928
Views
137
CrossRef citations to date
0
Altmetric
Reviews

Targeting the p53 signaling pathway in cancer therapy – the promises, challenges and perils

, PhD
Pages 67-83 | Published online: 12 Jan 2012

Bibliography

  • Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007;8:275-83
  • Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278:261-3
  • Sarnow P, Ho YS, Williams J, Levine AJ. Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 1982;28:387-94
  • Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990;248:76-9
  • Scheffner M, Werness BA, Huibregtse JM, The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990;63:1129-36
  • Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010;2:a001008
  • Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010;2:a001016
  • Malkin D, Li FP, Strong LC, Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250:1233-8
  • Donehower LA, Harvey M, Slagle BL, Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215-21
  • Beckerman R, Prives C. Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2010;2:a000935
  • Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009;137:413-31
  • Yonish-Rouach E, Resnitzky D, Lotem J, Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991;352:345-7
  • Clarke AR, Purdie CA, Harrison DJ, Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993;362:849-52
  • Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993;74:957-67
  • Lowe SW, Schmitt EM, Smith SW, p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993;362:847-9
  • Liu X, Yue P, Khuri FR, Sun SY. p53 upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 2004;64:5078-83
  • Muller M, Wilder S, Bannasch D, p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998;188:2033-45
  • Sheikh MS, Burns TF, Huang Y, p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 1998;58:1593-8
  • Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003;10:26-35
  • Ehrhardt H, Hacker S, Wittmann S, Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells. Oncogene 2008;27:783-93
  • Attardi LD, Reczek EE, Cosmas C, PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev 2000;14:704-18
  • Davies L, Gray D, Spiller D, P53 apoptosis mediator PERP: localization, function and caspase activation in uveal melanoma. J Cell Mol Med 2009;13:1995-2007
  • Stegh AH, Peter ME. Apoptosis and caspases. Cardiol Clin 2001;19:13-29
  • Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9:47-59
  • Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995;80:293-9
  • Yu J, Zhang L, Hwang PM, PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 2001;7:673-82
  • Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001;7:683-94
  • Oda E, Ohki R, Murasawa H, Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000;288:1053-8
  • Han J, Flemington C, Houghton AB, Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 2001;98:11318-23
  • Soengas MS, Alarcon RM, Yoshida H, Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 1999;284:156-9
  • Jeffers JR, Parganas E, Lee Y, Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 2003;4:321-8
  • Villunger A, Michalak EM, Coultas L, p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003;302:1036-8
  • Chipuk JE, Maurer U, Green DR, Schuler M. Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 2003;4:371-81
  • Caelles C, Helmberg A, Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 1994;370:220-3
  • Johnson TM, Meade K, Pathak N, Knockin mice expressing a chimeric p53 protein reveal mechanistic differences in how p53 triggers apoptosis and senescence. Proc Natl Acad Sci USA 2008;105:1215-20
  • Chipuk JE, Bouchier-Hayes L, Kuwana T, PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 2005;309:1732-5
  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004;303:1010-14
  • Mihara M, Erster S, Zaika A, p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003;11:577-90
  • Leu JI, Dumont P, Hafey M, Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 2004;6:443-50
  • Stegh AH, Chin L, Louis DN, DePinho RA. What drives intense apoptosis resistance and propensity for necrosis in glioblastoma? A role for Bcl2L12 as a multifunctional cell death regulator. Cell Cycle 2008;7:2833-9
  • Stegh AH, Kesari S, Mahoney JE, Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proc Natl Acad Sci USA 2008;105:10703-8
