738
Views
16
CrossRef citations to date
0
Altmetric
Reviews

The kinase NIK as a therapeutic target in multiple myeloma

&
Pages 207-218 | Published online: 05 Jan 2011

Bibliography

  • Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986;46:705-16
  • Staudt LM. Oncogenic activation of NF-κB. Cold Spring Harb Perspect Biol 2010;2(6):a000109
  • Malinin NL, Boldin MP, Kovalenko AV, Wallach D. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 1997;385:540-4
  • Keats JJ, Fonseca R, Chesi M, Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007;12:131-44
  • Annunziata CM, Davis RE, Demchenko Y, Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007;12:115-30
  • Fan CM, Maniatis T. Generation of p50 subunit of NF-kappaB by processing of p105 through an ATP-dependent pathway. Nature 1991;354:395-8
  • Mellits KH, Hay RT, Goodbourn S. Proteolytic degradation of MAD3 (IkappaBalpha) and enhanced processing of the NF-kappaB precursor p105 are obligatory steps in the activation of NF-kappaB. Nucleic Acids Res 1993;21:5059-66
  • Mercurio F, DiDonato JA, Rosette C, Karin M. p105 and p98 precursor proteins play an active role in NF-kappaB-mediated signal transduction. Genes Dev 1993;7:705-18
  • Blank V, Kourilsky P, Israel A. Cytoplasmic retention, DNA binding and processing of the NF-kappaB p50 precursor are controlled by a small region in its C-terminus. EMBO J 1991;10:4159-67
  • Verma IM, Stevenson JK, Schwarz EM, Rel/NF-kappaB/IkappaB family: intimate tales of association and dissociation. Genes Dev 1995;9:2723-35
  • Senftleben U, Cao Y, Xiao G, Activation by IKKalpha of a second, evolutionary conserved, NF-kappaB signaling pathway. Science 2001;293:1495-9
  • Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 1988;242:540-6
  • Ben-Neriah Y. Regulatory functions of ubiquitination in the immune system. Nat Immunol 2002;3:20-6
  • Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 1999;284:309-13
  • Scheidereit C. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 2006;25:6685-705
  • Coope HJ, Atkinson PG, Huhse B, CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 2002;21:5375-85
  • Lin X, Mu Y, Cunningham ET Jr, Molecular determinants of NF-kappaB-inducing kinase action. Mol Cell Biol 1998;18:5899-907
  • Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-9
  • Ling L, Cao Z, Goeddel DV. NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci USA 1998;95:3792-7
  • Xiao G, Fong A, Sun SC. Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 2004;279:30099-105
  • Liang C, Zhang M, Sun SC. Beta-TrCP binding and processing of NF-kappaB2/p100 involve its phosphorylation at serines 866 and 870. Cell Signal 2006;18:1309-17
  • Saccani S, Pantano S, Natoli G. Modulation of NF-kappaB activity by exchange of dimers. Mol Cell 2003;11:1563-74
  • Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006;72:1161-79
  • Song HY, Regnier CH, Kirschning CJ, Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc Natl Acad Sci USA 1997;94:9792-6
  • Yin L, Wu L, Wesche H, Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 2001;291:2162-5
  • Sato S, Sanjo H, Takeda K, Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005;6:1087-95
  • Shinkura R, Kitada K, Matsuda F, Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappab-inducing kinase. Nat Genet 1999;22:74-7
  • O'Mahony A, Lin X, Geleziunas R, Greene WC. Activation of the heterodimeric IkappaB kinase alpha (IKKalpha)-IKKbeta complex is directional: IKKalpha regulates IKKbeta under both basal and stimulated conditions. Mol Cell Biol 2000;20:1170-8
  • Wittwer T, Schmitz ML. NIK and Cot cooperate to trigger NF-kappaB p65 phosphorylation. Biochem Biophys Res Commun 2008;371:294-7
  • Sanchez-Valdepenas C, Martin AG, Ramakrishnan P, NF-kappaB-inducing kinase is involved in the activation of the CD28 responsive element through phosphorylation of c-Rel and regulation of its transactivating activity. J Immunol 2006;176:4666-74
  • Sanchez-Valdepenas C, Punzon C, San-Antonio B, Differential regulation of p65 and c-Rel NF-kappaB transactivating activity by Cot, protein kinase C zeta and NIK protein kinases in CD3/CD28 activated T cells. Cell Signal 2007;19:528-37
  • Je JH, Lee JY, Jung KJ, NF-kappaB activation mechanism of 4-hydroxyhexenal via NIK/IKK and p38 MAPK pathway. FEBS Lett 2004;566:183-9
