187
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Hedgehog-mediated regulation of thyroid hormone action through iodothyronine deiodinases

Pages 493-504 | Published online: 25 Jan 2011

Bibliography

  • Dentice M, Bandyopadhyay A, Gereben B, The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 2005;7(7):698-705
  • Dentice M, Luongo C, Huang S, Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad Sci USA 2007;104(36):14466-71
  • Gereben B, Zavacki AM, Ribich S, Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 2008;29(7):898-938
  • Oppenheimer JH, Schwartz HL, Surks MI. Propylthiouracil inhibits the conversion of L-thyroxine to L-triiodothyronine. An explanation of the antithyroxine effect of propylthiouracil and evidence supporting the concept that triiodothyronine is the active thyroid hormone. J Clin Invest 1972;51(9):2493-7
  • Hesch RD, Brunner G, Soling HD. Conversion of thyroxine (T4) and triiodothyronine (T3) and the subcellular localisation of the converting enzyme. Clin Chim Acta 1975;59(2):209-13
  • Chopra IJ, Solomon DH, Chopra U, Pathways of metabolism of thyroid hormones. Rec Prog Horm Res 1978;34:521-67
  • Berry MJ, Kieffer JD, Harney JW, Larsen PR. Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J Biol Chem 1991;266(22):14155-8
  • St Germain DL. Dual mechanisms of regulation of type I iodothyronine 5′-deiodinase in the rat kidney, liver, and thyroid gland. Implications for the treatment of hyperthyroidism with radiographic contrast agents. J Clin Invest 1988;81(5):1476-84
  • Gereben B, Goncalves C, Harney JW, Selective proteolysis of human type 2 deiodinase: a novel ubiquitin-proteasomal mediated mechanism for regulation of hormone activation. Mol Endocrinol 2000;14(11):1697-708
  • St Germain DL, Croteau W. Ligand-induced inactivation of type I iodothyronine 5′-deiodinase: protection by propylthiouracil in vivo and reversibility in vitro. Endocrinology 1989;125(5):2735-44
  • Campos-Barros A, Hoell T, Musa A, Phenolic and tyrosyl ring iodothyronine deiodination and thyroid hormone concentrations in the human central nervous system. J Clin Endocrinol Metab 1996;81(6):2179-85
  • Nishikawa M, Toyoda N, Yonemoto T, Quantitative measurements for type 1 deiodinase messenger ribonucleic acid in human peripheral blood mononuclear cells: mechanism of the preferential increase of T3 in hyperthyroid Graves' disease. Biochem Biophys Res Commun 1998;250(3):642-6
  • Koenig RJ. Regulation of type 1 iodothyronine deiodinase in health and disease. Thyroid 2005;15(8):835-40
  • Schneider MJ, Fiering SN, Thai B, Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 2006;147(1):580-9
  • Baqui MM, Gereben B, Harney JW, Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 2000;141(11):4309-12
  • Bartha T, Kim SW, Salvatore D, Characterization of the 5′-flanking and 5′-untranslated regions of the cyclic adenosine 3′,5′-monophosphate-responsive human type 2 iodothyronine deiodinase gene. Endocrinology 2000;141(1):229-37
  • Salvatore D, Bartha T, Harney JW, Larsen PR. Molecular biological and biochemical characterization of the human type 2 selenodeiodinase. Endocrinology 1996;137(8):3308-15
  • Croteau W, Davey JC, Galton VA, St Germain DL. Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest 1996;98(2):405-17
  • Imai Y, Toyoda N, Maeda A, Type 2 iodothyronine deiodinase expression is upregulated by the protein kinase A-dependent pathway and is downregulated by the protein kinase C-dependent pathway in cultured human thyroid cells. Thyroid 2001;11(10):899-907
  • Silva JE, Dick TE, Larsen PR. The contribution of local tissue thyroxine monodeiodination to the nuclear 3,5,3′-triiodothyronine in pituitary, liver, and kidney of euthyroid rats. Endocrinology 1978;103(4):1196-207
  • Baqui M, Botero D, Gereben B, Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J Biol Chem 2003;278(2):1206-11
  • Van der Geyten S, Segers I, Gereben B, Transcriptional regulation of iodothyronine deiodinases during embryonic development. Mol Cell Endocrinol 2001;183(1-2):1-9