  • Stegh AH, Kim H, Bachoo RM, Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes Dev 2007;21:98-111
  • Stegh AH, Brennan C, Mahoney JA, Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor. Genes Dev 2010;24:2194-204
  • Stegh AH, Depinho RA. Beyond effector caspase inhibition: Bcl2L12 neutralizes p53 signaling in glioblastoma. Cell Cycle 2011;10:33-8
  • Kumar S. Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat Rev Cancer 2009;9:897-903
  • Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004;304:843-6
  • Lin Y, Ma W, Benchimol S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet 2000;26:122-7
  • Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev 2006;20:1-15
  • Yuan J, Kroemer G. Alternative cell death mechanisms in development and beyond. Genes Dev 2010;24:2592-602
  • Tu HC, Ren D, Wang GX, The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc Natl Acad Sci USA 2009;106:1093-8
  • Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 2006;209:13-20
  • Sherr CJ. G1 phase progression: cycling on cue. Cell 1994;79:551-5
  • el-Deiry WS, Harper JW, O'Connor PM, WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994;54:1169-74
  • el-Deiry WS, Tokino T, Velculescu VE, WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817-25
  • Brugarolas J, Chandrasekaran C, Gordon JI, Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 1995;377:552-7
  • Deng C, Zhang P, Harper JW, Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995;82:675-84
  • Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995;55:5187-90
  • Rohaly G, Chemnitz J, Dehde S, A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Cell 2005;122:21-32
  • St Clair S, Giono L, Varmeh-Ziaie S, DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter. Mol Cell 2004;16:725-36
  • Hermeking H, Lengauer C, Polyak K, 14-3-3tau is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997;1:3-11
  • Ando T, Kawabe T, Ohara H, Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem 2001;276:42971-7
  • Charrier-Savournin FB, Chateau MT, Gire V, p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell 2004;15:3965-76
  • Smits VA, Klompmaker R, Vallenius T, p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 2000;275:30638-43
  • Zhan Q, Antinore MJ, Wang XW, Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 1999;18:2892-900
  • Jin S, Antinore MJ, Lung FD, The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J Biol Chem 2000;275:16602-8
  • Nezi L, Musacchio A. Sister chromatid tension and the spindle assembly checkpoint. Curr Opin Cell Biol 2009;21:785-95
  • Cross SM, Sanchez CA, Morgan CA, A p53-dependent mouse spindle checkpoint. Science 1995;267:1353-6
  • Di Leonardo A, Khan SH, Linke SP, DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res 1997;57:1013-19
  • Fukasawa K, Choi T, Kuriyama R, Abnormal centrosome amplification in the absence of p53. Science 1996;271:1744-7
  • Lanni JS, Jacks T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 1998;18:1055-64
  • Smith ML, Chen IT, Zhan Q, Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 1994;266:1376-80
  • Smith ML, Kontny HU, Zhan Q, Antisense GADD45 expression results in decreased DNA repair and sensitizes cells to u.v.-irradiation or cisplatin. Oncogene 1996;13:2255-63
  • Janus F, Albrechtsen N, Dornreiter I, The dual role model for p53 in maintaining genomic integrity. Cell Mol Life Sci 1999;55:12-27
  • Gottlieb E, Vousden KH. p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2010;2:a001040
  • Ma W, Sung HJ, Park JY, A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr 2007;39:243-6
  • Kulawiec M, Ayyasamy V, Singh KK. p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog 2009;8:8
  • Lebedeva MA, Eaton JS, Shadel GS. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim Biophys Acta 2009;1787:328-34
  • Matoba S, Kang JG, Patino WD, p53 regulates mitochondrial respiration. Science 2006;312:1650-3
  • Okamura S, Ng CC, Koyama K, Identification of seven genes regulated by wild-type p53 in a colon cancer cell line carrying a well-controlled wild-type p53 expression system. Oncol Res 1999;11:281-5
  • Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 2004;64:2627-33
  • Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 2008;10:611-18
  • Kondoh H, Lleonart ME, Gil J, Glycolytic enzymes can modulate cellular life span. Cancer Res 2005;65:177-85
