430
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Targeting JAK2 in the therapy of myeloproliferative neoplasms

, &
Pages 313-324 | Published online: 17 Feb 2012

Bibliography

  • Levine RL, Wadleigh M, Cools J, Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7:387-97
  • James C, Ugo V, Le Couedic JP, A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:1144-8
  • Baxter EJ, Scott LM, Campbell PJ, Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:1054-61
  • Kralovics R, Passamonti F, Buser AS, A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352:1779-90
  • Zhao R, Xing S, Li Z, Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005;280:22788-92
  • Levine RL, Gilliland DG. Myeloproliferative disorders. Blood 2008;112:2190-8
  • Jones AV, Chase A, Silver RT, JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 2009;41:446-9
  • Kilpivaara O, Mukherjee S, Schram AM, A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms. Nat Genet 2009;41:455-9
  • Olcaydu D, Harutyunyan A, Jager R, A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 2009;41:450-4
  • Jatiani SS, Baker SJ, Silverman LR, Reddy EP. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer 2010;1:979-93
  • Peeters P, Raynaud SD, Cools J, Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997;90:2535-40
  • Lacronique V, Boureux A, Valle VD, A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997;278:1309-12
  • Pardanani AD, Levine RL, Lasho T, MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108:3472-6
  • Pikman Y, Lee BH, Mercher T, MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3:e270
  • Roll JD, Reuther GW. CRLF2 and JAK2 in B-progenitor acute lymphoblastic leukemia: a novel association in oncogenesis. Cancer Res 2010;70:7347-52
  • Yamaoka K, Saharinen P, Pesu M, The Janus kinases (Jaks). Genome Biol 2004;5:253
  • Lindauer K, Loerting T, Liedl KR, Kroemer RT. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng 2001;14:27-37
  • Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 2002;277:47954-63
  • Saharinen P, Vihinen M, Silvennoinen O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Biol Cell 2003;14:1448-59
  • Huang LJ, Constantinescu SN, Lodish HF. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 2001;8:1327-38
  • Tanner JW, Chen W, Young RL, The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J Biol Chem 1995;270:6523-30
  • Royer Y, Staerk J, Costuleanu M, Janus kinases affect thrombopoietin receptor cell surface localization and stability. J Biol Chem 2005;280:27251-61
  • Wernig G, Gonneville JR, Crowley BJ, The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood 2008;111:3751-9
  • Zanjani ED, Lutton JD, Hoffman R, Wasserman LR. Erythroid colony formation by polycythemia vera bone marrow in vitro. Dependence on erythropoietin. J Clin Invest 1977;59:841-8
  • Prchal JF, Axelrad AA. Letter: bone-marrow responses in polycythemia vera. N Engl J Med 1974;290:1382
  • Neubauer H, Cumano A, Muller M, Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998;93:397-409
  • Parganas E, Wang D, Stravopodis D, Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998;93:385-95
  • Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009;9:798-809
  • Onishi M, Nosaka T, Misawa K, Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol 1998;18:3871-9
  • Teglund S, McKay C, Schuetz E, Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 1998;93:841-50
  • Socolovsky M, Fallon AE, Wang S, Fetal anemia and apoptosis of red cell progenitors in Stat5a–/–5b–/– mice: a direct role for Stat5 in Bcl-XL induction. Cell 1999;98:181-91
  • Lu X, Levine R, Tong W, Expression of a homodimeric type 1 cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 2005;102:18962-7
  • Funakoshi-Tago M, Tago K, Abe M, STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant. J Biol Chem 2010;285:5296-307
  • Nelson EA, Walker SR, Weisberg E, The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 2011;117:3421-9
  • Chen LS, Redkar S, Bearss D, Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood 2009;114:4150-7
  • Dawson MA, Bannister AJ, Gottgens B, JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 2009;461:819-22
  • Sattler M, Griffin JD. JAK2 gets histone H3 rolling. Cancer Cell 2009;16:365-6
  • Rinaldi CR, Rinaldi P, Alagia A, Preferential nuclear accumulation of JAK2V617F in CD34+ but not in granulocytic, megakaryocytic, or erythroid cells of patients with Philadelphia-negative myeloproliferative neoplasia. Blood 2010;116:6023-6
  • Miura O, Nakamura N, Quelle FW, Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo. Blood 1994;84:1501-7
  • Shigematsu H, Iwasaki H, Otsuka T, Role of the vav proto-oncogene product (Vav) in erythropoietin-mediated cell proliferation and phosphatidylinositol 3-kinase activity. J Biol Chem 1997;272:14334-40
  • Jakel H, Weinl C, Hengst L. Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor signaling to cell cycle control. Oncogene 2011;30:3502-12
  • Rider L, Shatrova A, Feener EP, JAK2 tyrosine kinase phosphorylates PAK1 and regulates PAK1 activity and functions. J Biol Chem 2007;282:30985-96
  • Rui L, Mathews LS, Hotta K, Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol 1997;17:6633-44
  • Liu F, Zhao X, Perna F, JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 2011;19:283-94
  • Laubach JP, Fu P, Jiang X, Polycythemia vera erythroid precursors exhibit increased proliferation and apoptosis resistance associated with abnormal RAS and PI3K pathway activation. Exp Hematol 2009;37:1411-22
  • Grimwade LF, Happerfield L, Tristram C, Phospho-STAT5 and phospho-Akt expression in chronic myeloproliferative neoplasms. Br J Haematol 2009;147:495-506
  • Guglielmelli P, Barosi G, Rambaldi A, Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase I/II study in patients with myelofibrosis. Blood 2011;118:2069-76