  • Jijon H, Allard B, Jobin C. NF-kappaB inducing kinase activates NF-kappaB transcriptional activity independently of IkappaB kinase gamma through a p38 MAPK-dependent RelA phosphorylation pathway. Cell Signal 2004;16:1023-32
  • Jiang X, Takahashi N, Matsui N, The NF-kappaB activation in lymphotoxin beta receptor signaling depends on the phosphorylation of p65 at serine 536. J Biol Chem 2003;278:919-26
  • Garceau N, Kosaka Y, Masters S, Lineage-restricted function of nuclear factor kappaB-inducing kinase (NIK) in transducing signals via CD40. J Exp Med 2000;191:381-6
  • Ramakrishnan P, Wang W, Wallach D. Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity 2004;21:477-89
  • Smith C, Andreakos E, Crawley JB, NF-kappaB-inducing kinase is dispensable for activation of NF-kappaB in inflammatory settings but essential for lymphotoxin beta receptor activation of NF-kappaB in primary human fibroblasts. J Immunol 2001;167:5895-903
  • Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci USA 2008;105:3503-8
  • Demchenko YN, Glebov OK, Zingone A, Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 2010;115:3541-52
  • Park YC, Burkitt V, Villa AR, Structural basis for self-association and receptor recognition of human TRAF2. Nature 1999;398:533-8
  • Takeuchi M, Rothe M, Goeddel DV. Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins. J Biol Chem 1996;271:19935-42
  • Shi CS, Kehrl JH. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem 2003;278:15429-34
  • Deng L, Wang C, Spencer E, Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000;103:351-61
  • Hauer J, Puschner S, Ramakrishnan P, TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci USA 2005;102:2874-9
  • Rothe M, Pan MG, Henzel WJ, The TNFR2 – TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83:1243-52
  • Bertrand MJ, Milutinovic S, Dickson KM, cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008;30:689-700
  • Blankenship JW, Varfolomeev E, Goncharov T, Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2. Biochem J 2009;417:149-60
  • Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004;279:26243-50
  • Li X, Yang Y, Ashwell JD. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 2002;416:345-7
  • Duckett CS, Thompson CB. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev 1997;11:2810-21
  • Brown KD, Hostager BS, Bishop GA. Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 2001;193:943-54
  • He JQ, Zarnegar B, Oganesyan G, Rescue of TRAF3-null mice by p100 NF-kappaB deficiency. J Exp Med 2006;203:2413-18
  • Zarnegar BJ, Wang Y, Mahoney DJ, Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-8
  • Vallabhapurapu S, Matsuzawa A, Zhang W, Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008;9:1364-70
  • Grech AP, Amesbury M, Chan T, TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004;21:629-42
  • Yeh WC, Shahinian A, Speiser D, Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997;7:715-25
  • Nguyen LT, Duncan GS, Mirtsos C, TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Immunity 1999;11:379-89
  • Habelhah H, Takahashi S, Cho SG, Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J 2004;23:322-32
  • Tseng PH, Matsuzawa A, Zhang W, Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 2010;11:70-5
  • Varfolomeev E, Blankenship JW, Wayson SM, IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007;131:669-81
  • Vince JE, Wong WW, Khan N, IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007;131:682-93
  • Gardam S, Sierro F, Basten A, TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008;28:391-401
  • Xie P, Stunz LL, Larison KD, Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007;27:253-67
  • Razani B, Zarnegar B, Ytterberg AJ, Negative feedback in noncanonical NF-kappaB signaling modulates NIK stability through IKKalpha-mediated phosphorylation. Sci Signal 2010;3:ra41
  • Lich JD, Williams KL, Moore CB, Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol 2007;178:1256-60
  • Ye Z, Lich JD, Moore CB, ATP binding by monarch-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol 2008;28:1841-50
  • Arthur JC, Lich JD, Aziz RK, Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-kappaB-inducing kinase. J Immunol 2007;179:6291-6