  • Bensaad K, Vousden KH. p53: new roles in metabolism. Trends Cell Biol 2007;17:286-91
  • Li H, Jogl G. Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J Biol Chem 2009;284:1748-54
  • Vousden KH. Functions of p53 in metabolism and invasion. Biochem Soc Trans 2009;37:511-17
  • Muniyappa H, Song S, Mathews CK, Das KC. Reactive oxygen species-independent oxidation of thioredoxin in hypoxia: inactivation of ribonucleotide reductase and redox-mediated checkpoint control. J Biol Chem 2009;284:17069-81
  • Budanov AV, Sablina AA, Feinstein E, Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 2004;304:596-600
  • Cano CE, Gommeaux J, Pietri S, Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res 2009;69:219-26
  • Chen W, Sun Z, Wang XJ, Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 2009;34:663-73
  • Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965;37:614-36
  • Zilfou JT, Lowe SW. Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 2009;1:a001883
  • Brown JP, Wei W, Sedivy JM. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 1997;277:831-4
  • Narita M, Nunez S, Heard E, Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003;113:703-16
  • Narita M, Krizhanovsky V, Nunez S, A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 2006;126:503-14
  • Gorgoulis VG, Zacharatos P, Kotsinas A, p53 activates ICAM-1 (CD54) expression in an NF-kappaB-independent manner. EMBO J 2003;22:1567-78
  • Xue W, Zender L, Miething C, Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007;445:656-60
  • Campisi J. Cancer and ageing: rival demons? Nat Rev Cancer 2003;3:339-49
  • Vijg J, Suh Y. Genetics of longevity and aging. Annu Rev Med 2005;56:193-212
  • Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009;10:207-17
  • Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008;132:631-44
  • Schoppy DW, Ruzankina Y, Brown EJ. Removing all obstacles: a critical role for p53 in promoting tissue renewal. Cell Cycle 2010;9:1313-19
  • Tyner SD, Venkatachalam S, Choi J, p53 mutant mice that display early ageing-associated phenotypes. Nature 2002;415:45-53
  • Dumble M, Moore L, Chambers SM, The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 2007;109:1736-42
  • Matheu A, Maraver A, Klatt P, Delayed ageing through damage protection by the Arf/p53 pathway. Nature 2007;448:375-9
  • Garcia-Cao I, Garcia-Cao M, Tomas-Loba A, Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep 2006;7:546-52
  • Ventura A, Kirsch DG, McLaughlin ME, Restoration of p53 function leads to tumour regression in vivo. Nature 2007;445:661-5
  • Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006;127:1323-34
  • Junttila MR, Karnezis AN, Garcia D, Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 2010;468:567-71
  • Feldser DM, Kostova KK, Winslow MM, Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 2010;468:572-5
  • Bykov VJ, Issaeva N, Selivanova G, Wiman KG. Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database. Carcinogenesis 2002;23:2011-18. Available from:http://www.cancer.gov/clinicaltrials/
  • Kock H, Harris MP, Anderson SC, Adenovirus-mediated p53 gene transfer suppresses growth of human glioblastoma cells in vitro and in vivo. Int J Cancer 1996;67:808-15
  • Gomez-Manzano C, Fueyo J, Kyritsis AP, Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res 1996;56:694-9
  • Gomez-Manzano C, Fueyo J, Kyritsis AP, Characterization of p53 and p21 functional interactions in glioma cells en route to apoptosis. J Natl Cancer Inst 1997;89:1036-44
  • Lang FF, Yung WK, Sawaya R, Tofilon PJ. Adenovirus-mediated p53 gene therapy for human gliomas. Neurosurgery 1999;45:1093-104
  • Li H, Alonso-Vanegas M, Colicos MA, Intracerebral adenovirus-mediated p53 tumor suppressor gene therapy for experimental human glioma. Clin Cancer Res 1999;5:637-42
  • Lang FF, Bruner JM, Fuller GN, Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol 2003;21:2508-18
  • Nemunaitis J, Clayman G, Agarwala SS, Biomarkers predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin Cancer Res 2009;15:7719-25
  • Zeimet AG, Marth C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol 2003;4:415-22
  • Nemunaitis J, Ganly I, Khuri F, Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a Phase II trial. Cancer Res 2000;60:6359-66
  • Shi J, Zheng D. An update on gene therapy in China. Curr Opin Mol Ther 2009;11:547-53
