865
Views
58
CrossRef citations to date
0
Altmetric
Reviews

MK2: a novel molecular target for anti-inflammatory therapy

, PhD, , PhD, , PhD, , PhD, , PhD & , PhD
Pages 921-936 | Published online: 12 Jul 2008

Bibliography

  • Shankar S, Handa R. Biological agents in rheumatoid arthritis. J Postgrad Med 2004;50(4):293-9
  • Peifer C, Wagner G, Laufer S. New approaches to the treatment of inflammatory disorders small molecule inhibitors of p38 MAP kinase. Curr Top Med Chem 2006;6(2):113-49
  • Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 2007;1773(8):1358-75
  • Dambach DM. Potential adverse effects associated with inhibition of p38α/β MAP kinases. Curr Top Med Chem 2005;5(10):929-39
  • Mudgett JS, Ding J, Guh-Siesel L, et al. Essential role for p38α mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci USA 2000;97(19):10454-9
  • Martín-Blanco E. p38 MAPK signalling cascades: ancient roles and new functions. Bioessays 2000;22(7):637-45
  • Kotlyarov A, Neininger A, Schubert C, et al. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat Cell Biol 1999;1(2):94-7
  • Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J Biol Chem 1995;25(1):7-9
  • Rouse J, Cohen P, Trigon S, et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994;78:1027-37
  • Clifton AD, Young PR, Cohen P. A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress. FEBS Lett 1996;392:209-14
  • Engel K, Plath K, Gaestel M. The MAP kinase-activated protein kinase 2 contains a proline-rich SH3-binding domain. FEBS Lett 1993;336:143-7
  • Gaestel M. MAPKAP kinases – MKs – two's company, three's a crowd. Nat Rev Mol Cell Biol 2006;7(2):120-30
  • Plath K, Engel K, Schwedersky G, Gaestel M. Characterization of the proline-rich region of mouse MAPKAP kinase 2: influence on catalytic properties and binding to the c-abl SH3 domain in vitro. Biochem Biophys Res Commun 1994;203(2):1188-94
  • Lukas SM, Kroe RR, Wildeson J, et al. Catalysis and function of the p38α. MK2a signaling complex. Biochemistry 2004;43(31):9950-60
  • Engel K, Kotlyarov A, Gaestel M. Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation. EMBO J 1998;17(12):3363-71
  • Kotlyarov A, Yannoni Y, Fritz S, et al. Distinct cellular functions of MK2. Mol Cell Biol 2002;22(13):4827-35
  • Stokoe D, Campbell DG, Nakielny S, et al. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J 1992;11(11):3985-94
  • Roux PP, Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004;68(2):1092-2172
  • Ben-Levy R, Hooper S, Wilson R, et al. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol 1998;8(19):1049-57
  • Allen M, Svensson L, Roach M, et al. Deficiency of the stress kinase p38 results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme deficient embryonic stem cells. J Exp Med 2000;191:859-70
  • Ter Haar E, Prabhakar P, Liu X, Lepre C. Crystal structure of the p38α–MAPKAP kinase 2 heterodimer. J Biol Chem 2007;282:9733-9
  • White A, Pargellis CA, Studts JM, et al. Molecular basis of MAPK-activated protein kinase 2:p38 assembly. Proc Natl Acad Sci USA 2007;104:6353-8
  • Underwood KW, Parris KD, Federico E, et al. Catalytically active MAP KAP kinase 2 structures in complex with staurosporine and ADP reveal differences with the autoinhibited enzyme. Structure 2003;11:627-36
  • Hillig RC, Eberspaecher U, Monteclaro F, et al. Structural basis for a high affinity inhibitor bound to protein kinase MK2. J Mol Biol 2007;369:735-45
  • Komatsu S, Murai N, Totsukawa G, et al. Identification of MAPKAPK homolog (MAPKAPK-4) as a myosin II regulatory light-chain kinase in sea urchin egg extracts. Arch Biochem Biophys 1997;343(1):55-62
  • Larochelle S, Suter B. The Drosophila melanogaster homolog of the mammalian MAPK-activated protein kinase-2 (MAPKAPK-2) lacks a proline-rich N-terminus. Gene 1995;163(2):209-14
