370
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Targeting the ABCB4 gene to control cholesterol homeostasis

&
Pages 1173-1182 | Published online: 30 Jul 2011

Bibliography

  • Morotti RA, Suchy FJ, Magid MS. Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings. Semin Liver Dis 2011;31:3-10
  • Davit-Spraul A, Gonzales E, Baussan C, The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspects. Semin Liver Dis 2010;30:134-46
  • Oude Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch 2007;453:601-10
  • Trauner M, Fickert P, Wagner M. MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 2007;27:77-98
  • Oude Elferink RP, Ottenhoff R, van Wijland M, Regulation of biliary lipid secretion by mdr2 P-glycoprotein in the mouse. J Clin Invest 1995;95:31-8
  • Smit JJ, Schinkel AH, Oude Elferink RP, Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993;75:451-62
  • Smith AJ, Timmermans-Hereijgers JL, Roelofsen B, The human MDR3 P-glycoprotein promotes translocation of phosphatidylcholine through the plasma membrane of fibroblasts from transgenic mice. FEBS Lett 1994;354:263-6
  • van Helvoort A, Smith AJ, Sprong H, MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 1996;87:507-17
  • Morita SY, Kobayashi A, Takanezawa Y, Bile salt-dependent efflux of cellular phospholipids mediated by ATP binding cassette protein B4. Hepatology 2007;46:188-99
  • Wiersma H, Gatti A, Nijstad N, Scavenger receptor class B type I mediates biliary cholesterol secretion independent of ATP-binding cassette transporter g5/g8 in mice. Hepatology 2009;50:1263-72
  • Oude Elferink RP, Ottenhoff R, van Wijland M, Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. J Lipid Res 1996;37:1065-75
  • Oude Elferink RP, Paulusma CC, Groen AK. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology 2006;130:908-25
  • Yoshikado T, Takada T, Yamamoto T, Itraconazole-induced cholestasis: involvement of the inhibition of bile canalicular phospholipid translocator MDR3/ABCB4. Mol Pharmacol 2011;79:241-50
  • Smit JJ, Schinkel AH, Mol CA, Tissue distribution of the human MDR3 P-glycoprotein. Lab Invest 1994;71:638-49
  • Patel P, Weerasekera N, Hitchins M, Semi quantitative expression analysis of MDR3, FIC1, BSEP, OATP-A, OATP-C,OATP-D, OATP-E and NTCP gene transcripts in 1st and 3rd trimester human placenta. Placenta 2003;24:39-44
  • Augustine LM, Markelewicz RJ Jr, Boekelheide K, Xenobiotic and endobiotic transporter mRNA expression in the blood-testis barrier. Drug Metab Dispos 2005;33:182-9
  • Cui YJ, Cheng X, Weaver YM, Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab Dispos 2009;37:203-10
  • Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 2008;104:1145-66
  • Pennings M, Hildebrand RB, Ye D, Bone marrow-derived multidrug resistance protein ABCB4 protects against atherosclerotic lesion development in LDL receptor knockout mice. Cardiovasc Res 2007;76:175-83
  • Frijters CM, Ottenhoff R, van Wijland MJ, Regulation of mdr2 P-glycoprotein expression by bile salts. Biochem J 1997;321:389-95
  • Gupta S, Todd SR, Pandak WM, Regulation of multidrug resistance 2 P-glycoprotein expression by bile salts in rats and in primary cultures of rat hepatocytes. Hepatology 2000;32:341-7
  • Jung D, Elferink MG, Stellaard F, Analysis of bile acid-induced regulation of FXR target genes in human liver slices. Liver Int 2007;27:137-44
  • Liu Y, Binz J, Numerick MJ, Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003;112:1678-87
  • Huang L, Zhao A, Lew JL, Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 2003;278:51085-90
  • Marschall HU, Wagner M, Zollner G, Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 2005;129:476-85
  • Chianale J, Vollrath V, Wielandt AM, Fibrates induce mdr2 gene expression and biliary phospholipid secretion in the mouse. Biochem J 1996;314(Pt 3):781-6
  • Shoda J, Okada K, Inada Y, Bezafibrate induces multidrug-resistance P-Glycoprotein 3 expression in cultured human hepatocytes and humanized livers of chimeric mice. Hepatol Res 2007;37:548-56
  • Kok T, Bloks VW, Wolters H, Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice. Biochem J 2003;369:539-47
  • Matsumoto T, Miyazaki H, Nakahashi Y, Multidrug resistance 3 is in situ detected in the liver of patients with primary biliary cirrhosis, and induced in human hepatoma cells by bezafibrate. Hepatol Res 2004;30:125-36
  • Kanda T, Yokosuka O, Imazeki F, Bezafibrate treatment: a new medical approach for PBC patients? J Gastroenterol 2003;38:573-8
  • Kurihara T, Niimi A, Maeda A, Bezafibrate in the treatment of primary biliary cirrhosis: comparison with ursodeoxycholic acid. Am J Gastroenterol 2000;95:2990-2
  • Roglans N, Vazquez-Carrera M, Alegret M, Fibrates modify the expression of key factors involved in bile-acid synthesis and biliary-lipid secretion in gallstone patients. Eur J Clin Pharmacol 2004;59:855-61
  • Shoda J, Inada Y, Tsuji A, Bezafibrate stimulates canalicular localization of NBD-labeled PC in HepG2 cells by PPARalpha-mediated redistribution of ABCB4. J Lipid Res 2004;45:1813-25