  • Yang ZX, Wang D, Wang G, Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma. J Cancer Res Clin Oncol 2010;136:625-30
  • Tian G, Liu J, Zhou JS, Chen W. Multiple hepatic arterial injections of recombinant adenovirus p53 and 5-fluorouracil after transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a pilot phase II trial. Anticancer Drugs 2009;20:389-95
  • Senzer N, Nemunaitis J, Nemunaitis M, p53 therapy in a patient with Li-Fraumeni syndrome. Mol Cancer Ther 2007;6:1478-82
  • Xie YS, Zhang YH, Liu SP, Synergistic gastric cancer inhibition by chemogenetherapy with recombinant human adenovirus p53 and epirubicin: an in vitro and in vivo study. Oncol Rep 2010;24:1613-20
  • Pan JJ, Zhang SW, Chen CB, Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J Clin Oncol 2009;27:799-804
  • Li Y, Li LJ, Zhang ST, In vitro and clinical studies of gene therapy with recombinant human adenovirus-p53 injection for oral leukoplakia. Clin Cancer Res 2009;15:6724-31
  • Keedy V, Wang W, Schiller J, Phase I study of adenovirus p53 administered by bronchoalveolar lavage in patients with bronchioloalveolar cell lung carcinoma: ECOG 6597. J Clin Oncol 2008;26:4166-71
  • Ulasov IV, Tyler MA, Han Y, Novel recombinant adenoviral vector that targets the interleukin-13 receptor alpha2 chain permits effective gene transfer to malignant glioma. Hum Gene Ther 2007;18:118-29
  • Bischoff JR, Kirn DH, Williams A, An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274:373-6
  • Khuri FR, Nemunaitis J, Ganly I, A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000;6:879-85
  • O'Shea CC, Johnson L, Bagus B, Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004;6:611-23
  • Chiocca EA, Abbed KM, Tatter S, A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004;10:958-66
  • Crompton AM, Kirn DH. From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets 2007;7:133-9
  • Tyler MA, Ulasov IV, Sonabend AM, Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther 2009;16:262-78
  • Sonabend AM, Ulasov IV, Tyler MA, Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008;26:831-41
  • Lee JT, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 2010;17:86-92
  • Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010;20:299-309
  • Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 2006;6:663-73
  • Vassilev LT. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 2004;3:419-21
  • Shangary S, Qin D, McEachern D, Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 2008;105:3933-8
  • Vassilev LT, Vu BT, Graves B, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844-8
  • Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009;49:223-41
  • Kojima K, Konopleva M, Samudio IJ, MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005;106:3150-9
  • Secchiero P, Melloni E, di Iasio MG, Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood 2009;113:4300-8
  • Carter BZ, Mak DH, Schober WD, Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood 2010;115:306-14
  • Alimonti A, Nardella C, Chen Z, A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest 2010;120:681-93
  • Shangary S, Ding K, Qiu S, Reactivation of p53 by a specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle arrest and selective cell death in colon cancer. Mol Cancer Ther 2008;7:1533-42
  • Galatin PS, Abraham DJ. A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. J Med Chem 2004;47:4163-5
  • Lu Y, Nikolovska-Coleska Z, Fang X, Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. J Med Chem 2006;49:3759-62
  • Yin H, Lee GI, Park HS, Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem Int Ed Engl 2005;44:2704-7
  • Koblish HK, Zhao S, Franks CF, Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther 2006;5:160-9
  • Essmann F, Schulze-Osthoff K. Translational approaches targeting the p53 pathway for anticancer therapy. Br J Pharmacol 2011; published online 30 Jun 2011; doi:10.1111/j.1476-5381.2011.01570.x
  • Hardcastle IR, Liu J, Valeur E, Isoindolinone inhibitors of the murine double minute 2 (MDM2)-p53 protein-protein interaction: structure-activity studies leading to improved potency. J Med Chem 2011;54:1233-43
  • Hardcastle IR, Ahmed SU, Atkins H, Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold. J Med Chem 2006;49:6209-21
  • Blagosklonny MV, Darzynkiewicz Z. Cyclotherapy: protection of normal cells and unshielding of cancer cells. Cell Cycle 2002;1:375-82
