303
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Targets of chymase inhibitors

, PhD, , MD PhD & , MD PhD
Pages 519-527 | Published online: 04 Feb 2011

Bibliography

  • De Young MB, Nemeth EF, Scarpa A. Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques. Arch Biochem Biophys 1987;15:222-33
  • McEuen AR, Sharma B, Walls AF. Regulation of the activity of human chymase during storage and release from mast cells: the contributions of inorganic cations, pH, heparin and histamine. Biochim Biophys Acta 1995;1267:115-21
  • Takai S, Shiota N, Yamamoto D, Purification and characterization of angiotensin II-generating chymase from hamster cheek pouch. Life Sci 1996;58:591-7
  • Takai S, Shiota N, Sakaguchi M, Characterization of chymase from human vascular tissues. Clin Chim Acta 1997;265:13-20
  • Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 2000;52:11-34
  • MERCATOR Study Group. Dose the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Circulation 1992;86:100-10
  • Peters S, Gotting B, Trummel M, Valsartan for prevention of restenosis after stenting of type B2/C lesions: the VAL-PREST trial. J Invasive Cardiol 2001;13:93-7
  • Urata H, Healy B, Stewart RW, Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 1990;66:883-90
  • Urata H, Kinoshita A, Misono KS, Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 1990;265:22348-57
  • Takai S, Shiota N, Jin D, Miyazaki M. Functional role of chymase in angiotensin II formation in human vascular tissue. J Cardiovasc Pharmacol 1998;32:826-33
  • Takai S, Sakaguchi M, Jin D, Different angiotensin II-forming pathways in human and rat vascular tissues. Clin Chim Acta 2001;305:191-5
  • Uehara Y, Urata H, Sasaguri M, Increased chymase activity in internal thoracic artery of patients with hypercholesterolemia. Hypertension 2000;35:55-60
  • Huang XR, Chen WY, Truong LD, Lan HY. Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am Soc Nephrol 2003;14:1738-47
  • Morikawa T, Imanishi M, Suzuki H, Mast cell chymase in the ischemic kidney of severe unilateral renovascular hypertension. Am J Kidney Dis 2005;45:e45-50
  • Welker P, Kramer S, Groneberg DA, Increased mast cell number in human hypertensive nephropathy. Am J Physiol Renal Physiol 2008;295:F1103-9
  • Takai S, Jin D, Sakaguchi M, A novel chymase inhibitor, BCEAB (4-[1-{[bis- (4-methyl-phenyl)-methyl]-carbamoyl}-3-(2-ethoxy-benzyl)-4-oxo-azetidine-2-yloxy]-benzoic acid) suppressed cardiac fibrosis in cardiomyopathic hamsters. J Pharmacol Exp Ther 2003;305:17-23
  • Maruichi M, Takai S, Sugiyama T, Role of chymase on growth of cultured canine Tenon's capsule fibroblasts and scarring in a canine conjunctival flap model. Exp Eye Res 2004;79:111-18
  • Fang KC, Raymond WW, Blount JL, Caughey GH. Dog mast cell alpha-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain. J Biol Chem 1997;272:25628-35
  • Furubayashi K, Takai S, Jin D, Chymase activates promatrix metalloproteinase-9 in human abdominal aortic aneurysm. Clin Chim Acta 2008;388:214-16
  • Murakami M, Karnik SS, Husain A. Human prochymase activation. A novel role for heparin in zymogen processing. J Biol Chem 1995;270:2218-23
  • Wolters PJ, Pham CT, Muilenburg DJ, Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem 2001;276:18551-6
  • De Young MB, Nemeth EF, Scarpa A. Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques. Arch Biochem Biophys 1987;254:222-33
  • McEuen AR, Sharma B, Walls AF. Regulation of the activity of human chymase during storage and release from mast cells: the contributions of inorganic cations, pH, heparin and histamine. Biochim Biophys Acta 1995;1267:115-21
  • Schechter NM, Sprows JL, Schoenberger OL, Reaction of human skin chymotrypsin-like proteinase chymase with plasma proteinase inhibitors. J Biol Chem 1989;264:21308-15
