;175:409-16
  • Ryan CJ, Wilding G. Angiogenesis inhibitors. New agents in cancer therapy. Drugs Aging 2000;17:249-55
  • Gullino PM. Considerations on the mechanism of the angiogenic response. Anticancer Res 1986;6:153-8
  • Hu GF. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 1998;69:326-35
  • Veeravagu A, Hsu AR, Cai W, et al. Vascular endothelial growth factor and vascular endothelial growth factor receptor inhibitors as anti-angiogenic agents in cancer therapy. Recent Patents. Anticancer Drug Discov 2007;2:59-71
  • Frangoulis M, Georgiou P, Chrisostomidis C, et al. Rat epigastric flap survival and VEGF expression after local copper application. Plast Reconstr Surg 2007;119:837-43
  • Sen CK, Khanna S, Venojarvi M, et al. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol 2002;282:H1821-7
  • Eatock MM, Schatzlein AKaye SB. Tumour vasculature as a target for anticancer therapy. Cancer Treat Rev 2000;26:191-204
  • Fox SB, Gasparini GHarris AL. Angiogenesis: pathological, prognostic, and growth-factor pathways and their link to trial design and anticancer drugs. Lancet Oncol 2001;2:278-89
  • Nasulewicz A, Mazur AOpolski A. Role of copper in tumour angiogenesis–clinical implications. J Trace Elem Med Biol 2004;18:1-8
  • Moriguchi M, Nakajima T, Kimura H, et al. The copper chelator trientine has an antiangiogenic effect against hepatocellular carcinoma, possibly through inhibition of interleukin-8 production. Int J Cancer 2002;102:445-52
  • Brem S. Angiogenesis and cancer control: from Concept to Therapeutic Trial. Cancer Control 1999;6:436-58
  • Brewer GJ. Copper control as an antiangiogenic anticancer therapy: lessons from treating Wilson's disease. Exp Biol Med (Maywood) 2001;226:665-73
  • Lowndes SA, Harris AL. The role of copper in tumour angiogenesis. J Mammary Gland Biol Neoplasia 2005;10:299-310
  • Theophanides T, Anastassopoulou J. Copper and carcinogenesis. Crit Rev Oncol Hematol 2002;42:57-64
  • Yoshii J, Yoshiji H, Kuriyama S, et al. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells. Int J Cancer 2001;94:768-73
  • Teknos TN, Islam M, Arenberg DA, et al. The effect of tetrathiomolybdate on cytokine expression, angiogenesis, and tumor growth in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 2005;131:204-11
  • Brewer GJ, Dick RD, Grover DK, et al. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: phase I study. Clin Cancer Res 2000;6:1-10
  • Pass HI BG, Stevens T, et al. A phase II trial of Tetrathiomolybdate [TM] after cytoreductive surgery for malignant pleural mesothelioma (MPM). J Clin Oncol 2004;22:7051
  • Redman BG, Esper P, Pan Q, et al. Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. Clin Cancer Res 2003;9:1666-72
  • Dou QP, Smith DM, Daniel KG, et al. Interruption of tumor cell cycle progression through proteasome inhibition: implications for cancer therapy. Prog Cell Cycle Res 2003;5:441-6
  • Goldberg AL. Functions of the proteasome: the lysis at the end of the tunnel. Science 1995;268:522-3
  • Nandi D, Tahiliani P, Kumar A, et al. The ubiquitin-proteasome system. J Biosci 2006;31:137-55
  • Orlowski M, Wilk S. Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 2000;383:1-16
  • Ciehanover A, Hod YHershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 1978;81:1100-5
  • Hershko A, Ciechanover A, Heller H, et al. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA 1980;77:1783-6
  • Ciechanover A, Orian ASchwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 2000;22:442-51
  • Groll M, Bajorek M, Kohler A, et al. A gated channel into the proteasome core particle. Nat Struct Biol 2000;7:1062-7
  • Kohler A, Bajorek M, Groll M, et al. The substrate translocation channel of the proteasome. Biochimie 2001;83:325-32
  • Kohler A, Cascio P, Leggett DS, et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 2001;7:1143-52
  • An B, Goldfarb RH, Siman R, et al. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 1998;5:1062-75
  • Lopes UG, Erhardt P, Yao R, et al. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem 1997;272:12893-6
  • Kumatori A, Tanaka K, Inamura N, et al. Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci USA 1990;87:7071-5
  • Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004;5:417-21
  • Adams J. Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Curr Opin Chem Biol 2002;6:493-500
  • Dou QP, Goldfarb RH. Bortezomib (millennium pharmaceuticals). IDrugs 2002;5:828-34
  • Twombly R. First proteasome inhibitor approved for multiple myeloma. J Natl Cancer Inst 2003;95:845