  • Sur S, Pagliarini R, Bunz F, A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA 2009;106:3964-9
  • DeLeo AB. p53-based immunotherapy of cancer. Crit Rev Immunol 1998;18:29-35
  • Speetjens FM, Kuppen PJ, Welters MJ, Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res 2009;15:1086-95
  • Chiappori AA, Soliman H, Janssen WE, INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opin Biol Ther 2010;10:983-91
  • Bykov VJ, Issaeva N, Shilov A, Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 2002;8:282-8
  • Bykov VJ, Zache N, Stridh H, PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 2005;24:3484-91
  • Lambert JM, Gorzov P, Veprintsev DB, PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 2009;15:376-88
  • Shen J, Vakifahmetoglu H, Stridh H, PRIMA-1MET induces mitochondrial apoptosis through activation of caspase-2. Oncogene 2008;27:6571-80
  • Bykov VJ, Issaeva N, Zache N, Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem 2005;280:30384-91
  • Wiman KG. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene 2010;29:4245-52
  • Petitjean A, Mathe E, Kato S, Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007;28:622-9
  • Boeckler FM, Joerger AC, Jaggi G, Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA 2008;105:10360-5
  • Lane DP. Exploiting the p53 pathway for the diagnosis and therapy of human cancer. Cold Spring Harb Symp Quant Biol 2005;70:489-97
  • Demma M, Maxwell E, Ramos R, SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53. J Biol Chem 2010;285:10198-212
  • Kravchenko JE, Ilyinskaya GV, Komarov PG, Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci USA 2008;105:6302-7
  • North S, Pluquet O, Maurici D, Restoration of wild-type conformation and activity of a temperature-sensitive mutant of p53 (p53(V272M)) by the cytoprotective aminothiol WR1065 in the esophageal cancer cell line TE-1. Mol Carcinog 2002;33:181-8
  • Weinmann L, Wischhusen J, Demma MJ, A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 2008;15:718-29
  • Belyi VA, Ak P, Markert E, The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2010;2:a001198
  • Olivares-Illana V, Fahraeus R. p53 isoforms gain functions. Oncogene 2010;29:5113-19
  • Saddler C, Ouillette P, Kujawski L, Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 2008;111:1584-93
  • Lau LM, Nugent JK, Zhao X, Irwin MS. HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 2008;27:997-1003
  • Ambrosini G, Sambol EB, Carvajal D, Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 2007;26:3473-81
  • Tabe Y, Sebasigari D, Jin L, MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res 2009;15:933-42
  • Calabro V, Mansueto G, Santoro R, Inhibition of p63 transcriptional activity by p14ARF: functional and physical link between human ARF tumor suppressor and a member of the p53 family. Mol Cell Biol 2004;24:8529-40
  • Hu B, Gilkes DM, Farooqi B, MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem 2006;281:33030-5
  • Phan J, Li Z, Kasprzak A, Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J Biol Chem 2010;285:2174-83
  • Reed D, Shen Y, Shelat AA, Identification and characterization of the first small molecule inhibitor of MDMX. J Biol Chem 2010;285:10786-96
  • Wang H, Ma X, Ren S, A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Mol Cancer Ther 2011;10:69-79
  • Issaeva N, Bozko P, Enge M, Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004;10:1321-8
  • Chargari C, Leteur C, Angevin E, Preclinical assessment of JNJ-26854165 (Serdemetan), a novel tryptamine compound with radiosensitizing activity in vitro and in tumor xenografts. Cancer Lett 2011;312:209-18
  • Smith MA, Gorlick R, Kolb EA, Initial testing of JNJ-26854165 (Serdemetan) by the pediatric preclinical testing program. Pediatr Blood Cancer 2011; published online 15 SEP 2011; doi: 10.1002/pbc.23319
  • Kojima K, Burks JK, Arts J, Andreeff M. The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther 2010;9:2545-57
  • Walensky LD, Kung AL, Escher I, Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 2004;305:1466-70
  • Bernal F, Tyler AF, Korsmeyer SJ, Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 2007;129:2456-7
  • Marchenko ND, Wolff S, Erster S, Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 2007;26:923-34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.