  • Van der Geyten S, Sanders JP, Kaptein E, Expression of chicken hepatic type I and type III iodothyronine deiodinases during embryonic development. Endocrinology 1997;138(12):5144-52
  • Bates JM, St Germain DL, Galton VA. Expression profiles of the three iodothyronine deiodinases, D1, D2, and D3, in the developing rat. Endocrinology 1999;140(2):844-51
  • Huang TS, Chopra IJ, Beredo A, Skin is an active site for the inner ring monodeiodination of thyroxine to 3,3′,5′-triiodothyronine. Endocrinology 1985;117(5):2106-13
  • Huang TS, Beredo A, Solomon DH, Chopra IJ. The inner ring (5-) monodeiodination of thyroxine (T4) in cerebral cortex during fetal, neonatal, and adult life. Metabolism 1986;35(3):272-7
  • Kaplan MM, Yaskoski KA. Phenolic and tyrosyl ring deiodination of iodothyronines in rat brain homogenates. J Clin Invest 1980;66(3):551-62
  • Lee JK, Gordon PR, Stall GM, Phenolic and tyrosyl ring iodothyronine deiodination by the Caco-2 human colon carcinoma cell line. Metabolism 1989;38(12):1154-61
  • Sorimachi K, Robbins J. Metabolism of thyroid hormones by cultured monkey hepatocarcinoma cells. Nonphenolic ring dieodination and sulfation. J Biol Chem 1977;252(13):4458-63
  • Nauman P, Bonicki W, Michalik R, The concentration of thyroid hormones and activities of iodothyronine deiodinases are altered in human brain gliomas. Folia Neuropathol 2004;42(2):67-73
  • Mori K, Yoshida K, Kayama T, Thyroxine 5-deiodinase in human brain tumors. J Clin Endocrinol Metab 1993;77(5):1198-202
  • Hernandez A, Lyon GJ, Schneider MJ, St Germain DL. Isolation and characterization of the mouse gene for the type 3 iodothyronine deiodinase. Endocrinology 1999;140(1):124-30
  • Hernandez A, Martinez ME, Croteau W, St Germain DL. Complex organization and structure of sense and antisense transcripts expressed from the DIO3 gene imprinted locus. Genomics 2004;83(3):413-24
  • Ingham PW. Transducing hedgehog: the story so far. EMBO J 1998;17(13):3505-11
  • McMahon AP. More surprises in the Hedgehog signaling pathway. Cell 2000;100(2):185-8
  • Kalderon D. Transducing the hedgehog signal. Cell 2000;103(3):371-4
  • Taipale J, Beachy PA. The hedgehog and Wnt signalling pathways in cancer. Nature 2001;411(6835):349-54
  • Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001;15(23):3059-87
  • Sasaki H, Nishizaki Y, Hui C, Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 1999;126(17):3915-24
  • Ruiz i Altaba A. Gli proteins encode context-dependent positive and negative functions: implications for development and disease. Development 1999;126(14):3205-16
  • Aza-Blanc P, Lin HY, Ruiz i Altaba A, Kornberg TB. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development 2000;127(19):4293-301
  • Nilsson M, Unden AB, Krause D, Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci USA 2000;97(7):3438-43
  • Fuchs E, Segre JA. Stem cells: a new lease on life. Cell 2000;100(1):143-55
  • Brandes AA, Palmisano V, Monfardini S. Medulloblastoma in adults: clinical characteristics and treatment. Cancer Treat Rev 1999;25(1):3-12
  • Lee JJ, von Kessler DP, Parks S, Beachy PA. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 1992;71(1):33-50
  • Echelard Y, Epstein DJ, St-Jacques B, Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993;75(7):1417-30
  • Marigo V, Roberts DJ, Lee SMT, Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila segment polarity gene hedgehog. Genomics 1995;28(1):44-51
  • Shi YB, Brown DD. The earliest changes in gene expression in tadpole intestine induced by thyroid hormone. J Biol Chem 1993;268(27):20312-17
  • Stolow MA, Shi YB. Xenopus sonic hedgehog as a potential morphogen during embryogenesis and thyroid hormone-dependent metamorphosis. Nucleic Acids Res 1995;23(13):2555-62
  • Kronenberg HM. Developmental regulation of the growth plate. Nature 2003;423(6937):332-6
  • Vasiliauskas D, Hancock S, Stern CD. SWiP-1: novel SOCS box containing WD-protein regulated by signalling centres and by Shh during development. Mech Dev 1999;82(1-2):79-94
  • Carrascosa A, Ferrandez MA, Audi L, Ballabriga A. Effects of triiodothyronine (T3) and identification of specific nuclear T3-binding sites in cultured human fetal epiphyseal chondrocytes. J Clin Endocrinol Metab 1992;75(1):140-4