  • Nakamuta M, Fujino T, Yada R, Therapeutic effect of bezafibrate against biliary damage: a study of phospholipid secretion via the PPARalpha-MDR3 pathway. Int J Clin Pharmacol Ther 2010;48:22-8
  • Wang J, Sun F, Zhang DW, Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution. J Biol Chem 2006;281:27894-904
  • Wang J, Zhang DW, Lei Y, Purification and reconstitution of sterol transfer by native mouse ABCG5 and ABCG8. Biochemistry 2008;47:5194-204
  • Berge KE, Tian H, Graf GA, Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000;290:1771-5
  • Tauscher A, Kuver R. ABCG5 and ABCG8 are expressed in gallbladder epithelial cells. Biochem Biophys Res Commun 2003;307:1021-8
  • Repa JJ, Berge KE, Pomajzl C, Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 2002;277:18793-800
  • Plosch T, van der V, Havinga R, Abcg5/Abcg8-independent pathways contribute to hepatobiliary cholesterol secretion in mice. Am J Physiol Gastrointest Liver Physiol 2006;291:G414-23
  • Freeman LA, Kennedy A, Wu J, The orphan nuclear receptor LRH-1 activates the ABCG5/ABCG8 intergenic promoter. J Lipid Res 2004;45:1197-206
  • Sumi K, Tanaka T, Uchida A, Cooperative interaction between hepatocyte nuclear factor 4 alpha and GATA transcription factors regulates ATP-binding cassette sterol transporters ABCG5 and ABCG8. Mol Cell Biol 2007;27:4248-60
  • Vrins C, Vink E, Vandenberghe KE, The sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to mediate cholesterol efflux. FEBS Lett 2007;581:4616-20
  • Klett EL, Lu K, Kosters A, A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol. BMC Med 2004;2:5
  • Yu L, Hammer RE, Li-Hawkins J, Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 2002;99:16237-42
  • Yu L, Gupta S, Xu F, Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem 2004;280:8742-7
  • Smith AJ, de Vree JM, Ottenhoff R, Hepatocyte-specific expression of the human MDR3 P-glycoprotein gene restores the biliary phosphatidylcholine excretion absent in Mdr2 (–/–) mice. Hepatology 1998;28:530-6
  • Altmann SW, Davis HR Jr, Zhu LJ, Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004;303:1201-4
  • Davis HR Jr, Zhu LJ, Hoos LM, Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 2004;279:33586-92
  • Rosenblum SB, Huynh T, Afonso A, Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4 -hydroxyphenyl)-2-azetidinone (SCH 58235): a designed, potent, orally active inhibitor of cholesterol absorption. J Med Chem 1998;41:973-80
  • Garcia-Calvo M, Lisnock J, Bull HG, The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA 2005;102:8132-7
  • Dujovne CA, Ettinger MP, McNeer JF, Efficacy and safety of a potent new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am J Cardiol 2002;90:1092-7
  • Altmann SW, Davis HR Jr, Yao X, The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta 2002;1580:77-93
  • Mardones P, Quinones V, Amigo L, Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice. J Lipid Res 2001;42:170-80
  • Ge L, Wang J, Qi W, The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 2008;7:508-19
  • Carey MC, Small DM. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest 1978;61:998-1026
  • Wierzbicki AS. Fibrates: no ACCORD on their use in the treatment of dyslipidaemia. Curr Opin Lipidol 2010;21:352-8
  • Toth PP. Drug treatment of hyperlipidaemia: a guide to the rational use of lipid-lowering drugs. Drugs 2010;70:1363-79
  • Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med 2004;10:1352-8
  • Venneman NG, Van Erpecum KJ. Pathogenesis of gallstones. Gastroenterol Clin North Am 2010;39:171-83; vii
  • Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 2006;113:2548-55
  • Temel RE, Sawyer JK, Yu L, Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 2010;12:96-102
  • van der Velde AE, Brufau G, Groen AK. Transintestinal cholesterol efflux. Curr Opin Lipidol 2010;21:167-71
  • Kruit JK, Plosch T, Havinga R, Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 2005;128:147-56
  • Temel RE, Tang W, Ma Y, Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest 2007;117:1968-78
  • Wu JE, Basso F, Shamburek RD, Hepatic ABCG5 and ABCG8 overexpression increases hepatobiliary sterol transport but does not alter aortic atherosclerosis in transgenic mice. J Biol Chem 2004;279:22913-25
  • Basso F, Freeman LA, Ko C, Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited. J Lipid Res 2007;48:114-26
  • Wilund KR, Yu L, Xu F, High-level expression of ABCG5 and ABCG8 attenuates diet-induced hypercholesterolemia and atherosclerosis in Ldlr–/– mice. J Lipid Res 2004;45:1429-36
  • van der Velde AE, Vrins CL, van den Oever K, Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology 2007;133:967-75
  • Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev 2010;42:437-45
  • Mottino AD, Catania VA. Hepatic drug transporters and nuclear receptors: regulation by therapeutic agents. World J Gastroenterol 2008;14:7068-74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.