  • Lammer C, Wagerer S, Saffrich R, et al. The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J Cell Sci 1998;111(16):2445-53
  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. p53-Deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer cell 2007;11(2):175-89
  • Forrest A, Gabrielli B. Cdc25B activity is regulated by 14-3-3. Oncogene 2001;20(32):4393-401
  • Manke IA, Nguyen A, Lim D, et al. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 2005;17(1):37-48
  • Weber HO, Ludwig RL, Morrison D, et al. HDM2 phosphorylation by MAPKAP kinase 2. Oncogene 2005;24(12):1965-72
  • Bulavin DV, Higashimoto Y, Popoff IJ, et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001;411(6833):102-7
  • Hegen M, Gaestel M, Nickerson-Nutter CL, et al. MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis. J Immunol 2006;177(3):1913-17
  • Fleming RM, Harrington GM. What is the relationship between myocardial perfusion imaging and coronary artery disease risk factors and markers of inflammation? Angiology 2008;1:16-25
  • Monaco C, Andreakos E, Kiriakidis S, et al. T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases [review]. Curr Drug Targets Inflamm Allergy 2004;3(1):35-42
  • Saklatvala J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 2004;4(4):372-7
  • Revesz L, Blum E, Di Padova FE, et al. Novel p38 inhibitors with potent oral efficacy in several models of rheumatoid arthritis. Bioorg Med Chem Lett 2004;4(13):3595-9
  • Clark AR, Dean JL, Saklatvala J. Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett 2003;546(1):37-44
  • Landry J, Lambert H, Zhou M, et al. Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 1992;267(2):794-803
  • Huang CK, Zhan L, Ai Y, Jongstra J. LSP1 is the major substrate for mitogen-activated protein kinase-activated protein kinase 2 in human neutrophils. J Biol Chem 1997;272(1):17-29
  • Hedges JC, Dechert MA, Yamboliev IA, M, et al. A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 1999;274(34):24211-9
  • Coxon PY, Rane MJ, Uriarte S, et al. MAPK-activated protein kinase-2 participates in p38 MAPK-dependent and ERK-dependent functions in human neutrophils. Cell Signal 2003;15(11):993-1001
  • Zheng C, Lin Z, Zhao ZJ, et al. MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27. J Biol Chem 2006;281(48):37215-26
  • Rousseau S, Houle F, Kotanides H, et al. Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 2000;275(14):10661-72
  • Benndorf R, Hayess K, Ryazantsev S, et al. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 1994;269(32):20780-4
  • Kobayashi M, Nishita M, Mishima T, et al. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J 2006;25(4):713-26
  • Schwartz SM. Smooth muscle migration in atherosclerosis and restenosis [review]. J Clin Invest 1997;100(11 Suppl):S87-89
  • Korpelainen EI, Alitalo K. Signaling angiogenesis and lymphangiogenesis [review]. Curr Opin Cell Biol 1998;10(2):159-64
  • Chrestensen CA, Schroeder MJ, Shabanowitz J, et al. MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J Biol Chem 2004;279(11):10176-84
  • Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 1998;281(5379):1001-5
  • Hitti E, Iakovleva T, Brook M, et al. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol 2006;26(6):2399-407
  • Ronkina N, Kotlyarov A, Dittrich-Breiholz O, et al. The mitogen-activated protein kinase (MAPK)-activated protein kinases MK2 and MK3 cooperate in stimulation of tumor necrosis factor biosynthesis and stabilization of p38 MAPK. Mol Cell Biol 2007;27(1):170-81
  • Zheng Sun, Sandeep Sood, Ning LI, et al. Involvement of the 5-lipoxygenase/leukotriene A4 hydrolase pathway in 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamster cheek pouch, and inhibition of carcinogenesis by its inhibitors. Carcinogenesis 2006;27(9):1902-8