  • Kokkonen JO, Saarinen J, Kovanen PT. Regulation of local angiotensin II formation in the human heart in the presence of interstitial fluid. Inhibition of chymase by protease inhibitors of interstitial fluid and of angiotensin-converting enzyme by Ang-(1-9) formed by heart carboxypeptidase A-like activity. Circulation 1997;95:1455-63
  • Takai S, Jin D, Sakaguchi M, Miyazaki M. Chymase-dependent angiotensin II formation in human vascular tissue. Circulation 1999;100:654-8
  • Takai S, Yuda A, Jin D, Inhibition of chymase reduces vascular proliferation in dog grafted veins. FEBS Lett 2000;467:141-4
  • Nishimoto M, Takai S, Kim S, Significance of chymase-dependent angiotensin II-forming pathway in the development of vascular proliferation. Circulation 2001;104:1274-9
  • Wintroub BU, Schechter NM, Lazarus GS, Angiotensin I conversion by human and rat chymotryptic protainases. J Invest Dermatol 1984;83:336-9
  • Takai S, Shiota N, Kobayashi S, Induction of chymase that forms angiotensin II in the monkey atherosclerotic aorta. FEBS Lett 1997;412:86-90
  • Caughey GH, Raymond WW, Wolters PJ. Angiotensin II generation by mast cell alpha- and beta-chymases. Biochim Biophys Acta 2000;1480:245-57
  • Akasu M, Urata H, Kinoshita A, Differences in tissue angiotensin II-forming pathways by species and organs in vitro. Hypertension 1998;32:514-20
  • Taipale J, Lohi J, Saarinen J, Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 1995;270:4689-96
  • Tchougounova E, Lundequist A, Fajardo I, A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 2005;280:9291-6
  • Thompson RW, Holmes DR, Mertens RA, Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest 1995;96:318-26
  • Freestone T, Turner RJ, Coady A, Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 1995;15:1145-51
  • Nishimoto M, Takai S, Fukumoto H, Increased local angiotensin II formation in aneurysmal aorta. Life Sci 2002;71:2195-205
  • Ihara M, Urata H, Kinoshita A, Increased chymase-dependent angiotensin II formation in human atherosclerotic aorta. Hypertension 1999;33:1399-405
  • Tsunemi K, Takai S, Nishimoto M, A specific chymase inhibitor, 2-(5-formylamino-6-oxo-2-phenyl-1,6-dihydropyrimidine-1-yl)-N-[[3,4-dioxo-1- phenyl-7-(2-pyridyloxy)]-2-heptyl] acetamide (NK3201), suppresses development of abdominal aortic aneurysm in hamsters. J Pharmacol Exp Ther 2004;309:879-83
  • Furubayashi K, Takai S, Jin D, The significance of chymase in the progression of abdominal aortic aneurysms in dogs. Hypertens Res 2007;30:349-57
  • Inoue N, Muramatsu M, Jin D, Effects of chymase inhibitor on angiotensin II-induced abdominal aortic aneurysm development in apolipoprotein E-deficient mice. Atherosclerosis 2009;204:359-64
  • Sun J, Zhang J, Lindholt JS, Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation 2009;120:973-82
  • Cipollone F, Fazia M, Iezzi A, Blockade of the angiotensin II type 1 receptor stabilizes atherosclerotic plaques in humans by inhibiting prostaglandin E2-dependent matrix metalloproteinase activity. Circulation 2004;109:1482-8
  • Wang IK, Lin-Shiau SY, Lin JK. Suppression of invasion and MMP-9 expression in NIH 3T3 and v-H-Ras 3T3 fibroblasts by lovastatin through inhibition of ras isoprenylation. Oncology 2000;59:245-54
  • Sorbi D, Fadly M, Hicks R, Captopril inhibits the 72 kDa and 92 kDa matrix metalloproteinases. Kidney Int 1993;44:1266-72
  • Yamamoto D, Takai S, Jin D, Molecular mechanism of imidapril for cardiovascular protection via inhibition of MMP-9. J Mol Cell Cardiol 2007;43:670-6
  • Takai S, Jin D, Ohzu M, Chymase inhibition provides pancreatic islet protection in hamsters with streptozotocin-induced diabetes. J Pharmacol Sci 2009;110:459-65
  • Kinoshita A, Urata H, Bumpus FM, Husain A. Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart. J Biol Chem 1991;266:19192-7
  • Huang XR, Chen WY, Truong LD, Lan HY. Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am Soc Nephrol 2003;14:1738-47
  • Maeda Y, Inoguchi T, Takei R, Inhibition of chymase protects against diabetes-induced oxidative stress and renal dysfunction in hamsters. Am J Physiol Renal Physiol 2010;299:F1328-38