  • Quarto R, Campanile G, Cancedda R, Dozin B. Thyroid hormone, insulin, and glucocorticoids are sufficient to support chondrocyte differentiation to hypertrophy: a serum-free analysis. J Cell Biol 1992;119(4):989-95
  • Ballock RT, Reddi AH. Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J Cell Biol 1994;126(5):1311-18
  • Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech 1994;28(6):505-19
  • Ishikawa Y, Genge BR, Wuthier RE, Wu LN. Thyroid hormone inhibits growth and stimulates terminal differentiation of epiphyseal growth plate chondrocytes. J Bone Miner Res 1998;13(9):1398-411
  • Stevens DA, Hasserjian RP, Robson H, Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation. J Bone Miner Res 2000;15(12):2431-42
  • Vortkamp A, Lee K, Lanske B, Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996;273(5275):613-22
  • Holsberger DR, Cooke PS. Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res 2005;322(1):133-40
  • Ballock RT, Zhou X, Mink LM, Expression of cyclin-dependent kinase inhibitors in epiphyseal chondrocytes induced to terminally differentiate with thyroid hormone. Endocrinology 2000;141(12):4552-7
  • Brown DD, Wang Z, Furlow JD, The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis. Proc Natl Acad Sci USA 1996;93(5):1924-9
  • Porazzi P, Calebiro D, Benato F, Thyroid gland development and function in the zebrafish model. Mol Cell Endocrinol 2009;312(1-2):14-23
  • Hall JA, Ribich S, Christoffolete MA, Absence of thyroid hormone activation during development underlies a permanent defect in adaptive thermogenesis. Endocrinology 2010;151(9):4573-82
  • Hernandez A, Garcia B, Obregon MJ. Gene expression from the imprinted Dio3 locus is associated with cell proliferation of cultured brown adipocytes. Endocrinology 2007;148(8):3968-76
  • Kester MH, Toussaint MJ, Punt CA, Large induction of type III deiodinase expression after partial hepatectomy in the regenerating mouse and rat liver. Endocrinology 2009;150(1):540-5
  • Peeters RP, Wouters PJ, Kaptein E, Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab 2003;88(7):3202-11
  • Wassen FW, Schiel AE, Kuiper GG, Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 2002;143(7):2812-15
  • Olivares EL, Marassi MP, Fortunato RS, Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 2007;148(10):4786-92
  • Kinugawa K, Yonekura K, Ribeiro RC, Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 2001;89(7):591-8
  • Buermans HP, Redout EM, Schiel AE, Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics 2005;21(3):314-23
  • Dentice M, Marsili A, Ambrosio R, The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest 2010;120(11):4021-30
  • Grachtchouk M, Mo R, Yu S, Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 2000;24(3):216-17
  • Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 1999;126(14):3089-100
  • Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 1999;9(8):445-8
  • Palma V, Lim DA, Dahmane N, Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 2005;132(2):335-44
  • Bigelow RL, Jen EY, Delehedde M, Sonic hedgehog induces epidermal growth factor dependent matrix infiltration in HaCaT keratinocytes. J Invest Dermatol 2005;124(2):457-65
  • Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 2000;20(23):9055-67
  • Benazeraf B, Chen Q, Peco E, Identification of an unexpected link between the Shh pathway and a G2/M regulator, the phosphatase CDC25B. Dev Biol 2006;294(1):133-47
  • Pola R, Ling LE, Aprahamian TR, Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation 2003;108(4):479-85
  • Teillet M, Watanabe Y, Jeffs P, Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development 1998;125(11):2019-30
  • Kinto N, Iwamoto M, Enomoto-Iwamoto M, Fibroblasts expressing Sonic hedgehog induce osteoblast differentiation and ectopic bone formation. FEBS Lett 1997;404(2-3):319-23
  • Nakamura T, Aikawa T, Iwamoto-Enomoto M, Induction of osteogenic differentiation by hedgehog proteins. Biochem Biophys Res Commun 1997;237(2):465-9