  • Werz O, Szellas D, Steinhilber, Radmark O. Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2). J Bio Chem 2002;277(17):14793-800
  • Kotlyarov A, Gaestel M. Is MK2 (mitogen-activated protein kinase-activated protein kinase 2) the key for understanding post-transcriptional regulation of gene expression? Biochem Soc Trans 2002;30(6):959-63
  • Tietz AB, Malo A, Diebold J, et al. Gene deletion of MK2 inhibits TNF-α and IL-6 and protects against cerulein-induced pancreatitis. Am J Physiol Gastrointest Liver Physiol 2006;290(6):1298-306
  • Thuraisingam T, Xu YZ, Moisan J, et al. Distinct role of MAPKAPK-2 in the regulation of TNF gene expression by Toll-like receptor 7 and 9 ligands. Mol Immunol 2007;44(14):3482-91
  • Lin FY, Chen YH, Tasi JS, et al. Endotoxin induces toll-like receptor 4 expression in vascular smooth muscle cells via NADPH oxidase activation and mitogen-activated protein kinase signaling pathways. Arterioscler Thromb Vasc Biol 2006;26(12):2630-7
  • Rajasingh J, Bord E, Luedemann C, et al. IL-10-induced TNF-alpha mRNA destabilization is mediated via IL-10 suppression of p38 MAP kinase activation and inhibition of HuR expression. FASEB J 2006;20(12):2112-4
  • Gorska MM, Liang Q, Stafford SJ, et al. MK2 controls the level of negative feedback in the NF-κB pathway and is essential for vascular permeability and airway inflammation. J Exp Med 2007;204(7):1637-52
  • Wang X, Khaleque MA, Zhao MJ, Zhong R, et al. Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J Biol Chem 2006;281(2):782-91
  • Almholt DL, Loechel F, Nielsen SJ, et al. Nuclear export inhibitors and kinase inhibitors identified using a MAPK-activated protein kinase 2 redistribution screens. Assay Drug Dev Technol 2004;2(1):7-20
  • Shi Y, Kotlyarov A, Laabeta K, et al. Elimination of protein kinase MK5/PRAK activity by targeted homologous recombination. Mol Cell Biol 2003;23(21):7732-41
  • Lehner MD, Schwoebel F, Kotlyarov A, et al. Mitogen-activated protein kinase-activated protein kinase 2-deficient mice show increased susceptibility to Listeria monocytogenes infection. J Immunol 2002;168(9):4667-73
  • Morel F, Doussiere J, Vignais PV. The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects [review]. Eur J Biochem 1991;201(3):523-46
  • Iles KE, Forman HJ. Macrophage signaling and respiratory burst [review]. Immunol Res 2002;26(1-3):95-105
  • Hoyal CR, Girón-Calle J, Forman HJ. The alveolar macrophage as a model of calcium signaling in oxidative stress. J Toxicol Environ Health B Crit Rev 1998;1(2):117-34
  • Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003;423:356-61
  • Schett G, Tohidast-Akrad M, Smolen JS, et al. Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 2000;43(11):2501-12
  • Mclay LM, Halley F, Souness JE, et al. The discovery of RPR 200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy. Bioorg Med Chem 2001;9(2):537-54
  • Pargellis C, Regan J. Inhibitors of p38 mitogen-activated protein kinase for the treatment of rheumatoid arthritis. Curr Opin Investig Drugs 2003;4(5):566-71
  • Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003;2(9):717-26
  • Schnyder B, Meunier PC, Car BD. Inhibition of kinases impairs neutrophil activation and killing of Staphylococcus aureus. Biochem J 1998;331(2):489-95
  • Van Den Blink B, Juffermans NP, Ten Hove T, et al. p38 mitogen-activated protein kinase inhibition increases cytokine release by macrophages in vitro and during infection in vivo. J Immunol 2001;166(1):582-7
  • Olsen NJ, Stein CM. New drugs for rheumatoid arthritis. N Engl J Med 2004;350(21):2167-79