  • Qing G, Yan P, Qu Z, Hsp90 regulates processing of NF-kappaB2 p100 involving protection of NF-kappaB-inducing kinase (NIK) from autophagy-mediated degradation. Cell Res 2007;17:520-30
  • Hu WH, Mo XM, Walters WM, TNAP, a novel repressor of NF-kappaB-inducing kinase, suppresses NF-kappaB activation. J Biol Chem 2004;279:35975-83
  • Yeung KC, Rose DW, Dhillon AS, Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol 2001;21:7207-17
  • Lin X, Cunningham ET Jr, Mu Y, The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-kappaB acting through the NF-kappaB-inducing kinase and IkappaB kinases. Immunity 1999;10:271-80
  • Bhattacharyya S, Borthakur A, Dudeja PK, Tobacman JK. Lipopolysaccharide-induced activation of NF-kappaB non-canonical pathway requires BCL10 serine 138 and NIK phosphorylations. Exp Cell Res 2010;316:3317-27
  • Bhattacharyya S, Borthakur A, Tyagi S, B-cell CLL/lymphoma 10 (BCL10) is required for NF-kappaB production by both canonical and noncanonical pathways and for NF-kappaB-inducing kinase (NIK) phosphorylation. J Biol Chem 2010;285:522-30
  • Hu WH, Pendergast JS, Mo XM, NIBP, a novel NIK and IKKbeta-binding protein that enhances NF-kappaB activation. J Biol Chem 2005;280:29233-41
  • Jin X, Jin HR, Jung HS, An atypical E3 ligase Zinc Finger protein 91 stabilizes and activates NF-kappaB-inducing kinase via K63-linked ubiquitination. J Biol Chem 2010: published online 3 August 2010, doi:10.1074/jbc.M110.129551
  • Jin HR, Jin X, Lee JJ. Zinc finger protein 91 plays a key role in LIGHT-induced activation of noncanonical NF-kappaB pathway. Biochem Biophys Res Commun 2010;400:581-6
  • Bista P, Zeng W, Ryan S, TRAF3 controls activation of the canonical and alternative NFkappaB by the lymphotoxin beta receptor. J Biol Chem 2010;285:12971-8
  • Sasaki Y, Calado DP, Derudder E, NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci USA 2008;105:10883-8
  • Wang CY, Mayo MW, Korneluk RG, NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998;281:1680-3
  • Xiao G, Sun SC. Negative regulation of the nuclear factor kappaB-inducing kinase by a cis-acting domain. J Biol Chem 2000;275:21081-5
  • Denz U, Haas PS, Wasch R, State of the art therapy in multiple myeloma and future perspectives. Eur J Cancer 2006;42:1591-600
  • Mortier J, Frederick R, Ganeff C, Pyrazolo[4,3-c]isoquinolines as potential inhibitors of NF-kappaB activation. Biochem Pharmacol 2010;79:1462-72
  • Karaman MW, Herrgard S, Treiber DK, A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008;26:127-32
  • Mortier J, Masereel B, Remouchamps C, NF-kappaB inducing kinase (NIK) inhibitors: identification of new scaffolds using virtual screening. Bioorg Med Chem Lett 2010;20:4515-20
  • Chen G, Cushing T, Fisher B, Alkynyl alcohols as kinase inhibitors. WO2009158011; 2009
  • Goto Y, Sagara T, Fan W, Novel 6-azaindole aminopyrimidine derivatives having NIK inhibitory activity. WO2010042337; 2010
  • Karrer U, Althage A, Odermatt B, Immunodeficiency of alymphoplasia mice (aly/aly) in vivo: structural defect of secondary lymphoid organs and functional B cell defect. Eur J Immunol 2000;30:2799-807
  • Dingli D, Rajkumar SV. How best to use new therapies in multiple myeloma. Blood Rev 2010;24:91-100
  • Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS Jr. Inhibition of NF-kappaB activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem 2001;276:22382-7
  • Gross JA, Dillon SR, Mudri S, TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity 2001;15:289-302
  • O'Connor BP, Raman VS, Erickson LD, BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004;199:91-8
  • Rossi JF, Moreaux J, Hose D, Atacicept in relapsed/refractory multiple myeloma or active Waldenstrom's macroglobulinemia: a phase I study. Br J Cancer 2009;101:1051-8
  • Chauhan D, Neri P, Velankar M, Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 2007;109:1220-7
  • Greten FR, Arkan MC, Bollrath J, NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 2007;130:918-31
  • Lam LT, Davis RE, Ngo VN, Compensatory IKKalpha activation of classical NF-kappaB signaling during IKKbeta inhibition identified by an RNA interference sensitization screen. Proc Natl Acad Sci USA 2008;105:20798-803
  • Hideshima T, Chauhan D, Kiziltepe T, Biologic sequelae of IkappaB kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood 2009;113:5228-36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.