626
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Targeting frameshifting in the human immunodeficiency virus

, &
Pages 249-258 | Published online: 09 Mar 2012

Bibliography

  • Nekhai S, Jeang KT. Transcriptional and post-transcriptional regulation of HIV-1 gene expression: role of cellular factors for Tat and Rev. Future Microbiol 2006;1:417-26
  • Jacks T, Power MD, Masiarz FR, Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 1988;331:280-3
  • Dulude D, Baril M, Brakier-Gingras L. Characterization of the frameshift stimulatory signal controlling a programmed –1 ribosomal frameshift in the human immunodeficiency virus type 1. Nucleic Acids Res 2002;30:5094-102
  • Gaudin C, Mazauric MH, Traikia M, Structure of the RNA signal essential for translational frameshifting in HIV-1. J Mol Biol 2005;349:1024-35
  • Staple DW, Butcher SE. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. J Mol Biol 2005;349:1011-23
  • Yang SJ, Lopez LA, Exline CM, Lack of adaptation to human tetherin in HIV-1 Group O and P. Retrovirology 2011;8:78
  • HIV Databases. Los Alamos, New Mexico: Los Alamos National Laboratory, 2005–2006. Available from: http://www.hiv.lanl.gov/content/index
  • Baril M, Dulude D, Gendron K, Efficiency of a programmed -1 ribosomal frameshift in the different subtypes of the human immunodeficiency virus type 1 group M. RNA 2003;9:1246-53
  • Mazauric MH, Seol Y, Yoshizawa S, Interaction of the HIV-1 frameshift signal with the ribosome. Nucleic Acids Res 2009;37:7654-64
  • Fu J, Munro JB, Blanchard SC, Frank J. Cryoelectron microscopy structures of the ribosome complex in intermediate states during tRNA translocation. Proc Natl Acad Sci USA 2011;108:4817-21
  • Fischer N, Konevega AL, Wintermeyer W, Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 2010;466:329-33
  • Dulude D, Berchiche YA, Gendron K, Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 2006;345:127-36
  • Leger M, Dulude D, Steinberg SV, Brakier-Gingras L. The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed –1 ribosomal frameshift. Nucleic Acids Res 2007;35:5581-92
  • Brakier-Gingras L, Dulude D. Programmed –1 ribosomal frameshift in the human immunodeficiency virus of type 1. In: Atkins JF, Gesteland RF, editors. Recoding: Expansion of Decoding Rules Enriches Gene Expression. Springer; New York, NY: 2010. p. 175-92
  • Liao PY, Choi YS, Dinman JD, Lee KH. The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed -1 ribosomal frameshifting. Nucleic Acids Res 2011;39:300-12
  • Weiss RB, Dunn DM, Shuh M, E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. New Biol 1989;1:159-69
  • Frank J, Gonzalez RL Jr. Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu Rev Biochem 2010;79:381-412
  • Gilbert WV. Functional specialization of ribosomes? Trends Biochem Sci 2011;36:127-32
  • Plant EP, Dinman JD. Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems. RNA 2006;12:666-73
  • Houck-Loomis B, Durney MA, Salguero C, An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature 2011;480:561-4
  • Gendron K, Charbonneau J, Dulude D, The presence of the TAR RNA structure alters the programmed –1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation. Nucleic Acids Res 2008;36:30-40
  • Charbonneau J, Gendron K, Ferbeyre G, Brakier-Gingras L. The 5′UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed –1 ribosomal frameshift that generates HIV-1 enzymes. RNA 2012;18:519-29
  • Kobayashi Y, Zhuang J, Peltz S, Dougherty J. Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting. J Biol Chem 2010;285:19776-84
  • Clark MB, Janicke M, Gottesbuhren U, Mammalian gene PEG10 expresses two reading frames by high efficiency –1 frameshifting in embryonic-associated tissues. J Biol Chem 2007;282:37359-69
  • Lux H, Flammann H, Hafner M, Lux A. Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation. PLoS One 2010;5:e8686
  • Wills NM, Moore B, Hammer A, A functional –1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene. J Biol Chem 2006;281:7082-8
  • Baranov PV, Wills NM, Barriscale KA, Programmed ribosomal frameshifting in the expression of the regulator of intestinal stem cell proliferation, adenomatous polyposis coli (APC). RNA Biol 2011;8:637-47
  • Plant EP, Wang P, Jacobs JL, Dinman JD. A programmed –1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element. Nucleic Acids Res 2004;32:784-90
  • Belew AT, Advani VM, Dinman JD. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast. Nucleic Acids Res 2011;39:2799-808
  • Carlson TL, Green KA, Green WR. Alternative translational reading frames as a novel source of epitopes for an expanded CD8 T-cell repertoire: use of a retroviral system to assess the translational requirements for CTL recognition and lysis. Viral Immunol 2010;23:577-83
  • Dinman JD, Wickner RB. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J Virol 1992;66:3669-76