  • Suh JM, Gao X, McKay J, Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab 2006;3(1):25-34
  • Rosen ED, Sarraf P, Troy AE, PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999;4(4):611-17
  • Ochoa B, Syn WK, Delgado I, Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 2010;51(5):1712-23
  • Ishizuya-Oka A, Ueda S, Inokuchi T, Thyroid hormone-induced expression of sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine. Differentiation 2001;69(1):27-37
  • Ishizuya-Oka A, Hasebe T, Shimizu K, Shh/BMP-4 signaling pathway is essential for intestinal epithelial development during Xenopus larval-to-adult remodeling. Dev Dyn 2006;235(12):3240-9
  • Hasebe T, Kajita M, Shi YB, Ishizuya-Oka A. Thyroid hormone-up-regulated hedgehog interacting protein is involved in larval-to-adult intestinal remodeling by regulating sonic hedgehog signaling pathway in Xenopus laevis. Dev Dyn 2008;237(10):3006-15
  • Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 2000;1(1):20-9
  • Ruiz i Altaba A, Palma V, Dahmane N. Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 2002;3(1):24-33
  • Nicholson JL, Altman J. The effects of early hypo- and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res 1972;44(1):25-36
  • Lauder JM. Granule cell migration in developing rat cerebellum. Influence of neonatal hypo- and hyperthyroidism. Dev Biol 1979;70(1):105-15
  • Thompson CC, Potter GB. Thyroid hormone action in neural development. Cereb Cortex 2000;10(10):939-45
  • Lauder JM, Altman J, Krebs H. Some mechanisms of cerebellar foliation: effects of early hypo- and hyperthyroidism. Brain Res 1974;76(1):33-40
  • Ray RD, Asling CW, Walker DG, Growth and differentiation of the skeleton in thyroidectomized-hypophysectomized rats treated with thyroxin, growth hormone, and combination. J Bone Joint Surg Am 1954;36-A(1):94-103
  • Hall BK. Thyroxine and the development of the tibia in the embryonic chick. Anat Rec 1973;176(1):49-64
  • Hernandez A, Martinez ME, Fiering S, Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 2006;116(2):476-84
  • Johnson RL, Rothman AL, Xie J, Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996;272(5268):1668-71
  • Hahn H, Wicking C, Zaphiropoulous PG, Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996;85(6):841-51
  • Sap J, Munoz A, Damm K, The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 1986;324(6098):635-40
  • Silva JM, Dominguez G, Gonzalez-Sancho JM, Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer. Oncogene 2002;21(27):4307-16
  • Puzianowska-Kuznicka M, Krystyniak A, Madej A, Functionally impaired TR mutants are present in thyroid papillary cancer. J Clin Endocrinol Metab 2002;87(3):1120-8
  • Yaoita Y, Nakajima K. Induction of apoptosis and CPP32 expression by thyroid hormone in a myoblastic cell line derived from tadpole tail. J Biol Chem 1997;272(8):5122-7
  • Nakajima K, Yaoita Y. Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis. Dev Dyn 2003;227(2):246-55
  • Puzianowska-Kuznicka M, Pietrzak M, Turowska O, Nauman A. Thyroid hormones and their receptors in the regulation of cell proliferation. Acta Biochim Pol 2006;53(4):641-50
  • Barrera-Hernandez G, Zhan Q, Wong R, Cheng SY. Thyroid hormone receptor is a negative regulator in p53-mediated signaling pathways. DNA Cell Biol 1998;17(9):743-50
  • Garcia-Silva S, Aranda A. The thyroid hormone receptor is a suppressor of ras-mediated transcription, proliferation, and transformation. Mol Cell Biol 2004;24(17):7514-23
  • Ng L, Lyubarsky A, Nikonov SS, Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J Neurosci 2010;30(9):3347-57
  • Trimarchi JM, Harpavat S, Billings NA, Cepko CL. Thyroid hormone components are expressed in three sequential waves during development of the chick retina. BMC Dev Biol 2008;8:101
  • Wagner MS, Morimoto R, Dora JM, Hypothyroidism induces type 2 iodothyronine deiodinase expression in mouse heart and testis. J Mol Endocrinol 2003;31(3):541-50
  • Bitgood MJ, Shen L, McMahon AP. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 1996;6(3):298-304

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.