  • Koka V, Wang W, Huang XR, Advanced glycation end products activate a chymase-dependent angiotensin II-generating pathway in diabetic complications. Circulation 2006;113:1353-60
  • Lavrentyev EN, Estes AM, Malik KU. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells. Circ Res 2007;101:455-64
  • Otani A, Takagi H, Oh H, Angiotensin II-stimulated vascular endothelial growth factor expression in bovine retinal pericytes. Invest Ophthalmol Vis Sci 2000;41:1192-9
  • Fukumoto M, Takai S, Ishizaki E, Involvement of angiotensin II-dependent vascular endothelial growth factor gene expression via NADPH oxidase in the retina in a type 2 diabetic rat model. Curr Eye Res 2008;33:885-91
  • Wang H, Keiser JA. Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ Res 1998;83:832-40
  • Schalkwijk CG, Ligtvoet N, Twaalfhoven H, Amadori albumin in type 1 diabetic patients: correlation with markers of endothelial function, association with diabetic nephropathy, and localization in retinal capillaries. Diabetes 1999;48:2446-53
  • Stitt AW, Li YM, Gardiner TA, Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 1997;150:523-31
  • Li L, Renier G. Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism 2006;55:1516-23
  • Sugiyama T, Okuno T, Fukuhara M, Angiotensin II receptor blocker inhibits abnormal accumulation of advanced glycation end products and retinal damage in a rat model of type 2 diabetes. Exp Eye Res 2007;85:406-12
  • Robinson GS, Pierce EA, Rook SL, Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci USA 1996;93:4851-6
  • Bhisitkul RB, Robinson GS, Moulton RS, An antisense oligodeoxynucleotide against vascular endothelial growth factor in a nonhuman primate model of iris neovascularization. Arch Ophthalmol 2005;123:214-19
  • Das A, McLamore A, Song W, McGuire PG. Retinal neovascularization is suppressed with a matrix metalloproteinase inhibitor. Arch Ophthalmol 1999;117:498-503
  • Eghbali M, Tomek R, Woods C, Bhambi B. Cardiac fibroblasts are predisposed to convert into myocyte phenotype: specific effect of transforming growth factor beta. Proc Natl Acad Sci USA 1991;88:795-9
  • Li RK, Li G, Mickle DA, Overexpression of transforming growth factor-?beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 1997;96:874-81
  • Patella V, Marino I, Arbustini E, Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation 1998;97:971-8
  • Kuwahara F, Kai H, Tokuda K, Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation? Hypertension 2004;43:739-45
  • Nakamura F, Nagano M, Kobayashi R, Chronic administration of angiotensin II receptor antagonist, TCV-116, in cardiomyopathic hamsters. Am J Physiol 1994;267:H2297-304
  • Palaniyandi SS, Nagai Y, Watanabe K, Chymase inhibition reduces the progression to heart failure after autoimmune myocarditis in rats. Exp Biol Med 2007;232:1213-21
  • Powell EE, Cooksley WG, Hanson R, The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 1990;11:74-80
  • Bugianesi E, Leone N, Vanni E, Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 2002;123:134-40
  • Farrell DJ, Hines JE, Walls AF, Intrahepatic mast cells in chronic liver diseases. Hepatology 1995;22:1175-81
  • Armbrust T, Batusic D, Ringe B, Ramadori G. Mast cells distribution in human liver disease and experimental rat liver fibrosis. Indications for mast cell participation in development of liver fibrosis. J Hepatol 1997;26:1042-54
  • Matsunaga Y, Kawasaki H, Terada T. Stromal mast cells and nerve fibers in various chronic liver diseases: relevance to hepatic fibrosis. Am J Gastroenterol 1999;94:1923-32
  • Uno M, Kurita S, Misu H, Tranilast, an antifibrogenic agent, ameliorates a dietary rat model of nonalcoholic steatohepatitis. Hepatology 2008;48:109-18
  • Tashiro K, Takai S, Jin D, Chymase inhibitor prevents the nonalcoholic steatohepatitis in hamsters fed a methionine- and choline-deficient diet. Hepatol Res 2010;40:514-23
  • Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor beta1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci USA 1991;88:6642-6
  • Giri SN, Hyde DM, Hollinger MA. Effect of antibody to transforming growth factor beta on bleomycin induced accumulation of lung collagen in mice. Thorax 1993;48:959-66
  • Sukenaga Y, Kamoshita K, Takai S, Miyazaki M. Development of the chymase inhibitor as an anti-tissue-remodeling drug: myocardial infarction and some other possibilities. Jpn J Pharmacol 2002;90:218-22
  • Sakaguchi M, Takai S, Jin D, A specific chymase inhibitor, NK3201, suppresses bleomycin-induced pulmonary fibrosis in hamsters. Eur J Pharmacol 2004;493:173-6
  • Tomimori Y, Muto T, Saito K, Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice. Eur J Pharmacol 2003;478:179-85
  • Takato H, Yasui M, Ichikawa Y, The specific chymase inhibitor TY-51469 suppresses the accumulation of neutrophils in the lung and reduces silica-induced pulmonary fibrosis in mice. Exp Lung Res 2011: published online 4 December 2010 doi:10.3109/01902148.2010.520815
  • Komeda K, Jin D, Takai S, Significance of chymase-dependent angiotensin II formation in the progression of human liver fibrosis. Hepatol Res 2008;38:501-10
  • Ikura Y, Ohsawa M, Shirai N, Expression of angiotensin II type 1 receptor in human cirrhotic livers: its relation to fibrosis and portal hypertension. Hepatol Res 2005;32:107-16
  • Rimola A, Londono MC, Guevara G, Beneficial effect of angiotensin-blocking agents on graft fibrosis in hepatitis C recurrence after liver transplantation. Transplantation 2004;78:686-91
  • Komeda K, Takai S, Jin D, Chymase inhibition attenuates tetrachloride-induced liver fibrosis in hamsters. Hepatol Res 2010;40:832-40
  • Medina C, Radomski MW. Role of matrix metalloproteinases in intestinal inflammation. J Pharmacol Exp Ther 2006;318:933-8
  • Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology 1995;109:1344-67
  • Ishida K, Takai S, Murano M, Role of chymase-dependent matrix metalloproteinase-9 activation in mice with dextran sodium sulfate-induced colitis. J Pharmacol Exp Ther 2008;324:422-6
  • Castaneda FE, Walia B, Vijay-Kumar M, Targeted deletion of metalloproteinase 9 attenuates experimental colitis in mice: central role of epithelial-derived MMP. Gastroenterology 2005;129:1991-2008
  • Allison MC, Howatson AG, Torrance CJ, Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs. N Engl J Med 1992;327:749-54
  • Maiden L, Thjodleifsson B, Theodors A, A quantitative analysis of NSAID-induced small bowel pathology by capsule enteroscopy. Gastroenterology 2005;128:1172-8
  • Kakimoto K, Takai S, Murano M, Significance of chymase-dependent matrix metalloproteinase-9 activation on indomethacin-induced small intestinal damages in rats. J Pharmacol Exp Ther 2010;332:684-9
  • Terakawa M, Tomimori Y, Goto M, Fukuda Y. Mast cell chymase induces expression of chemokines for neutrophils in eosinophilic EoL-1 cells and mouse peritonitis eosinophils. Eur J Pharmacol 2006;538:175-81
  • Tani K, Ogushi F, Kido H, Chymase is a potent chemoattractant for human monocytes and neutrophils. J Leukoc Biol 2000;67:585-9
  • Thompson RW. Basic science of abdominal aortic aneurysms: emerging therapeutic strategies for an unresolved clinical problem. Curr Opin Cardiol 1996;11:504-18
  • Ballotta E, Toniato A. Small abdominal aortic aneurysms. N Engl J Med 2002;347:1112-15
  • Muramatsu M, Katada J, Hayashi I, Majima M. Chymase as a proangiogenic factor. A possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J Biol Chem 2000;275:5545-52
  • Muramatsu M, Yamada M, Takai S, Miyazaki M. Suppression of basic fibroblast growth factor-induced angiogenesis by a specific chymase inhibitor, BCEAB, through the chymase-angiotensin-dependent pathway in hamster sponge granulomas. Br J Pharmacol 2002;137:554-60
  • Sjolie AK, Klein R, Porta M, Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial. Lancet 2008;372:1385-93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.