  • Telenti A, Martinez R, Munoz M, Analysis of natural variants of the human immunodeficiency virus type 1 gag-pol frameshift stem-loop structure. J Virol 2002;76:7868-73
  • Miyauchi K, Komano J, Myint L, Rapid propagation of low-fitness drug-resistant mutants of human immunodeficiency virus type 1 by a streptococcal metabolite sparsomycin. Antivir Chem Chemother 2006;17:167-74
  • Shehu-Xhilaga M, Crowe SM, Mak J. Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J Virol 2001;75:1834-41
  • Bidou L, Stahl G, Grima B, In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal. RNA 1997;3:1153-8
  • Tholstrup J, Oddershede LB, Sørensen MA. mRNA pseudoknot structures can act as ribosomal roadblocks. Nucleic Acids Res 2012;40:303-13
  • Stahl G, Bidou L, Rousset J, Cassan M. Versatile vectors to study recoding: conservation of rules between yeast and mammalian cells. Nucleic Acids Res 1995;23:1557-60
  • Leger M, Sidani S, Brakier-Gingras L. A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1. RNA 2004;10:1225-35
  • Dinman JD, Ruiz-Echevarria MJ, Peltz SW. Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents. Trends Biotechnol 1998;16:190-6
  • Hung M, Patel P, Davis S, Green SR. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J Virol 1998;72:4819-24
  • Marcheschi RJ, Tonelli M, Kumar A, Butcher SE. Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication. ACS Chem Biol 2011;6:857-64
  • Brierley I, Dos Ramos FJ. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res 2006;119:29-42
  • Grentzmann G, Ingram JA, Kelly PJ, A dual-luciferase reporter system for studying recoding signals. RNA 1998;4:479-86
  • Harger JW, Dinman JD. An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA 2003;9:1019-24
  • Dulude D, Theberge-Julien G, Brakier-Gingras L, Heveker N. Selection of peptides interfering with a ribosomal frameshift in the human immunodeficiency virus type 1. RNA 2008;14:981-91
  • Cardno TS, Poole ES, Mathew SF, A homogeneous cell-based bicistronic fluorescence assay for high-throughput identification of drugs that perturb viral gene recoding and read-through of nonsense stop codons. RNA 2009;15:1614-21
  • Rakauskaite R, Liao PY, Rhodin MH, A rapid, inexpensive yeast-based dual-fluorescence assay of programmed –1 ribosomal frameshifting for high-throughput screening. Nucleic Acids Res 2011;39:e97
  • Staple DW, Venditti V, Niccolai N, Guanidinoneomycin B recognition of an HIV-1 RNA helix. ChemBioChem 2008;9:93-102
  • Marcheschi RJ, Mouzakis KD, Butcher SE. Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA. ACS Chem Biol 2009;4:844-54
  • McNaughton BR, Gareiss PC, Miller BL. Identification of a selective small-molecule ligand for HIV-1 frameshift-inducing stem-loop RNA from an 11,325 member resin bound dynamic combinatorial library. J Am Chem Soc 2007;129:11306-7
  • Palde PB, Ofori LO, Gareiss PC, Strategies for recognition of stem-loop RNA structures by synthetic ligands: application to the HIV-1 frameshift stimulatory sequence. J Med Chem 2010;53:6018-27
  • Howard MT, Gesteland RF, Atkins JF. Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides. RNA 2004;10:1653-61
  • Olsthoorn RC, Laurs M, Sohet F, Novel application of sRNA: stimulation of ribosomal frameshifting. RNA 2004;10:1702-3
  • Yu CH, Noteborn MH, Olsthoorn RC. Stimulation of ribosomal frameshifting by antisense LNA. Nucleic Acids Res 2010;38:8277-83
  • Ahn DG, Lee W, Choi JK, Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res 2011;91:1-10
  • Aupeix-Scheidler K, Chabas S, Bidou L, . Inhibition of in vitro and ex vivo translation by a transplatin-modified oligo(2′-O-methylribonucleotide) directed against the HIV-1 gag-pol frameshift signal. Nucleic Acids Res 2000;28:438-45
  • Agrawal S, Kandimalla ER. Role of Toll-like receptors in antisense and siRNA [corrected]. Nat Biotechnol 2004;22:1533-7
  • Flexner C. HIV drug development: the next 25 years. Nat Rev Drug Discov 2007;6:959-66
  • Tsygankov AY. Current developments in anti-HIV/AIDS gene therapy. Curr Opin Investig Drugs 2009;10:137-49
  • Gareiss PC, Miller BL. Ribosomal frameshifting: an emerging drug target for HIV. Curr Opin Investig Drugs 2009;10:121-8
  • Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 2007;6:211-19
  • Girnary R, King L, Robinson L, Structure-function analysis of the ribosomal frameshifting signal of two human immunodeficiency virus type 1 isolates with increased resistance to viral protease inhibitors. J Gen Virol 2007;88:226-35
  • Nijhuis M, van Maarseveen NM, Lastere S, A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. PLoS Med 2007;4:e36
  • Knops E, Brakier-Gingras L, Schulter E, Mutational patterns in the frameshift-regulating site of HIV-1 selected by protease inhibitors. Med Microbiol Immunol 2012; published online 27 December 2011; doi: 10.1007/s00430-011-0224-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.