  • Michaelis M, Fichtner I, Behrens D, et al. Anti-cancer effects of bortezomib against chemoresistant neuroblastoma cell lines in vitro and in vivo. Int J Oncol 2006;28:439-46
  • Sartore-Bianchi A, Gasparri F, Galvani A, et al. Bortezomib inhibits nuclear factor-kappaB dependent survival and has potent in vivo activity in mesothelioma. Clin Cancer Res 2007;13:5942-51
  • Teicher BA, Ara G, Herbst R, et al. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 1999;5:2638-45
  • Williams S, Pettaway C, Song R, et al. Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol Cancer Ther 2003;2:835-43
  • Jagannath S, Durie BG, Wolf J, et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 2005;129:776-83
  • Orlowski RZ, Voorhees PM, Garcia RA, et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 2005;105:3058-65
  • Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348:2609-17
  • Chen D, Cui QC, Yang H, et al. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res 2006;66:10425-33
  • Daniel KG, Gupta P, Harbach RH, et al. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem Pharmacol 2004;67:1139-51
  • Johansson B. A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr Scand Suppl 1992;369:15-26
  • Vallari RC, Pietruszko R. Human aldehyde dehydrogenase: mechanism of inhibition of disulfiram. Science 1982;216:637-9
  • Cen D, Brayton D, Shahandeh B, et al. Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. J Med Chem 2004;47:6914-20
  • Pang H, Chen D, Cui QC, et al. Sodium diethyldithiocarbamate, an AIDS progression inhibitor and a copper-binding compound, has proteasome-inhibitory and apoptosis-inducing activities in cancer cells. Int J Mol Med 2007;19:809-16
  • Kaplan CS, Petersen EA, Yocum D, et al. A randomized, controlled dose response study of intravenous sodium diethyldithiocarbamate in patients with advanced human immunodeficiency virus infection. Life Sci 1989;45:iii-ix
  • Reisinger EC, Kern P, Ernst M, et al. Inhibition of HIV progression by dithiocarb. German DTC Study Group. Lancet 1990;335:679-82
  • Gaudernak E, Seipelt J, Triendl A, et al. Antiviral effects of pyrrolidine dithiocarbamate on human rhinoviruses. J Virol 2002;76:6004-15
  • Si X, McManus BM, Zhang J, et al. Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 2005;79:8014-23
  • Nai YJ, Jiang ZW, Wang ZM, et al. Prevention of cancer cachexia by pyrrolidine dithiocarbamate (PDTC) in colon 26 tumor-bearing mice. J Parenter Enteral Nutr 2007;31:18-25
  • Shian SG, Kao YR, Wu FY, et al. Inhibition of invasion and angiogenesis by zinc-chelating agent disulfiram. Mol Pharmacol 2003;64:1076-84
  • Brar SS, Grigg C, Wilson KS, et al. Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic disease. Mol Cancer Ther 2004;3:1049-60
  • Milacic V, Chen D, Giovagnini L, et al. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity. Toxicol Appl Pharmacol 2008; In press and available online. doi:10.1016/j.taap.2008.03.009
  • Daniel KG, Chen D, Orlu S, et al. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res 2005;7:R897-908
  • Ritchie CW, Bush AI, Masters CL. Metal-protein attenuating compounds and Alzheimer's disease. Expert Opin Investig Drugs 2004;13:1585-92
  • Nguyen T, Hamby A, Massa SM. Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington's disease mouse model. Proc Natl Acad Sci USA 2005;102:11840-5
  • Regland B, Lehmann W, Abedini I, et al. Treatment of Alzheimer's disease with clioquinol. Dement Geriatr Cogn Disord 2001;12:408-14
  • Ritchie CW, Bush AI, Mackinnon A, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 2003;60:1685-91
  • Gholz LM, Arons WL. Prophylaxis and Therapy of Amebiasis and Shigellosis with Iodochlorhydroxyquin. Am J Trop Med Hyg 1964;13:396-401
  • Di Vaira M, Bazzicalupi C, Orioli P, et al. Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: structural characterization of its zinc(II) and copper(II) complexes. Inorg Chem 2004;43:3795-7
  • Richards DA. Prophylactic value of clioquinol against travellers' diarrhoea. Lancet 1971;1:44-5
  • Yassin MS, Ekblom J, Xilinas M, et al. Changes in uptake of vitamin B(12) and trace metals in brains of mice treated with clioquinol. J Neurol Sci 2000;173:40-4
  • Meade TW. Subacute myelo-optic neuropathy and clioquinol. An epidemiological case-history for diagnosis. Br J Prev Soc Med 1975;29:157-69
  • Chen D, Cui QC, Yang H, et al. Clioquinol, a therapeutic agent for Alzheimer's disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts. Cancer Res 2007;67:1636-44
  • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003;22:151-85
  • Chong CR, Sullivan DJ Jr. New uses for old drugs. Nature 2007;448:645-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.