  • Fasolo A, Sessa C. Current and future directions in mammalian target of rapamycin inhibitors development. Expert Opin Investig Drugs 2011;20:381-94
  • Lu M, Zhang W, Li Y, Interferon-alpha targets JAK2V617F-positive hematopoietic progenitor cells and acts through the p38 MAPK pathway. Exp Hematol 2010;38:472-80
  • Tefferi A. How i treat myelofibrosis. Blood 2011;117:3494-504
  • Verstovsek S, Kantarjian H, Mesa RA, Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010;363:1117-27
  • Quintas-Cardama A, Vaddi K, Liu P, Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010;115:3109-17
  • Hedvat M, Huszar D, Herrmann A, The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 2009;16:487-97
  • Pardanani A, Lasho T, Smith G, CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia 2009;23:1441-5
  • Tyner JW, Bumm TG, Deininger J, CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 2010;115:5232-40
  • Wernig G, Kharas MG, Okabe R, Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 2008;13:311-20
  • Pardanani A, Gotlib JR, Jamieson C, Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 2011;29:789-96
  • Tefferi A, Pardanani A. JAK inhibitors in myeloproliferative neoplasms: rationale, current data and perspective. Blood Rev 2011;25:229-37
  • George DJ, Dionne CA, Jani J, Sustained in vivo regression of dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res 1999;59:2395-401
  • Hexner EO, Serdikoff C, Jan M, Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 2008;111:5663-71
  • Levis M, Allebach J, Tse KF, A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002;99:3885-91
  • Strock CJ, Park JI, Rosen M, CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth. Cancer Res 2003;63:5559-63
  • William AD, Lee AC, Blanchard S, Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma. J Med Chem 2011;54:4638-58
  • Li Z, Xu M, Xing S, Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J Biol Chem 2007;282:3428-32
  • Richter K, Buchner J. Hsp90: chaperoning signal transduction. J Cell Physiol 2001;188:281-90
  • Gorre ME, Ellwood-Yen K, Chiosis G, BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002;100:3041-4
  • George P, Bali P, Cohen P, Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. Cancer Res 2004;64:3645-52
  • Fiskus W, Verstovsek S, Manshouri T, Heat shock protein 90 inhibitor is synergistic with JAK2 inhibitor and overcomes resistance to JAK2-TKI in human myeloproliferative neoplasm cells. Clin Cancer Res 2011;17:7347-58
  • Marubayashi S, Koppikar P, Taldone T, HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J Clin Invest 2010;120:3578-93
  • Guerini V, Barbui V, Spinelli O, The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2V617F.. Leukemia 2008;22:740-7
  • Wang X, Zhang W, Tripodi J, Sequential treatment of CD34+ cells from patients with primary myelofibrosis with chromatin-modifying agents eliminate JAK2V617F-positive NOD/SCID marrow repopulating cells. Blood 2010;116:5972-82
  • Wang JC, Chen C, Dumlao T, Enhanced histone deacetylase enzyme activity in primary myelofibrosis. Leuk Lymphoma 2008;49:2321-7
  • Kovacs JJ, Murphy PJ, Gaillard S, HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005;18:601-7
  • Lee J. Clinical efficacy of vorinostat in a patient with essential thrombocytosis and subsequent myelofibrosis. Ann Hematol 2009;88:699-700
  • Finnin MS, Donigian JR, Cohen A, Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999;401:188-93
  • Olsen EA, Kim YH, Kuzel TM, Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007;25:3109-15
  • Mann BS, Johnson JR, Cohen MH, FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007;12:1247-52
  • Rambaldi A, Dellacasa CM, Finazzi G, A pilot study of the histone-deacetylase inhibitor Givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol 2010;150:446-55
  • Wang Y, Fiskus W, Chong DG, Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood 2009;114:5024-33
  • Novotny-Diermayr V, Sausgruber N, Loh YK, Pharmacodynamic evaluation of the target efficacy of SB939, an oral HDAC inhibitor with selectivity for tumor tissue. Mol Cancer Ther 2011;10:1207-17
  • Schindler T, Bornmann W, Pellicena P, Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000;289:1938-42
  • Gorre ME, Mohammed M, Ellwood K, Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293:876-80
  • Deshpande A, Reddy MM, Schade GO, Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms. Leukemia 2011. [Epub ahead of print]
  • Hornakova T, Springuel L, Devreux J, Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors. Haematologica 2011;96:845-53
  • Tamborini E, Bonadiman L, Greco A, A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 2004;127:294-9
  • Pao W, Miller VA, Politi KA, Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005;2:e73
  • Warburg O. On respiratory impairment in cancer cells. Science 1956;124:269-70
  • Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010;330:1340-4
  • Reddy MM, Fernandes MS, Deshpande A, The JAK2V617F oncogene requires expression of inducible phosphofructokinase/fructose-bisphosphatase 3 for cell growth and increased metabolic activity. Leukemia 2011. [Epub ahead of print]
  • Clem B, Telang S, Clem A, Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 2008;7:110-20
  • Rodrigues MS, Reddy MM, Sattler M. Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxid Redox Signal 2008;10:1813-48
  • Walz C, Crowley BJ, Hudon HE, Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem 2006;281:18177-83
  • Guzman ML, Rossi RM, Karnischky L, The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005;105:4163-9
  • Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009;8:579-91
  • Reddy MM, Fernandes MS, Salgia R, NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases. Leukemia 2011;25:281-9
  • Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011;118:1723-35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.