  • Hannigan MO, Zhan L, Ai Y, et al. Abnormal migration phenotype of mitogen-activated protein kinase-activated protein kinase 2-/- neutrophils in Zigmond chambers containing formyl-methionyl-leucyl-phenylalanine gradients. J Immunol 2001;167(7):3953-61
  • Mcgeer EG, Mcgeer PL. Inflammatory processes in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2003;27(5):741-9
  • Mcgeer EG, Yasojima K, Schwab C, Mcgeer PL. The pentraxins: possible role in Alzheimer's disease and other innate inflammatory diseases. Neurobiol Aging 2001;22(6):843-8
  • Eikelenboom P, Bate C, Van Gool WA, et al. Neuroinflammation in Alzheimer's disease and prion disease. Glia 2002;40(2):232-9
  • Rogers J, Strohmeyer R, Kovelowski CJ, Li R. Microglia and inflammatory mechanisms in the clearance of amyloid β peptide. Glia 2002;40(2):260-9
  • Diemel LT, Copelman CA, Cuzner ML. Macrophages in CNS remyelination: friend or foe? Neurochem Res 1998;23(3):341-7
  • Giulian D. Microglia and the immune pathology of Alzheimer disease. Am J Hum Genet 1999;65(1):13-8
  • Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001;410(6831):988-94
  • Sugino T, Nozaki K, Takagi Y, et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 2000;20(12):4506-14
  • Irving EA, Barone FC, Reith AD, et al. Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res 2000;77(1):65-75
  • Wang X, Xu L, Wang H, et al. Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 deficiency protects brain from ischemic injury in mice. J Biol Chem 2002;277(46):43968-72
  • Giovannini MG, Scali C, Prosperi C, et al. β-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis 2002;11(2):257-74
  • Koistinaho M, Kettunen MI, Goldsteins G, et al. β-amyloid precursor protein transgenic mice that harbor diffuse Aβ deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proc Natl Acad Sci USA 2002;99(3):1610-5
  • Atzori C, Ghetti B, Piva R, et al. Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. J Neuropathol Exp Neurol 2001;60(12):1190-7
  • Culbert AA, Skaper SD, Howlett DR, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem 2006;281(33):23658-67
  • Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999;340(2):115-26
  • Libby P. Inflammation in atherosclerosis. Nature 2002;420(6917):868-74
  • Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 2006;26(8):1702-11
  • Cybulsky MI, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001;107(10):1255-62
  • Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998;2(2):275-81
  • Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;266(5192):1821-8
  • Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000;408(6811):433-9
  • Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24(17):2899-908
  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408(6810):307-10
  • Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003;22(56):9030-40
  • Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer 2002;2(8):594-604
  • Davis T, Bagley MC, Dix MC, et al. Synthesis and in vivo activity of MK2 and MK2 substrate-selective p38α(MAPK) inhibitors in Werner syndrome cells. Bioorg Med Chem Lett 2007;17(24):6832-5
  • Wu JP, Wang J, Abeywardane A, et al. The discovery of carboline analogs as potent MAPKAP-K2 inhibitors. Bioorg Med Chem Lett 2007;17(16):4664-9
  • Anderson DR, Meyers MJ, Vernier WF, et al. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2). J Med Chem 2007;50(11):2647-54
  • Anderson DR, Hegde S, Reinhard E, et al. Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg Med Chem Lett 2005;15(6):1587-90
  • Williams DE, Telliez JB, Liu J, et al. Meroterpenoid MAPKAP (MK2) inhibitors isolated from the indonesian marine sponge Acanthodendrilla sp. J Nat Prod 2004;67(12):2127-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.